• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 8
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 51
  • 18
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Regulation des Ubiquitin-Proteasom-Systems in Säugetierzellen durch den Transkriptionsfaktor TCF11

Steffen, Janos 09 September 2010 (has links)
Das Ubiquitin-Proteasom-System (UPS) ist das wichtigste System für den Abbau von nicht mehr benötigten oder beschädigten Proteinen innerhalb der eukaryotischen Zelle und ist somit an der Aufrechterhaltung der zellulären Homöostase beteiligt. Ein Abfall der proteasomalen Aktivität führt zu intrazellulärem Stress. Die Zelle wirkt diesem Abfall entgegen, indem sie die proteasomalen Gene verstärkt exprimiert und dadurch die Neubildung von 26S Proteasomen bewirkt. Während in der Bäckerhefe Saccharomyces cerevisiae mit Rpn4 der Transkriptionsfaktor für die verstärkte Expression identifiziert wurde, war dieser in Säugetieren noch nicht bekannt. In der vorliegenden Arbeit konnte TCF11 (transcription factor 11) als der verantwortliche Transkriptionsfaktor identifiziert werden, der in der humanen Endothelzelllinie Ea.hy926 die Transkription der proteasomalen Gene nach Proteasominhibition induziert. Unter physiologischen Bedingungen ist TCF11 ein N-glykosyliertes ER-ständiges Membranprotein, welches durch die ER-assoziierte Protein Degradation, unter der Mitwirkung des E3-Enzyms HRD1 und der AAA-ATPase p97, schnell abgebaut wird. Nach der Proteasominhibition kommt es zur Akkumulation von oxidierten Proteinen, und TCF11 wird aktiviert und in den Zellkern transportiert. Im Zellkern bindet TCF11 an AREs (antioxidant response element) in den proteasomalen Promotoren und aktiviert dadurch die Transkription der proteasomalen Gene. Darüber hinaus reguliert TCF11 auch die Expression von zahlreichen Enzymen, die die Ubiquitinierung von Proteinen katalysieren. Dadurch wird die zelluläre Homöostase wiederhergestellt und TCF11 sehr wahrscheinlich durch die neu gebildeten Proteasomen abgebaut. Die Ergebnisse der vorliegenden Arbeit zeigen auf, dass die Integrität des UPS nach Proteasominhibition in der humanen Endolthelzelllinie Ea.hy926 über einen TCF11 abhängigen Rückkopplungsmechanismus aufrechterhalten wird. / The ubiquitin-proteasome-system (UPS) is the most important system for regulated protein degradation in eukaryotes. Therefore it is involved in the regulation of cellular homeostasis. Reduced proteasome activity results in proteotoxic stress. To counteract for reduced proteasome activity, eukaryotic cells enhance proteasome gene expression, which results in formation of new 26S proteasomes and recovery of physiological conditions. While in bakers yeast Saccharomyces cerevisiae the transcription factor Rpn4 is responsible for enhanced proteasome gene expression in response to proteasome inhibition, in mammals the responsible transcription factor was unknown. In this thesis, transcription factor TCF11 (transcription factor 11) was identified as a key regulator for 26S-proteasome formation in the human cell line Ea.hy926 to compensate for reduced proteolytic activity. Under non-inducing conditions N-glycosylated TCF11 resides in the endoplasmic reticulum (ER) membrane, where TCF11 is targeted to ER-associated protein degradation system requiring the E3-ubiquitin ligase HRD1 and the AAA-ATPase p97. Proteasome inhibitors trigger the accumulation of oxidant-damaged proteins, and promote the nuclear translocation of TCF11 from the ER, permitting activation of proteasome gene expression by binding of TCF11 to antioxidant response elements (ARE) in their promoter regions. Furthermore TCF11 controlls the expression of additional UPS-related genes. Thus the transcriptional feedback loop regulating human proteasome dependent protein degradation to counteract proteotoxic stress caused by proteasome inhibition was uncovered.
32

Balance protéique et phénotype musculaire / Protein balance and muscular phenotype

Begue, Gwénaëlle 12 April 2013 (has links)
Le maintien de la masse musculaire est étroitement lié à la balance entre la synthèse et la dégradation des protéines. L'exercice physique est un puissant régulateur de la balance protéique et plus particulièrement l'exercice en résistance. S'intéresser à la balance protéique après un exercice s'inscrit dans une compréhension des mécanismes cellulaires et moléculaires conduisant aux phénomènes d'hypertrophie et/ou d'atrophie musculaire. Nos travaux mettent en évidence que l'hypertrophie obtenue dans le muscle FDP après 10 semaines d'un entraînement en résistance chez le rat, est en lien avec l'activation chronique de la voie IL-6/STAT3 après chaque exercice aigu, en partie au sein du pool de cellules satellites activées. En phase proliférative, les cellules dont la voie de signalisation STAT1/STAT3 est activée, répriment l'expression des facteurs myogéniques comme MyoD et retournent ainsi à l'état quiescent, concourant à augmenter le pool de réserve. Ces mécanismes participent à la synthèse protéique par l'apport de nouveau matériel génétique au sein des fibres musculaires conduisant à une augmentation de leur surface de section ainsi qu'à leur conversion phénotypique avec l'entraînement. L'exercice en résistance favorisant la protéolyse, nos travaux ont cherché à caractériser les systèmes protéolytiques (autophagique-lysosomal, ubiquitine-protéasome) impliqués dans la balance protéique post-exercice. Les marqueurs moléculaires étudiés (activités enzymatiques du protéasome et de la cathepsine L, expression protéique et génique de LC3B, des E3 ligases…) ne permettent pas d'expliquer clairement les +30% de protéolyse obtenus une heure après des contractions excentriques sur muscle EDL isolé de rat en condition à jeun. Des perspectives d'étude des systèmes des calpaines, des caspases et/ou des métalloprotéases matricielles sont alors à envisager. / The maintain of muscle mass is closely controlled by protein synthesis and degradation balance. Physical activity and mainly resistance exercise is a powerful stimulus to positive muscle protein balance. To understand how protein balance is regulated after exercise, cellular and molecular mechanisms leading to muscular hypertrophy and/or atrophy have to be elucidated. Our works point out that FDP muscular hypertrophy after 10 weeks of resistance training in rat is partly due to the chronically activation of IL-6/STAT3 signaling pathway, occurring in the activated satellite cell pool, after each single exercise bout. Once activated and engaged in the myogenic program, cells in which STAT1/STAT3 signaling pathway is activated, could downregulate MyoD and return to a quiescent state, leading to increase satellite cell reserve's pool. These events participate to enhance protein synthesis by the incorporation of new genetic material into muscle fiber leading to increase their cross sectional area and phenotypic shift after training. As resistance exercise increases proteolysis, our works attempt to characterize the proteolysis systems (lysosomal-autophagic, ubiquitin-proteasome) involved in protein balance after exercise. The molecular markers measured ( chymotrypsin-like and cathepsin L activities, protein and gene expressions of LC3B, E3 ligases…) could not explain the +30% of proteolysis obtained one hour after resistance eccentric contractions on EDL muscle of starved rats. Further studies based on calpains, caspases and metalloproteinase activities and/or expressions should bring us valuable information.
33

Die Auswirkung von verschiedenen Proteasom-Inhibitoren auf die Wallersche Degeneration peripherer Nerven in vitro und in vivo / The effect of different proteasome inhibitors on Wallerian degeneration of peripheral nerves in vivo and in vitro

Denninger, Stefan Christoph 04 September 2013 (has links)
No description available.
34

Analyse du mécanisme de la dégradation du récepteur CD4 par la protéine Vpu du virus de l'immunodéficience humaine-1 (VIH-1)

Binette, Julie 12 1900 (has links)
Le VIH-1 a développé plusieurs mécanismes menant à la dégradation de son récepteur cellulaire, la molécule CD4, dans le but d’augmenter la relâche de particules virales infectieuses et d’éviter que la cellule soit surinfectée. L’un de ces mécanismes est la dégradation, induite par la protéine virale Vpu, du CD4 nouvellement synthétisé au niveau du réticulum endoplasmique (RE). Vpu doit lier CD4 et recruter l’ubiquitine ligase cellulaire SCFβ-TrCP, via sa liaison à β-TrCP, afin de dégrader CD4. Puisque CD4 doit être retenu au RE pour permettre à Vpu d’induire sa dégradation via le système ubiquitine-protéasome, il a été suggéré que ce processus implique un mécanisme semblable à une voie cellulaire de dégradation des protéines mal-repliées appelée ERAD (« endoplasmic reticulum-associated degradation »). La dégradation par ERAD implique généralement la dislocation des protéines du RE vers le cytoplasme afin de permettre leur poly-ubiquitination et leur dégradation par le protéasome. Nous avons démontré que Vpu induit la poly-ubiquitination de CD4 dans des cellules humaines. Nos résultats suggèrent aussi que CD4 doit subir une dislocation afin d’être dégradé par le protéasome en présence de Vpu. De plus, un mutant transdominant négatif de l’ATPase p97, qui est impliquée dans la dislocation des substrats ERAD, inhibe complètement la dégradation de CD4 par Vpu. Enfin, nos résultats ont montré que l’ubiquitination sur des résidus accepteurs de l’ubiquitine (lysines) de la queue cytoplasmique de CD4 n’était pas essentielle, mais que la mutation des lysines ralentit le processus de dégradation de CD4. Ce résultat suggère que l’ubiquitination de la queue cytosolique de CD4 pourrait représenter un événement important dans le processus de dégradation induit par Vpu. L’attachement de l’ubiquitine a généralement lieu sur les lysines de la protéine ciblée. Toutefois, l’ubiquitination sur des résidus non-lysine (sérine, thréonine et cystéine) a aussi été démontrée. Nous avons démontré que la mutation de tous les sites potentiels d’ubiquitination cytoplasmiques de CD4 (K, C, S et T) inhibe la dégradation par Vpu. De plus, la présence de cystéines dans la queue cytoplasmique apparaît suffisante pour rendre CD4 sensible à Vpu en absence de lysine, sérine et thréonine. Afin d’expliquer ces résultats, nous proposons un modèle dans lequel l’ubiquitination de la queue cytosolique de CD4 serait nécessaire à sa dégradation et où les sites d’ubiquitination de CD4 seraient sélectionnés de façon non spécifique par l’ubiquitine ligase recrutée par Vpu. Enfin, nous avons observé que la co-expression d’une protéine Vpu incapable de recruter β-TrCP (Vpu S52,56/D) semble stabiliser le CD4 qui est retenu au RE. De plus, d’autres mutants de Vpu qui semblent capables de recruter β-TrCP et CD4 sont toutefois incapables d’induire sa dégradation. Ces résultats suggèrent que l’association de Vpu à CD4 et β-TrCP est essentielle mais pas suffisante pour induire la dégradation de CD4. Par conséquent, ces résultats soulèvent la possibilité que Vpu puisse recruter d’autres facteurs cellulaires pour induire la dégradation de CD4. Les résultats présentés ont permis de mieux définir le mécanisme de dégradation de CD4 par Vpu dans des cellules humaines. De plus, ces résultats nous ont permis d’élaborer un modèle dans lequel l’ubiquitine ligase cellulaire SCFβ-TrCP démontre de la flexibilité dans le choix des résidus à ubiquitiner afin d’induire la dégradation de CD4. Enfin, ces études jettent un oeil nouveau sur le rôle de Vpu dans ce processus puisque nos résultats suggèrent que Vpu doive recruter d’autres partenaires cellulaires, mis à part β-TrCP, pour induire la dégradation de CD4. / HIV-1 has developed many mechanisms leading to the down-regulation of its cellular receptor, the CD4 molecule, in order to increase the release of infectious viral particles and to inhibit superinfection of the target cell. One of these mechanisms is the HIV-1 Vpu-mediated degradation of newly synthesized CD4 at the level of endoplasmic reticulum (ER). Vpu must interact with CD4 and recruit the cellular ubiquitin ligase SCFβ-TrCP, via its binding to β-TrCP, in order to induce CD4 degradation. Because CD4 has to be retained in the ER to allow Vpu to induce its degradation via the ubiquitin-proteasome system, it has been suggested that this process involves a mechanism reminiscent of a cellular degradation pathway involved in the proteolysis of unfolded proteins called ERAD (endoplasmic reticulum-associated degradation). The ERAD degradation usually involves the dislocation of proteins from the ER to the cytoplasm in order to induce their poly-ubiquitination and subsequent degradation by the proteasome. We demonstrated that Vpu induces the poly-ubiquitination of CD4 in human cells. Our results also suggest that CD4 has to be dislocated in order to be degraded by the proteasome in presence of Vpu. Furthermore, the expression of a transdominant negative mutant of the ATPase p97, that is involved in the dislocation of ERAD substrates, inhibits completely the Vpu-mediated CD4 degradation process. Finally, our results demonstrated that the ubiquitination of putative ubiquitin acceptor residues (lysines) in the cytosolic tail of CD4 is not essential but the mutation of these lysines slowed down the process of CD4 degradation induced by Vpu. This results suggests that ubiquitination of CD4 cytosolic tail could represent an important step during Vpu-mediated CD4 degradation. Ubiquitin is usually attached on lysine residues in the targetted protein. However, the ubiquitination on non-lysine residues (S, T and C) has also been demonstrated. We demonstrated that the mutation of all cytosolic potential ubiquitination sites (K, C, S and T) of CD4 abolishes Vpu-mediated degradation. In addition, the presence of cysteines in the cytosolic tail of CD4 appeared sufficient to render CD4 sensitive to Vpu in absence of lysine, serine or threonine. In order to explain these results, we propose a model in which CD4 cytosolic tail ubiquitination is necessary for its degradation and where ubiquitination sites are selected non specifically by the ubiquitin ligase recruited by Vpu. Finally, we observed that co-expression of a phosphorylation mutant of Vpu unable to interact with β-TrCP (Vpu S52,56/D) appears to stabilize ER-retained CD4 molecules. In addition, other Vpu mutants seem able to recruit β-TrCP and CD4 without inducing CD4 degradation. These results suggest that Vpu association with CD4 and β-TrCP is essential but not sufficient for CD4 degradation. Consequently, these results raised the possibility that other cellular factors could be recruited by Vpu in order to induce CD4 degradation. The results presented here allowed us to better define the mechanism underlying Vpu-mediated CD4 degradation. In addition, these results allowed us to elaborate a model in which the ubiquitin ligase SCFβ-TrCP show some flexibility in the choice of ubiquitination sites in order to induce CD4 degradation. Finally, theses studies shed a new light on the role of Vpu in the CD4 degradation process because our results suggest that Vpu could recruit, in addition of β-TrCP, other cellular partners in order to induce CD4 degradation.
35

O sistema ubiquitina-proteassoma no modelo de hipertrofia cardíaca induzida por hormônio tireoidiano. / The ubiquitin proteasome system in thyroid hormone-induced cardiac hypertrophy model.

Caroline Antunes Lino 13 June 2013 (has links)
Disfunções da glândula tireóide são, frequentemente, associadas a manifestações cardiovasculares e, em situações de hipertireoidismo, o coração hipertrofia. A hipertrofia cardíaca (HC) consiste em uma resposta adaptativa caracterizada pelo aumento de síntese de proteínas estruturais. O Sistema Ubiquitina Proteassoma (UPS) corresponde ao principal mecanismo de proteólise intracelular e crescentes evidências sugerem seu envolvimento no desenvolvimento da HC. O objetivo do presente estudo foi avaliar a modulação do UPS no tecido cardíaco de animais submetidos ao hipertireoidismo. Os resultados referentes ao aumento da atividade e expressão do proteassoma (PT) cardíaco apresenta-se mais contundente no grupo tratado por 7 dias, período em que a HC já encontra-se estável. Ao término de 14 e 21 dias, a modulação desse sistema tende à normalização. Os resultados obtidos atestam evidências da literatura que sugerem o aumento da atividade do PT cardíaco como resposta compensatória ao aumento de síntese proteica. / Thyroid gland disorders are often associated with cardiovascular events and hyperthyroidism state promotes cardiac hypertrophy (CH). CH consists in adaptive response characterized by increased synthesis of structural proteins. The Ubiquitin Proteasome System (UPS) is the major mechanism of intracellular proteolysis and increased evidences suggest its involvement in the development of CH. The aim of this study was to evaluate the modulation of UPS in cardiac tissue of animals subjected to hyperthyroidism. The results related to the increased proteasome (PT) activity and expression in the heart was more accentuated in the group treated for 7 days, when the CH process finds stable. At the end of 14 and 21 days of hyperthyroidism, the modulation of cardiac UPS achieves standard values. These results suggest an increased activity of cardiac PT as a compensatory response to protein synthesis induced by thyroid hormones.
36

Caracterização do repertório peptídico intracelular de células expressando o proteassomo imune. / Characterization of intracellular peptide repertoire of cells expressing the immune proteasome.

Elisabete Rodrigues do Monte Silva 18 March 2014 (has links)
Células eucarióticas contêm vários tipos de proteassomo que regulam o processo de degradação de proteína. Proteassomos são proteases multicatalíticas que são responsáveis pela maior parte de degradação não-lisossomal de proteínas em células eucarióticas. As três subunidades catalíticas do proteassomo são &beta;1, &beta;2 e &beta;5. Em condições de stress e resposta imune essas três subunidades são substituídas por &beta;1i, &beta;2i and &beta;5i, respectivamente, para formar o proteassomo imune. Estas três subunidades induzíveis, parecem alterar as especificidades de peptidase do proteassoma imune em células tratadas com IFN-<font face=\"symbol\">g. Nosso objetivo no presente trabalho foi caracterizar um modelo celular para a indução do proteassomo imune, e ainda investigar o repertório peptídeo intracelular produzido por esta forma particular do proteassoma, através da técnica de espectrometria de massas. Em resumo, os nossos dados mostraram um aumento de 3 vezes do peptídeo EL28 derivado da proteína RPT2 em células HeLa tratadas com o IFN-<font face=\"symbol\">g. O peptídeo EL28 pode ser de relevância clínica para o tratamento de distúrbios relacionados com a apresentação de antígenos, visto que ele parece ativar a atividade quimotripsina-like quando incubado com o extrato celular de células HeLa. / Eukaryotic cells contain several types of proteasome regulating the process of protein degradation. The proteasome are responsible for most non - lysosomal protein degradation in eukaryotic cells. The three catalytic subunits of the proteasome are &beta;1, &beta;2 and &beta;5. Under conditions of stress and immune response these three subunits are replaced by &beta;1i, &beta;2i and &beta;5i, respectively, to form the immune proteasome . These three inducible subunits, appear to alter the specificity of the immune proteasome peptidase in cells treated with IFN-<font face=\"symbol\">g. Our aim in this study was to characterize a cellular model for the induction of the immune proteasome, and even investigate the intracellular peptide repertoire produced by this particular form of the proteasome, through the technique of mass spectrometry. In summary, our data showed an increase of 3 times the peptide derived from RPT2 EL28 protein in HeLa cells treated with IFN-<font face=\"symbol\">g. The EL28 peptide may be of clinical relevance for the treatment of disorders related to antigen presentation, since it seems to activate the chymotrypsin-like activity when incubated with the cell extract of HeLa cells.
37

Hledání biologické role rodiny proteinů podobných Ddi1 / Deciphering the biological role of Ddi1-like protein family

Sivá, Monika January 2019 (has links)
Ddi1-like protein family has been recently raised into the spotlight by the scientific community due to its important roles in cellular homeostasis maintenance. It represents a specific group among shuttling proteins of the ubiquitin-proteasome system. When compared to other shuttles, Ddi1-like protein family members harbor a unique retroviral-protease like domain besides the conventional ubiquitin-like (UBL) domain and domains interacting with ubiquitin. In addition, a helical domain of Ddi (HDD) has been recently found in most of the orthologs. In this thesis, I focus on characterization of several members of Ddi1-like protein family, both on molecular level using NMR and in model mouse strains via a variety of biological methods. Solution structure of the UBL domain of Ddi1p of S. cerevisiae was solved and its characteristics were compared to those of the UBL domain of its human ortholog. Furthermore, we show that human DDI2 specifically binds to ubiquitin with its terminal domains, both the UBL and the UIM; however, with very low affinity in contrast to binding properties of its yeast counterpart. Our study also show that hDDI2 does not form a head-to-tail homodimer. Based on our structural studies, we hypothesize that human DDI2 might have evolved a different function compared to its yeast...
38

Role of 26S Proteasome and Regulator of G-Protein Signaling 10 in Regulating Neuroinflammation in the Central Nervous System

Maganti, Nagini 17 December 2015 (has links)
Major histocompatibility complex molecules (MHCII) are cell surface glycoproteins that present extracellular antigens to CD4+ T lymphocytes and initiate adaptive immune responses. Apart from their protective role, overexpression of MHCII contributes to autoimmune disorders where the immune system attacks our own tissues. Autoimmune diseases are characterized by self-reactive responses to autoantigens, promoting tissue damage, inflammation mediated by proinflammatory cytokines, autoreactive lymphocytes, and autoantibodies. MHCII molecules are tightly regulated at the level of transcription by Class II transactivator (CIITA). CIITA associates with an enhanceosome complex at MHCII promoters and regulates the expression of MHCII. It is thus crucial to understand the regulation of CIITA expression in order to regulate MHCII in autoimmune diseases. Our lab has shown that the 19S ATPases of the 26S proteasome associate with MHCII and CIITA promoters and play important roles in gene transcription, regulate covalent modifications to histones, and are involved in the assembly of activator complexes in mammalian cells. The mechanisms by which the proteasome influences transcription remain unclear. Here, we define novel roles of the 19S ATPases Sug1, S7, and S6a in expression of CIITApIV genes. These ATPases are recruited to CIITApIV promoters and coding regions, interact with the elongation factor PTEFb, and with Ser5 phosphorylated RNA Pol II. Both the generation of CIITApIV transcripts and efficient recruitment of RNA Pol II to CIITApIV are negatively impacted by knockdown of 19S ATPases. Alternatively, inflammation is also suppressed via the Regulator of G-protein signaling 10 (RGS10) in microglial cells which express high levels of RGS10 and promote homeostasis in the central nervous system. However, chronic activation of microglial cells leads to release of cytokines which cause neuroinflammation. Our investigation of roles played by RGS10 in chronically activated microglial cells indicates that RGS10 binds to promoters of IL-1β, and TNF-α and regulates these genes, while the molecular mechanism remains to be investigated. Together, our observations indicate roles for the UPS in modulating gene expression and for RGS10 in regulating proinflammatory cytokines in microglial cells, each of which provides novel therapeutic targets to combat inflammation in autoimmune and neurodegenerative diseases.
39

L’immunoprotéasome : régulateur de transcription et promoteur de survie cellulaire

Rouette, Alexandre 04 1900 (has links)
Le protéasome (CP) contrôle la majorité des fonctions cellulaires par la dégradation des protéines intracellulaires. En plus d’exprimer le CP, les vertébrés expriment également l’immunoprotéasome (IP), caractérisé par des préférences de dégradation distinctes. Le rôle le mieux caractérisé pour l’IP est la génération d’antigènes adaptés pour la liaison au complexe majeur d’histocomptabilité de classe I (CMH-I). Cependant, les nombreux phénotypes observés au niveau de cellules déficientes en IP ou avec une mutation révèlent que l’IP influence des fonctions immunitaires indépendamment de la génération d’antigènes et peut atténuer le stress présent au niveau de cellules non-immunitaires. L’objectif de cette thèse était de caractériser les rôles de l’IP qui ne sont pas reliés à la génération d’antigènes associés au CMH-I. L’analyse du transcriptome de cellules dendritiques IP-déficientes en cours de maturation révèle que l’IP affecte l’expression de plus de 8 000 transcrits. L’IP affecte l’expression génique principalement au niveau transcriptionnel en contrôlant l’abondance de régulateurs de transcriptions tels que NF-κB et les membres des familles IRF et STAT. Les cellules dendritiques IP-déficientes sont également moins efficaces pour activer des lymphocytes T CD8+, même chargées artificiellement avec des quantités optimales d’antigènes associés au CMH-I. En outre, nos études montrent que l’IP est fortement exprimé au niveau de cellules de patients atteints de leucémie myéloïde aigue. L’expression de l’IP est intrinsèque aux leucémies, puisque qu’elle n’est pas corrélée à la présence de lymphocytes sécréteurs d’IFN-γ. De plus, l’expression d’IP est particulièrement élevée au niveau de leucémies monocytaires et/ou possédant un réarrangement MLL. Notamment, des analyses de corrélation montrent que l’IP est connecté à des gènes impliqués dans le métabolisme, l’activité mitochondriale et la réponse au stress. En effet l’inhibition de la sous-unité PSMB8 de l’IP mène à l’accumulation de protéines ubiquitinées et la mort de cellules leucémiques monocytaires. Globalement, nos travaux montrent que le rôle de l’IP n’est pas limité à la génération d’antigènes, mais qu’il peut contrôler l’expression génique et la survie des leucémies. / By regulating protein degradation, constitutive proteasomes (CP) control practically all cellular functions. In addition to CP, vertebrates express immunoproteasomes (IP), which display distinct substrate preferences. The first non-redundant role ascribed to IP is its enhanced ability to generate MHC I-associated antigens. However, deletion or inhibition of IP subunits can affect several immune cell functions independently of MHC-I antigen generation. Moreover, recent work has shown that IP can be expressed in non-immune cells to deal with cell stress. Thus, we wished to investigate the roles of IP that are not related to antigen generation and that are not redundant with the CP. Based on profiling of WT and IP-deficient maturing mouse dendritic cells (DCs), we report that IP regulate the expression of more than 8,000 transcripts. The broad impact of IP on gene expression is cell-autonomous, mediated mainly at the transcriptional level, and involves major signaling pathways including IRFs, NF-kB and STATs. Moreover, even when engineered to present optimal amounts of antigenic peptides, IP-deficient DCs are inefficient for in vivo T-cell priming. In addition, consistent with the fact that cancer cells endure proteotoxic stress, we report that acute myeloid leukemia (AML) cells from patients express high levels of IP genes. Expression of IP genes in AML is a cell-autonomous and IFN-independent feature that correlates with the methylation status of IP genes, and is particularly high in AML with a monocytic phenotype and/or MLL rearrangement. Notably, IP inhibition leads to accumulation of polyubiquitinated proteins and cell death in IPhigh but not IPlow AML cells. Co-clustering analysis reveals that genes correlated with IP subunits in monocytic AMLs are primarily implicated in cell metabolism and proliferation, mitochondrial activity and stress responses. Overall, our studies show that the role of IP is not limited to antigen processing and reveals major non-redundant roles for IP in transcription regulation and resistance to cell stress in AML.
40

L’immunoprotéasome : producteur de peptides-CMH I et régulateur de l’expression génique

de Verteuil, Danielle Angeline 01 1900 (has links)
Le système ubiquitine-protéasome est le principal mécanisme par lequel les protéines intracellulaires sont dégradées. Le protéasome dit constitutif (PC) est donc essentiel à l’homéostasie mais aussi à la régulation de la majorité des processus cellulaires importants. La découverte d’un deuxième type de protéasome, appelé immunoprotéasome (IP), soulève toutefois de nouvelles questions. Pourquoi existe-t-il plus d’un type de protéasome ? L’IP a-t-il des rôles redondants ou complémentaires avec le PC ? L’IP étant présent principalement dans les cellules immunitaires ou stimulées par des cytokines, plusieurs groupes ont tenté de définir son rôle dans la réponse immunitaire. Or, l’implication de son homologue constitutif dans un éventail de processus non spécifiquement immunitaires nous laisse croire que l’IP pourrait lui aussi avoir un impact beaucoup plus large. L’objectif de cette thèse était donc de caractériser certains rôles cellulaires de l’IP dans les cellules dendritiques. Nous avons d’abord étudié l’impact global de l’IP sur la présentation antigénique de classe I. Ce faisant, nous avons pu déterminer ses deux contributions principales, soit l’augmentation drastique du nombre et de la diversité des peptides présentés sur les complexes majeurs d’histocompatibilité de classe I. Les différences de clivage entre le PC et l’IP pourraient expliquer en partie cette diversité du répertoire peptidique, notamment par l’affinité apparente de l’IP pour les régions protéiques non structurées. Dans un deuxième temps, nous avons dévoilé un nouveau rôle de l’IP sur un processus dépassant le cadre immunitaire : la transcription. Nous avons découvert que l’IP modifie l’abondance des ARNm en agissant principalement au niveau de leur synthèse. L’impact de l’IP sur le transcriptome est majeur et serait dû en partie à une dégradation différente de facteurs de transcription des familles IRF, STAT et NF-kB. Les cellules dendritiques IP-déficientes activent moins efficacement les lymphocytes T CD8+ et nous croyons que cette défaillance est causée (du moins en partie) par la perturbation transcriptomique provoquée par l’absence d’IP. Il importe donc de comprendre les différents rôles moléculaires de l’IP afin de mieux définir sa contribution globale au fonctionnement de la cellule et comprendre l’avantage évolutif, au niveau de l’organisme, procuré par une telle plasticité du système ubiquitine-protéasome. / The ubiquitin-proteasome system is the major mechanism by which intracellular proteins get degraded. Constitutive proteasomes (CPs) are thus essential for cellular homeostasis but also to regulate the majority of important cellular processes. However, the discovery of a second type of proteasome, named immunoproteasome (IP), raises new questions. Why are there more than one type of proteasome? Does the IP perform redundant or complementary roles with the CP? The IP is predominantly expressed in immune or cytokine-stimulated cells and several groups worked at defining its role during the immune response. Yet, the implication of its constitutive homolog in a variety of processes suggests that the IP may also have a much broader impact. The objective was to characterize cellular roles of the IP in dendritic cells. We first studied the global impact of the IP on class I antigen presentation. We discovered that the IP drastically increases the number and the diversity of peptide presented by class I major histocompatibility complexes. Cleavage differences between the CP and the IP are likely part of the explanation for this peptide repertoire diversity, notably due to IP’s apparent affinity for unstructured protein regions. Second, we discovered a new role for the IP in a process unrestricted to the immune system: transcription. We found that the IP affects transcript abundance mostly at the level of mRNA synthesis. The impact of IPs on the transcriptome is major and would be partly based on a different degradation of IRF, STAT and NF-kB transcription factor family members by the two types of proteasomes. IP-deficient dendritic cells are less potent activators of CD8+ T cells and we believe that this defect is at least partly caused by the transcriptome alterations induced by the absence of IPs. It is therefore important to understand the different molecular roles of the IP in order to better define its global contribution to cellular functions and to understand the evolutionary advantage, at the level of the organism, brought by such plasticity of the ubiquitin- proteasome system.

Page generated in 0.208 seconds