Spelling suggestions: "subject:"universelle algebra"" "subject:"universelle álgebra""
1 |
Completely regular semiringsSchumann, Rick 16 July 2013 (has links) (PDF)
Vollständig reguläre Halbgruppen weisen eine stark regelmäßige Struktur auf, die verschiedenste Zerlegungsmöglichkeiten gestatten. Ziel dieser Dissertation ist es, diese strukturelle Regelmäßigkeit auf Halbringe zu übertragen und die gewonnenen Algebren zu untersuchen. Mehrere Charakterisierungen werden herausgearbeitet, aufgrund derer es sich herausstellt, dass die Klasse aller vollständig regulären Halbringe eine Varietät bilden, deren Untervarietäten in der Folge untersucht werden. Zentrale Bedeutung haben dabei vollständig einfache Halbringe, deren Analyse einen der Schwerpunkte der Arbeit darstellt. Es zeigt sich, dass diese Bausteine vollständig regulärer Halbringe untereinander eine feste Struktur besitzen, selber aber auch als Zusammensetzung von isomorphen Halbringen aufgefasst werden können. Außerdem werden orthodoxe Halbringe, also Halbringe, deren idempotente Elemente einen Unterhalbring bilden, betrachtet. Zunächst wird dabei wieder auf mehrere Teilklassen eingegangen, bevor abschließend für beliebige vollständig reguläre Halbringe eine Beschreibung der kleinsten Kongruenz angegeben wird, deren Faktorhalbring orthodox ist.
|
2 |
Completely regular semiringsSchumann, Rick 05 July 2013 (has links)
Vollständig reguläre Halbgruppen weisen eine stark regelmäßige Struktur auf, die verschiedenste Zerlegungsmöglichkeiten gestatten. Ziel dieser Dissertation ist es, diese strukturelle Regelmäßigkeit auf Halbringe zu übertragen und die gewonnenen Algebren zu untersuchen. Mehrere Charakterisierungen werden herausgearbeitet, aufgrund derer es sich herausstellt, dass die Klasse aller vollständig regulären Halbringe eine Varietät bilden, deren Untervarietäten in der Folge untersucht werden. Zentrale Bedeutung haben dabei vollständig einfache Halbringe, deren Analyse einen der Schwerpunkte der Arbeit darstellt. Es zeigt sich, dass diese Bausteine vollständig regulärer Halbringe untereinander eine feste Struktur besitzen, selber aber auch als Zusammensetzung von isomorphen Halbringen aufgefasst werden können. Außerdem werden orthodoxe Halbringe, also Halbringe, deren idempotente Elemente einen Unterhalbring bilden, betrachtet. Zunächst wird dabei wieder auf mehrere Teilklassen eingegangen, bevor abschließend für beliebige vollständig reguläre Halbringe eine Beschreibung der kleinsten Kongruenz angegeben wird, deren Faktorhalbring orthodox ist.
|
3 |
From data tables to general geometric structuresKaiser, Tim Benjamin January 2008 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2008
|
4 |
Clones over Finite Sets and Minor ConditionsVucaj, Albert 15 December 2023 (has links)
Achieving a classification of all clones of operations over a finite set is one of the goals at the heart of universal algebra. In 1921 Post provided a full description of the lattice of all clones over a two-element set. However, over the following years, it has been shown that a similar classification seems arduously reachable even if we only focus on clones over three-element sets: in 1959 Janov and Mučnik proved that there exists a continuum of clones over a k-element set for every k > 2. Subsequent research in universal algebra therefore focused on understanding particular aspects of clone lattices over finite domains. Remarkable results in this direction are the description of maximal and minimal clones. One might still hope to classify all operation clones on finite domains up to some equivalence relation so that equivalent clones share many of the properties that are of interest in universal algebra.
In a recent turn of events, a weakening of the notion of clone homomorphism was introduced: a minor-preserving map from a clone C to D is a map which preserves arities and composition with projections. The minor-equivalence relation on clones over finite sets gained importance both in universal algebra and in computer science: minor-equivalent clones satisfy the same set identities of the form f(x_1,...,x_n) = g(y_1,...,y_m), also known as minor-identities. Moreover, it was proved that the complexity of the CSP of a finite structure A only depends on the set of minor-identities satisfied by the polymorphism clone of A. Throughout this dissertation we focus on the poset that arises by considering clones over a three-element set with the following order: we write C ≤_{m} D if there exist a minor-preserving map from C to D. It has been proved that ≤_{m} is a preorder; we call the poset arising from ≤_{m} the pp-constructability poset.
We initiate a systematic study of the pp-constructability poset. To this end, we distinguish two cases that are qualitatively distinct: when considering clones over a finite set A, one can either set a boundary on the cardinality of A, or not. We denote by P_n the pp-constructability poset restricted to clones over a set A such that |A|=n and by P_{fin} we denote the whole pp-constructability poset, i.e., we only require A to be finite. First, we prove that P_{fin} is a semilattice and that it has no atoms. Moreover, we provide a complete description of P_2 and describe a significant part of P_3: we prove that P_3 has exactly three submaximal elements and present a full description of the ideal generated by one of these submaximal elements. As a byproduct, we prove that there are only countably many clones of self-dual operations over {0,1,2} up to minor-equivalence.
|
5 |
A Connection Between Clone Theory and FCA Provided by Duality TheoryKerkhoff, Sebastian 02 August 2012 (has links) (PDF)
The aim of this paper is to show how Formal Concept Analysis can be used for the bene t of clone theory. More precisely, we show how a recently developed duality theory for clones can be used to dualize clones over bounded lattices into the framework of Formal Concept Analysis, where they can be investigated with techniques very di erent from those that universal algebraists are usually armed with. We also illustrate this approach with some small examples.
|
6 |
A Connection Between Clone Theory and FCA Provided by Duality TheoryKerkhoff, Sebastian 02 August 2012 (has links)
The aim of this paper is to show how Formal Concept Analysis can be used for the bene t of clone theory. More precisely, we show how a recently developed duality theory for clones can be used to dualize clones over bounded lattices into the framework of Formal Concept Analysis, where they can be investigated with techniques very di erent from those that universal algebraists are usually armed with. We also illustrate this approach with some small examples.
|
7 |
A General Galois Theory for Operations and Relations in Arbitrary CategoriesKerkhoff, Sebastian 20 September 2011 (has links) (PDF)
In this paper, we generalize the notions of polymorphisms and invariant relations to arbitrary categories. This leads us to a Galois connection that coincides with the classical case from universal algebra if the underlying category is the category of sets, but remains applicable no matter how the category is changed. In analogy to the situation in universal algebra, we characterize the Galois closed classes by local closures of clones of operations and local closures of what we will introduce as clones of (generalized) relations. Since the approach is built on purely category-theoretic properties, we will also discuss the dualization of our notions.
|
8 |
A General Duality Theory for ClonesKerkhoff, Sebastian 12 October 2011 (has links) (PDF)
In this thesis, we generalize clones (as well as their relational counterparts and the relationship between them) to categories. Based on this framework, we introduce a general duality theory for clones and apply it to obtain new results for clones on finite sets.
|
9 |
A General Galois Theory for Operations and Relations in Arbitrary CategoriesKerkhoff, Sebastian 20 September 2011 (has links)
In this paper, we generalize the notions of polymorphisms and invariant relations to arbitrary categories. This leads us to a Galois connection that coincides with the classical case from universal algebra if the underlying category is the category of sets, but remains applicable no matter how the category is changed. In analogy to the situation in universal algebra, we characterize the Galois closed classes by local closures of clones of operations and local closures of what we will introduce as clones of (generalized) relations. Since the approach is built on purely category-theoretic properties, we will also discuss the dualization of our notions.
|
10 |
A General Duality Theory for ClonesKerkhoff, Sebastian 28 June 2011 (has links)
In this thesis, we generalize clones (as well as their relational counterparts and the relationship between them) to categories. Based on this framework, we introduce a general duality theory for clones and apply it to obtain new results for clones on finite sets.
|
Page generated in 0.0783 seconds