• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 28
  • 17
  • 11
  • 8
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 136
  • 71
  • 44
  • 24
  • 23
  • 23
  • 20
  • 20
  • 16
  • 16
  • 14
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Modellering och simulering av Multiantennsystem avsett för litet fartyg

Annerstål, Viktor, Ottosson, Peter January 2016 (has links)
Within the military there is great need for reliable communication between vehicles. During the planning and construction of a military RIB, Rigid-hulled Inflatable Boat, it is important to design an efficient antenna system that does not deteriorate out of disorder. It must also be ensured that the antennas transmitted power does not stay in the RIB boat. We have been given assignment to model and simulate a proposed antenna system and assess which tool is best suitable for the task. To analyze the antenna system we will look at the radiated electrical field together with the reflectionand EMC properties. The tool that we choose to use is a software called EMPro produced by Keysight Technologies. In this program we will create 3Dstructures for each individual object, the boat, the three antennas and the seawater. It’s also important to include each objects properties concerning material, so that they correctly reflect the reality. We are covering a broad spectrum with our antennas reaching from 1.6-30MHz, 30-88MHz and 100512MHz. The resulting simulation verifies that electromagnetic field would be powerful enough and that the antennas would not affect each other with the proposed placement. We could also confirm that our antennas reflected an inordinate amount of power but with cause that our models were not an exact replica of the antenna. The software EMPro is a suitable tool for this kind of projects concerning modeling and simulating antenna systems.Within the military there is great need for reliable communication between vehicles. During the planning and construction of a military RIB, Rigid-hulled Inflatable Boat, it is important to design an efficient antenna system that does not deteriorate out of disorder. It must also be ensured that the antennas transmitted power does not stay in the RIB boat. We have been given assignment to model and simulate a proposed antenna system and assess which tool is best suitable for the task. To analyze the antenna system we will look at the radiated electrical field together with the reflectionand EMC properties. The tool that we choose to use is a software called EMPro produced by Keysight Technologies. In this program we will create 3Dstructures for each individual object, the boat, the three antennas and the seawater. It’s also important to include each objects properties concerning material, so that they correctly reflect the reality. We are covering a broad spectrum with our antennas reaching from 1.6-30MHz, 30-88MHz and 100512MHz. The resulting simulation verifies that electromagnetic field would be powerful enough and that the antennas would not affect each other with the proposed placement. We could also confirm that our antennas reflected an inordinate amount of power but with cause that our models were not an exact replica of the antenna. The software EMPro is a suitable tool for this kind of projects concerning modeling and simulating antenna systems. / Inom militären finns stort behov av pålitlig kommunikation mellan fordon. Vid konstruktion av ett småfartyg i militärtoch bevakningssyfte är det viktigt att designa ett välfungerande antennsystem som inte försämras utav störningar, det ska även ses till att antennernas utsända effekt inte fastnar i småfartyget. Vi har fått en ritning av hur antennplaceringen är planerad, denna rapport går ut på att verifiera dess funktionalitet samt hitta en mjukvara som kan användas för att verifiera olika antennsystem. För att bedöma antennsystemet kommer denna rapport att undersöka att dess elektriska fält samt reflektionsoch EMC egenskaper, en uppgift som kan lösas med programvaran EMPro (Keysight). I programvaran skapas en 3Dstruktur som innehåller småfartyget, dess 3 stycken antenner samt omfattande havsvatten. Här tas hänsyn till objektens materialegenskaper, antennernas jordning samt de frekvenser antennerna arbetar på, 1.6-30MHz, 30-88MHz samt 100-512MHz. Simulering av systemet gav positiva resultat kring antennsystemets elektromagnetiskafält, antennerna kommer inte heller att störa varandra. Antennerna som vi har modellerat reflekterar orimligt mycket effekt, detta bortser vi från då vi inte haft tillgång till exakt avbildning av antennerna. EMPro är ett verktyg som är lämpligt att använda i detta samt liknande projekt. Dock krävs det att en kraftig dator finns tillgänglig då simuleringar av stora antennsystem baseras på stora uträkningar, som generellt tar lång tid.
122

System and Method for Passive Radiative RFID Tag Positioning in Realtime for both Elevation and Azimuth Directions

Modaresi, Mahyar January 2010 (has links)
<p>In this thesis, design and realization of a system which enables precise positioning of RFID tags in both azimuth and elevation angles is explained. The positioning is based on measuring the phase difference between four Yagi antennas placed in two arrays. One array is placed in the azimuth plane and the other array is perpendicular to the first array in the elevation plane. The phase difference of the signals received from the antennas in the azimuth array is used to find the position of RFID tag in the horizontal direction. For the position in the vertical direction, the phase difference of the signals received from the antennas in the elevation plane is used. After that the position of tag in horizontal and vertical directions is used to control the mouse cursor in the horizontal and vertical directions on the computer screen. In this way by attaching one RFID tag to a plastic rod, a wireless pen is implemented which enables drawing in the air by using a program like Paint in Windows. Simulated results show that the resolution of the tag positioning in the system is in the order of 3mm in a distance equal to 0.5 meter in front of the array with few number of averaging over the received phase data. Using the system in practice reveals that it is easily possible to write and draw with this RFID pen. In addition it is argued how the system is totally immune to any counterfeit attempt for faked drawings by randomly changing the transmitting antenna in the array. This will make the system a novel option for human identity verification.</p> / QC 20100920
123

Systemization of RFID Tag Antenna Design Based on Optimization Techniques and Impedance Matching Charts

Butt, Munam 16 July 2012 (has links)
The performance of commercial Radio Frequency Identification (RFID) tags is primarily limited by present techniques used for tag antenna design. Currently, industry techniques rely on identifying the RFID tag application (books, clothing, etc.) and then building antenna prototypes of different configurations in order to satisfy minimum read range requirements. However, these techniques inherently lack an electromagnetic basis and are unable to provide a low cost solution to the tag antenna design process. RFID tag performance characteristics (read-range, chip-antenna impedance matching, surrounding environment) can be very complex, and a thorough understanding of the RFID tag antenna design may be gained through an electromagnetic approach in order to reduce the tag antenna size and the overall cost of the RFID system. The research presented in this thesis addresses RFID tag antenna design process for passive RFID tags. With the growing number of applications (inventory, supply-chain, pharmaceuticals, etc), the proposed RFID antenna design process demonstrates procedures to design tag antennas for such applications. Electrical/geometrical properties of the antennas designed were investigated with the help of computer electromagnetic simulations in order to achieve optimal tag performance criteria such as read range, chip-impedance matching, antenna efficiency, etc. Experimental results were performed on the proposed antenna designs to compliment computer simulations and analytical modelling.
124

[en] BROADBAND RF POWER AMPLIFIERS FOR MULTIBAND TRANSCEPTORS / [pt] AMPLIFICADOR DE POTÊNCIA DE RF BANDA LARGA PARA APLICAÇÃO EM TRANSCEPTORES MULTIBANDA

TIAGO NASCIMENTO DE FIGUEIREDO 02 May 2014 (has links)
[pt] Este trabalho descreve o desenvolvimento completo de um Amplificador de Potência de RF para Transceptores Multibanda. Em sua etapa inicial mostra um apanhado geral da teoria de todos os parâmetros relevantes para a medida de desempenho desses dispositivos, como potência, ganho e parâmetros de não linearidades. Em seguida são expostas as teorias básicas para o entendimento dos mecanismos para extração da máxima potência de um transistor, focando nos transistores de efeito de campo FET, incluindo a caracterização para regimes de alta potência. São apresentados os modos de operação de um amplificador de potência, focando nos chamados modos clássicos, dado que esses modos são convenientes para operação em banda larga. Para a correta operação de qualquer dispositivo que apresente ganho, a análise de estabilidade é apresentada com o procedimento de estabilização de transistores. A partir de todo o apanhado teórico, é desenvolvida uma metodologia de projeto de amplificadores de potência utilizando a ferramenta de simulação computacional Advanced Design System. Então, após toda a modelagem do amplificador, a construção e medidas são realizadas e boa concordância com a simulação foi obtida. / [en] This work describes the full development of a RF Power Amplifier for Multiband Transceivers. In its initial stage shows an overview of the theory of all relevant parameters to measure the performance of these devices, like power, gain and nonlinearity parameters. Then it exposes the basic theories for the understanding of the mechanisms for extracting the maximum power of a transistor, focusing on field effect transistors FET, including characterization for regimes of high power. It presents the modes of operation of a power amplifier, focusing on so-called classical modes, since these modes are suitable for broadband operation. For proper operation of any device that presents gain, the stability analysis is presented with the stabilization procedure of transistors. From all theoretical basis, is developed a design methodology of power amplifiers using the computational simulation tool Advanced Design System. So after all the amp modeling, construction and measurements are performed and good agreement was obtained with the simulation.
125

Systemization of RFID Tag Antenna Design Based on Optimization Techniques and Impedance Matching Charts

Butt, Munam 16 July 2012 (has links)
The performance of commercial Radio Frequency Identification (RFID) tags is primarily limited by present techniques used for tag antenna design. Currently, industry techniques rely on identifying the RFID tag application (books, clothing, etc.) and then building antenna prototypes of different configurations in order to satisfy minimum read range requirements. However, these techniques inherently lack an electromagnetic basis and are unable to provide a low cost solution to the tag antenna design process. RFID tag performance characteristics (read-range, chip-antenna impedance matching, surrounding environment) can be very complex, and a thorough understanding of the RFID tag antenna design may be gained through an electromagnetic approach in order to reduce the tag antenna size and the overall cost of the RFID system. The research presented in this thesis addresses RFID tag antenna design process for passive RFID tags. With the growing number of applications (inventory, supply-chain, pharmaceuticals, etc), the proposed RFID antenna design process demonstrates procedures to design tag antennas for such applications. Electrical/geometrical properties of the antennas designed were investigated with the help of computer electromagnetic simulations in order to achieve optimal tag performance criteria such as read range, chip-impedance matching, antenna efficiency, etc. Experimental results were performed on the proposed antenna designs to compliment computer simulations and analytical modelling.
126

Design Of A Radio Frequency Identification (rfid) Antenna

Kalayci, Sefa 01 May 2009 (has links) (PDF)
Fundamental features of Radio Frequency Identification (RFID) systems used in different application areas will be reviewed. Techniques used in realizing RFID antenna systems will be studied and the procedure to realize a specific RFID antenna type possessing desired characteristics will be described. Electrical properties such as radiation pattern, impedance will be predicted using analytical and/or computer simulation techniques. Experimental investigations will be carried out to complement the theoretical work.
127

Systemization of RFID Tag Antenna Design Based on Optimization Techniques and Impedance Matching Charts

Butt, Munam January 2012 (has links)
The performance of commercial Radio Frequency Identification (RFID) tags is primarily limited by present techniques used for tag antenna design. Currently, industry techniques rely on identifying the RFID tag application (books, clothing, etc.) and then building antenna prototypes of different configurations in order to satisfy minimum read range requirements. However, these techniques inherently lack an electromagnetic basis and are unable to provide a low cost solution to the tag antenna design process. RFID tag performance characteristics (read-range, chip-antenna impedance matching, surrounding environment) can be very complex, and a thorough understanding of the RFID tag antenna design may be gained through an electromagnetic approach in order to reduce the tag antenna size and the overall cost of the RFID system. The research presented in this thesis addresses RFID tag antenna design process for passive RFID tags. With the growing number of applications (inventory, supply-chain, pharmaceuticals, etc), the proposed RFID antenna design process demonstrates procedures to design tag antennas for such applications. Electrical/geometrical properties of the antennas designed were investigated with the help of computer electromagnetic simulations in order to achieve optimal tag performance criteria such as read range, chip-impedance matching, antenna efficiency, etc. Experimental results were performed on the proposed antenna designs to compliment computer simulations and analytical modelling.
128

Use of wind profilers to quantify atmospheric turbulence

Lee, Christopher Francis January 2011 (has links)
Doppler radar wind profilers are already widely used to measure atmospheric winds throughout the free troposphere and stratosphere. Several methods have been developed to quantify atmospheric turbulence with such radars, but to date they have remained largely un-tested; this thesis presents the first comprehensive validation of one such method. Conventional in-situ measurements of turbulence have been concentrated in the surface layer, with some aircraft and balloon platforms measuring at higher altitudes on a case study basis. Radars offer the opportunity to measure turbulence near continuously, and at a range of altitudes, to provide the first long term observations of atmospheric turbulence above the surface layer. Two radars were used in this study, a Mesosphere-Stratosphere-Troposphere (MST) radar, at Capel Dewi, West Wales, and the Facility for Ground Based Atmospheric Measurements (FGAM) mobile boundary layer profiler. In-situ measurements were made using aircraft and tethered-balloon borne turbulence probes. The spectral width method was chosen for detailed testing, which uses the width of a radar's Doppler spectrum as a measure of atmospheric velocity variance. Broader Doppler spectra indicate stronger turbulence. To obtain Gaussian Doppler spectra (a requirement of the spectral width method), combination of between five and seven consecutive spectra was required. Individual MST spectra were particularly non-Gaussian, because of the sparse nature of turbulence at its observation altitudes. The width of Gaussian fits to the Doppler spectrum were compared to those from the `raw' spectrum, to ensure that non-atmospheric signals were not measured. Corrections for non-turbulent broadening, such as beam broadening, and signal processing, were investigated. Shear broadening was found to be small, and the errors in its calculation large, so no corrections for wind shear were applied. Beam broadening was found to be the dominant broadening contribution, and also contributed the largest uncertainty to spectral widths. Corrected spectral widths were found to correlate with aircraft measurements for both radars. Observing spectral widths over time periods of 40 and 60 minutes for the boundary layer profiler and MST radar respectively, gave the best measure of turbulence intensity and variability. Median spectral widths gave the best average over that period, with two-sigma limits (where sigma is the standard deviation of spectral widths) giving the best representation of the variability in turbulence. Turbulent kinetic energies were derived from spectral widths; typical boundary layer values were 0.13 m 2.s (-2) with a two-sigma range of 0.04-0.25 m 2.s (-2), and peaked at 0.21 m 2.s (-2) with a two-sigma range of 0.08-0.61 m 2.s (-2). Turbulent kinetic energy dissipation rates were also calculated from spectral widths, requiring radiosonde measurements of atmospheric stability. Dissipation rates compared well width aircraft measurements, reaching peaks of 1x10 (-3) m 2.s (-3) within 200 m of the ground, and decreasing to 1-2x10 (-5) m 2.s (-3) near the boundary layer capping inversion. Typical boundary layer values were between 1-3x10 (-4) m 2.s (-3). Those values are in close agreement with dissipation rates from previous studies.
129

Fiabilité et analyse de défaillance des tags RFID UHF passifs sous contraintes environnementales sévères. / Reliability and failure analysis of passive UHF RFID tags in severe environments

Taoufik, Sanae 01 February 2018 (has links)
Ces dernières années, la technologie RFID (identification par radiofréquence) s’est fortement développée dans de nombreuses applications industrielles parmi lesquelles les secteurs de l’aéronautique et l’automobile où il y a une forte demande en systèmes d’auto-identification fonctionnant dans des environnements difficiles. Dans ce contexte, l'objectif de ces travaux de thèse est d'étudier les effets du stockage thermique sur la fiabilité des tags RFID UHF passifs. Pour ce faire nous avons adopté une méthodologie homogène contribuant de façon significative à atteindre nos objectifs. La première étape de cette méthodologie consistait à choisir le tag à tester, deux types de tags Web et Tageos provenant de deux fabricants différents ont été soumis à des tests de vieillissement accélérés sous différentes températures. La deuxième étape était de définir les paramètres des tests de vieillissement et de caractériser les tags vieillis. À l'aide d'un banc de mesure dédié, la puissance réfléchie par l’ensemble des tags vieillis est mesurée après chaque phase de vieillissement en fonction de la distance entre l’antenne du tag et celle du lecteur RFID. La puissance réfléchie diminue considérablement après chaque phase de vieillissement avec différentes dynamiques de dégradation pour tous les tags vieillis. Cette dynamique de dégradation dépend du type de tag testé et de la température de test. La dernière étape de la méthodologie comportait l’analyse statistique et physique de défaillance, des différences claires dans les modes, les mécanismes et les temps de défaillance entre les tags Web et Tageos ont été observées. L’analyse physique de défaillance par microscopie optique et MEB a révélé des fissures dans les conducteurs métalliques de l'antenne pour une partie des tags vieillis, cependant pour l’autre partie des tags, aucune défaillance de l'antenne n'a été observée. Des déformations au niveau de la matrice polymère de l'ACP ont été révélées, ce qui a modifié l'adaptation d'impédance entre le RFIC et l'antenne. Des simulations en utilisant le logiciel de modélisation multi-physique COMSOL a été mise en place dans le but de reproduire les mécanismes de défaillances révélés expérimentalement soit au niveau de l’antenne ou de la RFIC. Ces travaux de thèse ont démontré l'importance d'étudier les effets du stockage en haute température sur la fiabilité des tags RFID passifs. Les défaillances sont apparues plus rapidement et les tests ont coûté considérablement moins onéreux par rapport aux autres types de tests de vieillissement accélérés. / Nowadays, RFID has strongly developed in many industrial applications, including the aeronautics and automotive sectors, where there is a strong demand for auto-identification systems operating in severe environments. In this context, the objective of this thesis is to study the effects of thermal storage on the reliability of passive UHF RFID tags. To achieve this, we adopted a consistent methodology. The first step of this methodology was to choose the tag under test. Two types of tags Web and Tageos from two different manufacturers are aged under high temperatures. The second step was to define the parameters of the aging tests and to characterize the aged tags. Using a dedicated measurement bench, the reflected power is measured after each aging phase for all tested tags to determine the power loss caused by the high temperature storage. Reflected power decrease significantly after each aging phase with different dynamics of degradation for all aged tags. This dynamics of degradation depends on the temperature test and the type of tag. The final step involved statistical and physical failure analysis. Clear differences about modes, mechanisms and failure times between Web and Tageos tags have been observed, it seems that Tageos tags are more reliable than Web tags. Failure analysis of the samples, using an optical microscope and SEM, has revealed, cracks in the antenna metallic conductors on a part of the aged tags. In another part of the tags, no failures in the antenna have been seen, but clear deformations at the polymer matrix of the ACP have been observed, thus changing the impedance matching between the RFIC and the antenna. Simulations using the COMSOL multiphysics software have been implemented in order to reproduce the experimental failure mechanisms. This thesis work has demonstrated the importance of studying the effects of high temperature storage on the reliability of passive RFID tags. Failures appeared faster and tests cost considerably less than other types of accelerated aging tests.
130

System and Method for Passive Radiative RFID Tag Positioning in Realtime for both Elevation and Azimuth Directions

Modaresi, Mahyar January 2010 (has links)
In this thesis, design and realization of a system which enables precise positioning of RFID tags in both azimuth and elevation angles is explained. The positioning is based on measuring the phase difference between four Yagi antennas placed in two arrays. One array is placed in the azimuth plane and the other array is perpendicular to the first array in the elevation plane. The phase difference of the signals received from the antennas in the azimuth array is used to find the position of RFID tag in the horizontal direction. For the position in the vertical direction, the phase difference of the signals received from the antennas in the elevation plane is used. After that the position of tag in horizontal and vertical directions is used to control the mouse cursor in the horizontal and vertical directions on the computer screen. In this way by attaching one RFID tag to a plastic rod, a wireless pen is implemented which enables drawing in the air by using a program like Paint in Windows. Simulated results show that the resolution of the tag positioning in the system is in the order of 3mm in a distance equal to 0.5 meter in front of the array with few number of averaging over the received phase data. Using the system in practice reveals that it is easily possible to write and draw with this RFID pen. In addition it is argued how the system is totally immune to any counterfeit attempt for faked drawings by randomly changing the transmitting antenna in the array. This will make the system a novel option for human identity verification. / QC 20100920

Page generated in 0.0439 seconds