Spelling suggestions: "subject:"untranslated"" "subject:"intranslated""
41 |
Translational Control of M Phase Progression: a dissertationPadmanabhan, Kiran 30 May 2006 (has links)
A cell integrates mitogenic signals received at the plasma membrane with intracellular biochemical changes to direct the events of cell division. Oocytes from Xenopus laevis offer a system that allows molecular dissection of pathways controlling cell growth and division in response to extracellular cues. Xenopus oocytes, physiologically arrested in a G2 like state, respond to the hormone progesterone to reinitiate meiosis and mature into a fertilizable egg. Signals received at the oocyte membrane induce translation of dormant maternal mRNAs that not only drive meiotic entry but also maintain the cell cycle arrest in an egg. A major pathway controlling the translation of these mRNAs is cytoplasmic polyadenylation, facilitated by the Cytoplasmic Polyadenylation Element Binding protein (CPEB) through cis-acting elements in their 3'untranslated regions (3'UTRs). Cytoplasmic polyadenylation requires the phosphorylation of serine174 on CPEB by Aurora-A as well as the translation of a hitherto unknown mRNA. The transcript of the RINGO/Spy gene is a putative candidate for this unknown upstream regulator of CPEB function. RINGO/Spy mRNA is translationally repressed in immature oocytes by a ribonucleoprotein (RNP) complex consisting of the repressor Pumilio-2, the putative activator Deleted in Azoospermia-like (DAZl) and embryonic poly A binding protein (ePAB). Progesterone signaling leads to the dissociation of Pumilio-2 from the mRNP and the ensuing RINGO/Spy protein synthesis, in turn, promotes cytoplasmic polyadenylation and oocyte maturation.
Pumilio and its associated proteins, such as Drosophila Brain tumor (Brat) and DAZl, in addition to their cytoplasmic roles have ill-defined functions within the nucleus. We detected DAZl within the nucleoli of telomerase-immortalized human retinal pigment epithelial (RPE) cells in interphase and on acrocentric chromosomes during mitosis. DAZl colocalizes with the RNA polymerase I associated Upstream Binding transcription Factor (UBF), most likely through pre-ribosomal RNA and is a likely component of the Nucleolar Organization Region (NOR). Stably knocking down DAZl in RPEs using short hairpin RNAs results in loss of nucleolar segregation, the physiological outcome of which is under investigation. These preliminary findings indicate an additional role for DAZl within the nucleolus, one likely to be independent from cytoplasmic translational control.
|
42 |
Maintenance of Constitutive and Inactive X Heterochromatin in Cancer and a Link to BRCA1: A DissertationPageau, Gayle Jeannette 13 June 2007 (has links)
The development of cancer is a multi-step process which involves a series of events, including activation of oncogenes and loss of tumor suppressor function, leading to cell immortalization and misregulated proliferation. In the last few years, the importance of epigenetic defects in cancer development has become increasingly recognized. While most epigenetic studies focus on silencing of tumor suppressors, this thesis addresses defects in the maintenance of silenced heterochromatin in cancer, particularly breast cancer. Breast cancer is a leading cause of cancer in women and many familial cases have been linked to mutations in the breast cancer susceptibility genes, BRCA1 and BRCA2. BRCA1 has been linked to DNA repair as well as multiple other cellular processes, including cell cycle checkpoints, ubiquitination, centrosome function, and meiotic silencing of the XY body. This work began with a particular interest in the report that BRCA1 was linked to the failed maintenance of random X-inactivation in female somatic cells, via a role in supporting XIST RNA localization to the inactive X chromosome (Xi). XIST RNA is a non-coding RNA that fully coats or “paints” the Xi and induces its silencing. Work presented in Chapter II substantially clarifies the relationship of BRCA1 to XIST RNA, based on several lines of experimentation. Loss of BRCA1 does not lead to loss of XIST RNA in these studies, nor did reconstitution of HCC1937 BRCA1-/- tumor cells with BRCA1 lead to XIST RNA localization on Xi, although an effect on XIST RNA transcription is possible. Studies of BRCA1 localization with Xi showed that BRCA1 has a limited association with the Xi in ~3-10% of cells, it rarely colocalizes with XIST RNA to a significant extent, but rather is in close apposition to a small part of the XIST RNA/Xi territory. Additionally, analysis of several breast cancer cell lines revealed mislocalization of XIST RNA in some breast cancer cell lines.
Many studies have examined BRCA1 foci that form following DNA damage and demonstrated that these are sites of repair. However, whether the numerous large foci consistently present in normal S-phase nuclei were storage sites or had any function was unknown. In Chapter III, I demonstrate that the BRCA1 foci in normal S-phase nuclei associate overwhelmingly with specific heterochromatic regions of the genome. More specifically, BRCA1 foci often associate with centromeric or pericentromeric regions in both human and mouse cells. In human cells BRCA1 foci often appear juxtaposed to centromeric signal, whereas in mouse, BRCA1 often rings or paints the large chromocenters, clusters of DAPI-dense pericentric and centric heterochromatin. Using PCNA and BrdU as markers of replication, I demonstrate that BRCA1 preferentially associates with the chromocenters during their replication, although high-resolution analysis indicates that BRCA1 and PCNA foci rarely directly overlap. Interestingly, cells with defects in BRCA1 were found to have lagging chromosomes and DNA bridges which nearly always contained satellite DNA, which is consistent with the possibility that BRCA1 deficit contributes to failed separation of sister chromatids at the centromere. This is consistent with other recent reports that BRCA1 is necessary for DNA decatenation by topoisomerase II during routine replication and with my demonstration that topoisomerase II also accumulates on pericentric heterochromatin (PCH) during replication.
Chapter IV presents recent work which reveals that RNA is commonly expressed from the centric/pericentric heterochromatin and appears to be linked to its replication. In mouse cells RNA from heterochromatic sequences is readily detected using a broad molecular cytological assay for repeat transcription (the COT-1 RNA assay). In addition to a more dispersed nucleoplasmic signal from euchromatic nuclear regions, distinct localized foci of repeat RNA are detected with COT1 probe or pancentromeric probe. Further analysis with the minor satellite (centromere proper) and the major satellite (comprising the larger pericentric heterochromatin) reveals that the large RNA foci often contain these satellite sequences, long thought to be essentially silent. These foci generally associate with the PCH of chromocenters, and produce various patterns similar to BRCA1- including a larger signal partially painting or ringing the chromocenter in a fraction of cells. In conjunction again with PCNA staining, it was possible to determine that the major satellite RNAs associate with the chromocenters during replication. While the satellite RNA co-localizes precisely with PCNA, neither of these co-localizes at high resolution with BRCA1, although they all are present on replicating chromocenters contemporaneously. These findings show that satellite RNAs are more widely expressed in normal cells than previously thought and link their expression to replication of centromere-linked heterochromatin.
Finally, Chapter V presents three lines of recent results to support a major concept forwarded in this manuscript: that loss of Xi heterochromatin may reflect defects in the broader heterochromatic compartment, which may be manifest at multiple levels. I provide evidence using two new assays that both the peripheral heterochromatic compartment and the expression and silencing of satellite repeats is commonly compromised in cancer, although this appears to vary among cancer lines or types. The final results connect back to the question with which I began: what maintains XIST RNA localization to the chromosome in normal cells. These results demonstrate for the first time that Aurora B Kinase activity, mediated by Protein Phosphatase 1 (PP1) during interphase, controls the interphase retention and mitotic release of XIST RNA from the chromosome, likely linked to chromatin modifications such as H3Ser10 phosphorylation. As Aurora B Kinase is commonly over-expressed in cancer and is linked to chromatin changes, this exemplifies one type of mechanism whereby broad epigenetic changes in cancer may impact XIST RNA localization and the maintenance of heterochromatin more generally. This thesis represents a melding of cancer biology with the study of X inactivation and heterochromatin, with findings of fundamental interest to both of these fields.
|
43 |
The Physicochemical Characterization of Proteins and RNA in Positive Strand RNA VirusesHaddad, Christina 26 May 2023 (has links)
No description available.
|
44 |
The Characterization and Utilization of Middle-range Sequence Patterns within the Human GenomeShepard, Samuel Steven 20 May 2010 (has links)
No description available.
|
45 |
Regulation of sodium iodide symporter expression/function and tissue-targeted gene transfer of sodium iodide symporterLin, Xiaoqin January 2003 (has links)
No description available.
|
46 |
Sequence and Target Specificity of the C. elegans Cell Fate Specification Factor POS-1: A DissertationFarley, Brian M. 09 August 2012 (has links)
In most metazoans, early embryogenesis is controlled by the translational regulation of maternally supplied mRNA. Sequence-specific RNA-binding proteins play an important role in regulating early embryogenesis, yet their specificities and regulatory targets are largely unknown. To understand how these RNA-binding proteins select their targets, my research focused on the C. elegans CCCH-type tandem zinc finger protein POS-1. Embryos lacking maternally supplied POS-1 die prior to gastrulation, and exhibit defects in the specification of pharyngeal, intestinal, and germline precursor cells. To identify the regulatory targets that contribute to the POS-1 mutant phenotype, we set out to determine the sequence specificity of POS-1 in vitro, and then use this information to identify regulatory targets in vivo.
Using a candidate-based search, we identified a twelve-nucleotide fragment of the mex-3 3' untranslated region (3' UTR) to which POS-1 binds with high affinity. Using quantitative fluorescent electrophoretic mobility shift assays, I determined the affinity of the RNA-binding domain of POS-1 for a panel of single nucleotide mutations of this sequence, and then defined a consensus binding element based on this dataset. POS-1 recognizes the degenerate element UAU 2-3 RDN 1-3 G, where R is any purine (adenosine or guanine), and D is any base except cytosine. A bioinformatics analysis revealed the presence of this element in approximately 40% of C. elegans 3' UTRs, suggesting that POS-1 is capable of binding to and perhaps regulating many transcripts in vivo. POS-1 binding sites alone are not sufficient to pattern the expression of a reporter, suggesting that other factors may contribute to POS-1 specificity.
To address the mechanism of POS-1-mediated translational regulation, I investigated the translational regulation of the C. elegans Notch homolog glp-1. Previous work demonstrated that glp-1 translation is repressed in the early embryo in a POS-1-dependent fashion, though it was not clear if this regulation was direct. The glp-1 3' UTR contains two POS-1 binding sites within five nucleotides of each other, and these sites are within a thirty nucleotide region of the 3' UTR required for proper spatiotemporal translation of glp-1. The POS-1 sites overlap with a negative regulatory element that is recognized by GLD-1, and a positive regulatory element recognized by an unknown factor. Both POS-1 and GLD-1 bind to an RNA containing these sites in vitro, and POS-1 competes with GLD-1 for binding. Both proteins are required for translational repression of a glp-1 3' UTR reporter in embryos. Furthermore, only one of the two POS-1 binding sites is required for repression, and the required site is wholly contained within a previously characterized positive regulatory element. Based on this, we propose that POS-1 does not regulate its targets by recruiting regulatory machinery, but instead by competing with factors that do. Thus, sites of POS-1 regulation are highly context dependent, which may contribute to POS-1 specificity.
|
47 |
Modulation de la stabilité de l'ARNm alphaENaC dans les cellules épithéliales alvéolaires : détermination du rôle des séquences 3' non traduitesMigneault, Francis 12 1900 (has links)
Le transport actif de sodium par les cellules épithéliales alvéolaires est le principal mécanisme impliqué dans la régulation du niveau de liquide dans le poumon distal. Le canal épithélial sodique (ENaC) exprimé par les cellules épithéliales alvéolaires est essentiel à la résorption du liquide des poumons à la naissance ainsi que la résolution de l'œdème pulmonaire chez l'adulte. L'activité et l'expression du canal ENaC sont modulées par de nombreux stress pathophysiologiques. L'inflammation pulmonaire constitue un facteur important dans l'inhibition de l'expression du canal ENaC et pourrait favoriser la formation d'œdème pulmonaire. Nous avons précédemment démontré que différentes cytokines pro-inflammatoires, ainsi que les lipopolysaccharides (LPS) de Pseudomonas aeruginosa, inhibent l'expression de l'ARNm αENaC par des mécanismes de régulation transcriptionnelle et post-transcriptionnelle. Ces résultats suggèrent que les mécanismes qui modulent la stabilité des ARNm αENaC pourraient jouer un rôle important dans la régulation du niveau d’expression du transcrit en condition inflammatoire.
Le principal objectif de mes travaux était de caractériser les mécanismes de modulation de l’ARNm αENaC dans les cellules épithéliales alvéolaires lors de différents stress pathophysiologiques et déterminer si cette modulation pouvait s’expliquer en partie par une régulation de la stabilité du transcrit. Mes travaux montrent que les LPS et la cycloheximide inhibent l’expression de l’ARNm αENaC de façon similaire via l’activation des voies de signalisation des MAPK ERK1/2 et p38. Cependant, les mécanismes de modulation de l’expression de l'ARNm αENaC sont différents puisque les LPS répriment la transcription du gène, alors que la cycloheximide diminuerait la stabilité du transcrit via des mécanismes post-transcriptionnels impliquant la région 3' non traduite (3'UTR) de l'ARNm αENaC. Pour mieux étudier le rôle du 3'UTR dans ce processus, nous avons développé un modèle Tet-Off nous permettant de mesurer la demi-vie de l’ARNm αENaC indépendamment de l’utilisation d’un inhibiteur de la transcription comme l'actinomycine D (Act. D). Nous avons montré que la demi-vie de l’ARNm αENaC était de 100min, un temps beaucoup plus court que celui rapporté dans la littérature. Nous avons démontré que l’Act. D a un effet stabilisateur important sur l’ARNm αENaC et qu’il ne peut être utilisé pour évaluer la stabilité du transcrit. À l’aide de différents mutants de délétion, nous avons entrepris de déterminer la nature des régions du 3’UTR impliquées dans la modulation de la stabilité du transcrit. Nous avons trouvé que le 3’UTR joue un rôle à la fois de stabilisation (région 3’UTR proximale) et de déstabilisation (région 3’UTR distale) du transcrit. Notre système nous a finalement permis de confirmer que la diminution de l’ARNm αENaC observée en présence de TNF-α s’expliquait en partie par une diminution importante de la stabilité du transcrit induite par cette cytokine. Enfin, nous avons identifié la nature des protéines pouvant se lier au 3’UTR de l’ARNm αENaC et déterminé lesquelles pouvaient moduler la stabilité du transcrit. Des trois protéines candidates trouvées, nous avons confirmé que la surexpression de DHX36 et TIAL1 diminue le niveau de transcrit par un mécanisme impliquant la stabilité du messager.
Les travaux présentés ici montrent la complexité des voies de signalisation induites par différents stress sur les cellules épithéliales alvéolaires et montrent comment la stabilité de l’ARNm αENaC et en particulier, les séquences du 3’UTR jouent un rôle important dans la modulation du niveau de transcrit. Le modèle Tet-Off que nous avons développé permet d’estimer le temps de demi-vie réel de l’ARNm αENaC et montre que le 3’UTR du messager joue un rôle complexe dans la stabilisation du messager en condition de base ainsi qu’en condition pro-inflammatoire. Enfin, nous avons identifié deux protéines liant l’ARNm qui pourraient jouer un rôle important dans la modulation de la stabilité du transcrit. / The epithelial sodium channel (ENaC) expressed in alveolar epithelial cells plays a major role for lung liquid clearance at birth and lung edema resorption in adulthood. The expression and activity of ENaC are inhibited by many pathophysiological stress that could have an impact in the clinical outcome of acute respiratory distress syndrome (ARDS). Pulmonary inflammation is an important factor in this inhibition that may promote or sustain pulmonary edema. We have previously shown that pro-inflammatory cytokines and lipopolysaccharide (LPS) from Pseudomonas aeruginosa inhibit αENaC mRNA expression by transcriptional and post-transcriptional mechanisms, suggesting that a modulation of αENaC mRNA stability could play a role in this process.
The main objective of the present work was to characterize how different pathophysiological stress affect αENaC mRNA expression in alveolar epithelial cells and determine whether this modulation could be explained in part by regulating the stability of the transcript. Our study shows that LPS and cycloheximide decrease the level of αENaC mRNA with a similar time course and via the activation of the MAPK ERK1/2 and p38 signaling pathways. Despite similarities, there were important differences in the mechanisms involved in the modulation of αENaC mRNA expression. While LPS repress αENaC mRNA transcription, cycloheximide triggers post-transcriptional mechanisms involving the 3' untranslated region (3'UTR) of αENaC mRNA. To further study the role of αENaC 3'UTR in this process, we developed a Tet-Off model that allows us to measure the half-life of αENaC mRNA regardless of the use of a transcription inhibitor such as actinomycin D (Act. D). Using this system, we showed a 100 min half-life for αENaC mRNA, a much shorter time then the one reported for this mRNA using Act. D. We showed that Act. D has an important stabilizing effect on αENaC mRNA and cannot be used to assess the stability of the transcript. Using deletion mutants of the αENaC 3'UTR region, we determined how different portions of 3'UTR were important in modulating stability of the transcript. We found that the 3'UTR has dual functions, with portions important to promote stabilization (proximal 3'UTR) and others that strongly destabilize (distal 3'UTR) the transcript. Our system also allowed us to confirm that the decreased expression of αENaC mRNA induced by TNF-α results in part by a decreased stability of the mRNA. Finally, we identified several RNA-binding proteins that interact specifically with αENaC 3'UTR and determined if these proteins had an impact on transcript stability. Surexpression of two of these proteins in alveolar epithelial cells, DHX36 and TIAL1 was able to decrease the level of αENaC mRNA via a downregulation of mRNA stability.
The work presented here shows the complexity of the signal transduction pathways elicited by different pathological stress conditions in alveolar epithelial cells and is the first to show that αENaC mRNA stability elicited by sequences in 3’UTR plays an important role in modulating the level of the transcript. The Tet-Off model that we developed allows to accurately estimate the half-life of αENaC mRNA and shows that the 3’UTR portion of the mRNA plays a complex role in the modulation of transcript stability in basal and pro-inflammatory conditions. Finally, we identified two putative RNA-binding proteins able to specifically recognize αENaC 3’UTR and modulate the transcript stability.
|
48 |
Mécanismes modulant la stabilité de l’ARNm alphaENaC des cellules épithéliales alvéolaires dans un environnement inflammatoireGagnon, Frédéric 04 1900 (has links)
No description available.
|
49 |
Spindle-Localized CPE-Mediated Translation Controls Mediotic Chromosome SegregationEliscovich, Carolina 11 June 2008 (has links)
La progresión meiótica y el desarrollo embrionario temprano están programados, en parte, por la activación tradcuccional de mRNAs maternos como lo son los que codifican para las proteinas de ciclina B1 o mos. Estos mRNAs no son traducidos al mismo tiempo ni en el mismo lugar. Por lo contrario, su traducción está especificamente regulada por elementos de poliadenilación citoplasmática (CPEs) presentes en sus 3'UTRs. Los elementos CPEs reclutan a la proteina de unión a CPE (CPE-binding protein CPEB (Colegrove-Otero et al., 2005; de Moor et al., 2005; Mendez and Richter, 2001; Richter, 2007)). Esta proteina de unión al RNA no sólo determina cuándo y en qué medida un mRNA será activado traduccionalmente por poliadenilación citoplasmática (Mendez et al., 2000a; Mendez et al., 2000b; Mendez et al., 2002) sino que también participa, junto con el represor de la traducción Maskin, en el transporte y la localización de sus mRNAs diana hacia los sitios de localización subcelular donde su traducción ocurrirá (Huang et al., 2003; Huang and Richter, 2004). Durante el desarrollo embrionario de Xenopus, CPEB se encuentra localizada en el polo animal de los oocitos y más tarde, sobre el huso mitótico y centrosomas en el embrión (Groisman et al., 2000). Se ha demostrado que embriones de Xenopus inyectados con agentes que interrumpen la traducción dependiente de poliadenilación citoplasmática, detienen la división celular y presentan estructuras mitóticas anormales (Groisman et al., 2000). En este trabajo que derivó en mi tesis doctoral, hemos demostrado que la activación traduccional localizada en el huso mitótico de mRNAs regulados por CPEB que codifican para proteinas con una conocida función en aspectos estructurales del ciclo celular como la formación del huso mitótico y la segregación cromosómica, es esencial para completar la primera división meiótica y para la correcta segregación cromosómica en oocitos de Xenopus.
|
Page generated in 0.0725 seconds