31 |
Measurements of the thermodynamic activities of chromium and vanadium oxides in CaO-MgO-Al2O3-SiO2 slagsDong, Pengli January 2009 (has links)
In the present work, the thermodynamic activities of chromium and vanadium oxide in CaO-SiO2-MgO-Al2O3 slags were measured using gas-slag equilibration technique. The slag was equilibrated with a gas mixture of CO, CO2 and Ar gases enabling well-defined oxygen partial pressures in the gas mixture (PO2=10-3,10-4,10-5 Pa) at temperatures 1803, 1823K, 1873, 1923 K. The slags were kept in Pt crucibles during the equilibration and the duration of which was 20 h. From a knowledge of the thermodynamic activity of chromium and vanadium in Cr or V in Pt alloy, obtained from literature, and the oxygen partial pressure in the gas stream calculated by Thermo Calc software, the thermodynamic activity of chromium, vanadium oxide in the slags could be observed.An assessment of the experimental studies in earlier works reveal that, the activities of chromium at low chromium contents and vanadium in their respective alloys in platinum exhibits a strong negative deviation from ideality, the logarithms of activity coefficient of these elements were found to increase with increasing mole fractions of these metals in the Pt-alloys.Regarding the slag phase, all the chromium in the slags was assumed to be present in the divalent state in view of the low Cr contents and the low oxygen potentials employed in the present studies. Analogously, vanadium in the slag was assumed to be in the trivalent state in view of the low vanadium contents in the slag and the low oxygen partial pressure in the gas phase. Activity of chromium oxide, CrO decreases with increasing temperature and decreasing content of chromium oxide in slag and oxygen partial pressure in the gas phase. Activity of vanadium oxide, VO1.5 in slag phase shows a negative deviation from ideality. Activity coefficient of vanadium oxide shows a decrease with basicity of slag and the “break point” occurs at about slag basicity of 1 under the oxygen partial pressure of 10-3 Pa and temperature of 1873 K.A relationship for estimating the actual content of chromium, vanadium in slag as a function of activities of chromium or vanadium, temperature, oxygen partial pressure and slag basicity were developed from the present results, the agreement between the estimated and experimental values is satisfactory, especially at lower oxygen partial pressure.
|
32 |
Elektrochemische Untersuchungen von Oxidschichten auf Vanadium und VanadiumlegierungenBachmann, Torsten 25 January 2008 (has links)
Elektroden aus Legierungen der Übergangsmetalle Vanadium, Titan und Niob und der reinen Metalle reagieren in Abhängigkeit von der Zusammensetzung und des mit ihnen im Kontakt stehenden wässrigen Elektrolyten in höchst unterschiedlicher Weise. Für eine systematische Untersuchung der elektrochemischen Eigenschaften der Elektroden wurden neben den reinen Metallen binäre und ternäre Legierungen aus Vanadium, Titan und Niob, die jeweils Vanadium enthalten, hergestellt. Es wurden zum ersten Mal zusammenhängend ihre physikalischen und chemischen Eigenschaften durch Strukturuntersuchungen und Untersuchungen der Zusammensetzung der Oberfläche sowie der Morphologie bestimmt. Von den, sich mit einer halbleitenden Oxidschicht überziehenden Metallen, wurden die Halbleitereigenschaften im Elektrolytkontakt studiert, die grundlegenden Korrosionseigenschaften sowie ihr elektrochemisches Verhalten als Elektrodenmaterial in potentiometrischen Zellen und durch Strom-Spannungsmessungen bestimmt. Zur Aufklärung der Kinetik der Oxidschichtbildung wurden potentiostatische Stromtransienten ermittelt und mit bekannten Modellen verglichen.
|
33 |
Interaction of Metal Oxides with Carbon Monoxide and Nitric Oxide for Gas Sensing ApplicationsAdeyemo, Adedunni D. 20 June 2012 (has links)
No description available.
|
34 |
Structural and catalytic investigations on vanadium oxide nanoparticles supported on silica films grown an a Mo(112) substrateKaya, Sarp 25 July 2007 (has links)
Die breite Anwendung von Modellsystemen, um heterogene katalytische Prozesse zu verstehen, basiert darauf, die Lücke der strukturellen Komplexität zu überbrücken zwischen heutigen technischen Katalysatoren, bestehend aus einem Metalloxid sowie einem darauf geträgerten Metall, sowie kristallinen Metallen und planaren Metall/Oxid-Systemen, welche dazu benutzt werden, Struktur-Reaktivitäts-Beziehungen mittels einer Fülle von Surface Science-Methoden zu untersuchen. In der vorliegenden Arbeit liegt das Hauptaugenmerk auf so genannten Vanadiumoxid-‚Monolagen’-Katalysatoren, die insbesondere für Oxidationsreaktionen von Methanol eingeführt wurden. Mittels eines ‚bottom-up’-Ansatzes wurden Silica-geträgerte Vanadiumoxid-Modellkatalysatoren untersucht. Durch Kombination einer Reihe experimenteller Techniken wurde die Oberfläche von Mo(112), die als Substrat für den Silica-Film diente, im Detail untersucht und die atomare Struktur des Silica-Films wurde ermittelt. Adsorption von Wasser und das Wachstum von Vanadiumoxid-Nanopartikeln auf dem Silica-Film und schließlich die Reaktivität von Vanadiumoxid/Silica-Systemen gegenüber Methanol wurden untersucht. Im Gegensatz zu früher vorgeschlagenen Modellen sollte eine Sauerstoff-induzierte p(2×3)-Überstruktur, die sich auf einer Mo(112)-Oberfläche ausbilded, angenommen werden als ein eindimensionales Oberflächenoxid, bei dem sich Mo=O-Gruppen bevorzugt entlang der [-1-11]-Richtung der Mo(112)-Oberfläche ausbilden. Monolagen-Silica-Filme, die auf Mo(112) gewachsen wurden, bestehen aus einem zweidimensionalen Netz von SiO4-Tetraedern. In Abhängigkeit der Bedingungen, unter denen der Film präpariert wurde, kann die Struktur durch zusätzlich auf dem Mo-Substrat adsorbierte Sauerstoff-Atome verändert werden. Die Defekt-Struktur schließt Antiphasen-Domänengrenzen ein, die durch eine Verschiebung um die halbe Gitterkonstante entlang der [-110]-Richtung gebildet werden, und eine geringe Dichte von Punkt-Defekten, die höchstwahrscheinlich Silizium-Fehlstellen darstellen. Wasser dissoziiert nicht auf dem Monolagen-Silica-Film. Eine Wasser-Struktur, die geordnet bezüglich des Silica-Films ist, wurde bei 140 K beobachtet, was der guten Übereinstimmung der Gitterkonstanten von Silica-Film und hexagonalem Eis geschuldet ist. Amorphe Lagen festen Wassers, die die Oberfläche bei 100 K homogen bedecken, wurden als reaktive Lagen für Vanadiumoxid-Partikel benutzt, um die ‚Nasschemie’ nachzubilden, wie sie in der Präparation technischer Katalysatoren zum Einsatz kommt. Die Ergebnisse verdeutlichen, dass die Eis-Lagen die Bildung von hydratisierten Vanadiumoxid-Nanopartikeln, welche teilweise von V=O und V-OH-Gruppen terminiert werden, begünstigen. Die Dehydratisierung geschieht oberhalb 500 K, wobei eine V-terminierte Oberfläche entsteht. Methanol dissoziiert auf dehydratisierten Vanadiumoxid-Partikeln, und Methoxy-Spezies sind auf der Oberfläche stabil bis 500 K, allerdings nur in der Gegenwart von V-Plätzen. Die Produktion von Formaldehyd, die bei etwa 550 K stattfindet, ist stark abhängig von der Struktur der Oberfläche der Vanadiumoxid-Partikel und weist ein Maximum bei einem spezifischen Verhältnis zwischen V- und V=O-Oberflächenplätzen auf. Die hier vorgestellten Ergebnisse könnten unser Verständnis von katalytischen Reaktionen auf molekularer Ebene bedeutend vorantreiben. / The widespread use of model systems for understanding the heterogeneous catalytic processes is based on bridging the structural complexity gap between present generation of supported metal and metal oxide technical catalysts and crystalline metal and planar metal/oxide systems, which are utilized to investigate structure-reactivity relationships by a large variety of surface science techniques. In this thesis, we focused on a concept of so-called ''monolayer'' vanadium oxide catalysts, which have been introduced particularly for methanol oxidation reactions. Following a bottom-up approach, silica supported vanadium oxide model catalysts were investigated. Combining a number of experimental techniques, the surface of Mo(112) used as a substrate for the silica films was characterized in detail and the atomic structure of the silica film was determined. Adsorption of water and growth of vanadium oxide nanoparticles on the silica films, and finally the reactivity of vanadium oxide/silica systems towards methanol were studied. In contrast to the previously suggested models, an oxygen induced p(2×3) superstructure formed on a Mo(112) surface should be considered as one dimensional surface oxide where Mo=O groups are formed preferentially along the [-1-11] direction of the Mo(112) surface. Monolayer silica films grown on Mo(112) surfaces are composed of two-dimensional network of SiO4 tetrahedra. Depending on the film preparation conditions, the structure can be altered by additional oxygen atoms adsorbed on the Mo substrate. The defect structure includes antiphase domain boundaries which form by a half-lattice shift along the [-110] direction and a low density of point defects, most probably silicon vacancies. Water does not dissociate on the monolayer silica film. An ordered structure of water with respect to silica film was observed at 140 K owing to good lattice matching between the silica film and hexagonal ice. Amorphous solid water layers homogenously covering the surface at 100 K were used as reactive layers for vanadium oxide particles in order to mimic ''wet chemistry'' used in preparation of technical catalysts. The results revealed that ice layer assisted the formation of hydrated vanadium oxide nanoparticles partially terminated by V=O and V-OH groups. The dehydration takes place above 500 K, thus exposing V-terminated surface. Methanol dissociates on dehydrated vanadium oxide particles and methoxy species are stable on the surface up to 500 K only in the presence of vanadium terminated surface sites. Formaldehyde production which takes place at ~550 K is strongly affected by the surface structure of the vanadium oxide particles and exhibits a maximum at specific ratio between V- and V=O sites on the surface. The results presented may have a strong impact on our understanding of the catalytic reactions at the molecular level.
|
35 |
Caracterização eletroquímica de filmes nanoestruturados de óxido de manganês e de vanádio em líquidos iônicos: aplicação em baterias de lítio e supercapacitores / Electrochemical characterization of nanostructured films of manganese and vanadium oxide in ionic liquids: lithium batteries and supercapacitors application.Benedetti, Tânia Machado 20 May 2011 (has links)
Este trabalho apresenta a preparação de filmes nanoestruturados de óxido de manganês e de vanádio por diferentes técnicas e a sua caracterização eletroquímica utilizando diferentes líquidos iônicos como eletrólito. Os filmes de óxido de manganês foram preparados por automontagem camada-por-camada e por eletrodeposição assistida por molde de nanoesferas de poliestireno. Os filmes de óxido de vanádio foram preparados também por automontagem camada-por-camada e por deposição eletroforética. Diversos aspectos relacionados ao uso dos líquidos iônicos como eletrólitos foram discutidos: os resultados obtidos para os filmes de óxido de manganês por automontagem camada-por-camada mostraram que os íons do líquido iônico participam do processo de compensação de carga superficialmente e que o cátion do líquido iônico, apesar de mais volumoso, apresenta coeficiente de difusão maior que o Li+, formando uma barreira à intercalação dos mesmos na estrutura do material. A partir dos resultados obtidos para os filmes de óxido de manganês por eletrodeposição assistida por nanoesferas de poliestireno, foi possível verificar que o desempenho do sistema depende da natureza do líquido iônico utilizado, sendo possível obter desempenho superior aos solventes orgânicos convencionais com um dos líquidos iônicos utilizados do ponto de vista da ciclabilidade. Desempenho superior aos eletrólitos convencionais também foi observado para os filmes de óxido de vanádio obtidos por automontagem camada-por-camada. Por fim, a caracterização eletroquímica em líquidos iônicos dos filmes de óxido de vanádio obtidos por deposição eletroforética mostrou que não apenas o uso de nanopartículas, mas também o modo de deposição das mesmas influencia no desempenho eletroquímico do sistema. De maneira geral, os resultados obtidos mostraram que o uso de filmes nanoestruturados e de líquidos iônicos como eletrólitos constituem alternativas promissoras para a obtenção de dispositivos de armazenamento e conversão de energia de alto desempenho e segurança. / This work presents the preparation of manganese and vanadium oxides nanostructured films by different techniques and their electrochemical characterization in different ionic liquids based electrolytes. Manganese oxide films have been prepared by self-assembly layer-by-layer and by electrodeposition assisted by polystyrene nanospheres template. Vanadium oxide films have been also prepared by self-assembly layer-by-layer deposition and by electrophoretic deposition. Several aspects related with the use of ionic liquids as electrolytes have been discussed: the obtained results from layer-by-layer deposition of manganese oxide have shown that ionic liquid ions also participate in the charge compensation process, but only superficially; in spite of ionic liquid cation been larger than Li+, it moves faster, achieving the electrode surface before, being a barrier for Li+ intercalation. From the results obtained for the manganese oxide prepared by template assisted electrodeposition, it was possible to notice that electrochemical performance is dependent on the ionic liquid structure, being possible to achieve higher performance than with conventional organic solvent electrolyte with one of the studied ionic liquid. Superior performance in comparison with conventional electrolyte has also been achieved for vanadium oxide films prepared by layer-by-layer deposition from the point of view of cyclability. Finally, the electrochemical characterization of vanadium oxide films prepared by electrophoretic deposition in ionic liquids has shown that not only the use of nanoparticles but also the deposition method employed influences the electrochemical performance. To conclude, the obtained results have shown that the use of nanostructured films and ionic liquids as electrolytes are promising alternatives for the obtention of high performance energy storage and conversion devices.
|
36 |
The Challenge of Probing Lithium Insertion Mechanisms in Cathode MaterialsHöwing, Jonas January 2004 (has links)
<p>The Li-ion battery has, from its commercialisation in the early 1990's, now become the most widely used power source for portable low-power electronics: laptops, cellular phones and MP3-players are a few examples. To further develop existing and find new electrode materials for these batteries, it is vital to understand the lithium insertion/extraction mechanisms taking place during battery operation. In this thesis, single-crystal X-ray diffraction has been used to investigate lithium insertion/extraction mechanisms in the cathode materials V<sub>6</sub>O<sub>13</sub> and LiFePO<sub>4</sub>. A novel single-crystal electrochemical cell for <i>in situ</i> single-crystal X-ray diffraction studies has also been developed.</p><p>The phases Li<sub>3</sub>V<sub>6</sub>O<sub>13</sub> and Li<sub>3+x</sub>V<sub>6</sub>O<sub>13</sub>, 0<x<1, both contain a disordered lithium ion. A low-temperature study of Li<sub>3.24</sub>V<sub>6</sub>O<sub>13</sub> (at 95 K) shows that this disorder is static rather than dynamic; the lithium ion is equally distributed above and below an inversion centre in the centrosymmetric V<sub>6</sub>O<sub>13</sub> host structure. Short-range-ordering between this disordered lithium ion and the lithium ion inserted into Li<sub>3</sub>V<sub>6</sub>O<sub>13</sub> gives rise to solid-solution behaviour not observed earlier in the Li<sub>x</sub>V<sub>6</sub>O<sub>13</sub> system. A model is proposed for the lithium insertion mechanism up to the end-member composition Li<sub>6</sub>V<sub>6</sub>O<sub>13</sub>.</p><p>Lithium has also been electrochemically extracted from LiFePO<sub>4</sub> single crystals. On the basis of the shapes of the LiFePO<sub>4</sub> and FePO<sub>4</sub> reflections, it is concluded that FePO<sub>4</sub> is formed at the crystal surface and that the LiFePO<sub>4</sub>/FePO<sub>4</sub> interface propagates into the crystal. This is in agreement with an earlier proposed model for lithium extraction from LiFePO<sub>4</sub> particles.</p><p>Initial experiments with the newly developed single-crystal electrochemical cell for <i>in situ</i> single-crystal X-ray diffraction demonstrate that it is possible to insert lithium into a single crystal of V<sub>6</sub>O<sub>13</sub> and then collect single-crystal X-ray diffraction data. The method needs further development but promises to become a powerful tool for studying lithium insertion/extraction mechanisms.</p>
|
37 |
The Challenge of Probing Lithium Insertion Mechanisms in Cathode MaterialsHöwing, Jonas January 2004 (has links)
The Li-ion battery has, from its commercialisation in the early 1990's, now become the most widely used power source for portable low-power electronics: laptops, cellular phones and MP3-players are a few examples. To further develop existing and find new electrode materials for these batteries, it is vital to understand the lithium insertion/extraction mechanisms taking place during battery operation. In this thesis, single-crystal X-ray diffraction has been used to investigate lithium insertion/extraction mechanisms in the cathode materials V6O13 and LiFePO4. A novel single-crystal electrochemical cell for in situ single-crystal X-ray diffraction studies has also been developed. The phases Li3V6O13 and Li3+xV6O13, 0<x<1, both contain a disordered lithium ion. A low-temperature study of Li3.24V6O13 (at 95 K) shows that this disorder is static rather than dynamic; the lithium ion is equally distributed above and below an inversion centre in the centrosymmetric V6O13 host structure. Short-range-ordering between this disordered lithium ion and the lithium ion inserted into Li3V6O13 gives rise to solid-solution behaviour not observed earlier in the LixV6O13 system. A model is proposed for the lithium insertion mechanism up to the end-member composition Li6V6O13. Lithium has also been electrochemically extracted from LiFePO4 single crystals. On the basis of the shapes of the LiFePO4 and FePO4 reflections, it is concluded that FePO4 is formed at the crystal surface and that the LiFePO4/FePO4 interface propagates into the crystal. This is in agreement with an earlier proposed model for lithium extraction from LiFePO4 particles. Initial experiments with the newly developed single-crystal electrochemical cell for in situ single-crystal X-ray diffraction demonstrate that it is possible to insert lithium into a single crystal of V6O13 and then collect single-crystal X-ray diffraction data. The method needs further development but promises to become a powerful tool for studying lithium insertion/extraction mechanisms.
|
38 |
Thin Films From Metalorganic Precursors : ALD Of VO2 And CVD Of (Al1-xGax)2O3Dagur, Pritesh 02 1900 (has links)
Thin films and coatings of oxides are used in various fields of science and technology, such as semiconductor and optoelectronic devices, gas sensors, protective and wear resistant coatings etc. Of late, there has been a tremendous interest in pure and doped vanadium dioxide as thermoelectric switch material. VO2 has been doped with hetero-atoms such as W, Mo, Nb, Ti etc. and effects of doping have been correlated with feasibility of being used as a smart window material. The oxide Al2O3 has been studied as an alternative gate dielectric. Ga2O3 is also a contender for replacing SiO2 as a dielectric material.
Atomic layer deposition (ALD) is a technique for the deposition of thin films of various materials and is found to be of considerable scientific and technological importance. In particular, using β-diketonate complexes as precursors is very useful in preparing thin films of oxides, as these precursors already contain a metal-oxygen bond. In this thesis, β-diketonate complexes have been used as precursors for deposition of thin films. The thesis has been divided into two parts: First part deals with deposition and characterization of thin films of VO2 on glass and fused quartz. The second part deals with synthesis and chemical and thermal characterization of bimetallic Al-Ga acetylacetonates along with thin film deposition using the same.
Chapter 1 presents a brief introduction to application of thin films of oxides in various fields of science and technology. A brief introduction to the ALD reactor used for the current work is also presented. The importance of thermal analysis of precursors for CVD is briefly reviewed. Chapter 2 deals with the instruments and methods used for the work done for this thesis. In Chapters 3 and 4 of the thesis, a detailed study of deposition of VO2 films on glass and fused quartz has been presented. The films deposited have been analyzed using a host of techniques, for their texture, microstructure and electrical properties. In spite of chemical similarities, considerable differences in structure and properties have been observed between the films deposited on the two substrates. These differences have been explained on the basis of the small chemical differences between the two substrates. Chapters 5, 6 and 7 deal with synthesis, thermal characterization and use of bimetallic Al-Ga precursors, respectively. The bimetallic acetylacetonates have been synthesized using ‘homogenization in solution’ approach. Chemical characterization of the precursors revealed that nominal percentages of Al and Ga are retained in the solid precursors. Single crystal structure confirmed the observation. Thermal analysis of the precursors showed that the precursors, which are solid solutions of Al and Ga acetylacetonates, show negative deviation from the Raoult’s Law. Films were deposited using these precursors and were found to near completely retain the composition of the precursors. Chapter 8 of the thesis presents the conclusions of the current work and proposes future directions.
|
39 |
Utilização da sacarose no crescimento de filmes de óxidos de vanádio via spray-piróliseSantos, Maria do Socorro de Andrade Neves 25 February 2014 (has links)
In this work, aqueous solutions were obtained by adding sucrose to produce thin films of oxides of vanadium via the spray pyrolysis technique. Solutions with different concentrations of vana-dium chloride and sucrose were prepared to study their influence on the structural, morpholog-ical and electrical properties of the films. All samples were analyzed using structural character-ization techniques (XRD), morphology (SEM) and electric (both ends). The results showed that it was possible to observe training phase V2O5 and V3O7, 200mM and the concentration of vanadium chloride was the condition that the synthesis had better crystallization of vanadium pentoxide. The results of electrical measurements, resistance versus temperature show that the deposited film has behavior of a semiconductor. The results also conclude that the band-gap model can describe the mechanism of conduction in successful films. / Neste trabalho, soluções aquosas foram obtidas com a adição de sacarose para produção de filmes finos de óxidos de vanádio via a técnica spray-pirolise. Soluções com diferentes concen-trações de cloreto de vanádio e sacarose foram preparadas para estudar sua influência nas pro-priedades estruturais, morfológicas e elétricas dos filmes. Todas as amostras foram analisadas utilizando técnicas de caracterização estrutural (DRX), morfológica (MEV) e elétrica (duas pontas). Os resultados mostraram que foi possível observar a formação das fases V2O5 e V3O7, e que a concentração 200mM de cloreto de vanádio foi a condição de síntese que melhor apre-sentou a cristalização do pentóxido de vanádio. Os resultados das medidas elétricas, resistência em função da temperatura mostram que os filmes depositados tem comportamento de um se-micondutor. Os resultados também concluem que o mecanismo de condução sucedido nos fil-mes pode ser descrito pelo modelo de bandgap.
|
40 |
Caracterização eletroquímica de filmes nanoestruturados de óxido de manganês e de vanádio em líquidos iônicos: aplicação em baterias de lítio e supercapacitores / Electrochemical characterization of nanostructured films of manganese and vanadium oxide in ionic liquids: lithium batteries and supercapacitors application.Tânia Machado Benedetti 20 May 2011 (has links)
Este trabalho apresenta a preparação de filmes nanoestruturados de óxido de manganês e de vanádio por diferentes técnicas e a sua caracterização eletroquímica utilizando diferentes líquidos iônicos como eletrólito. Os filmes de óxido de manganês foram preparados por automontagem camada-por-camada e por eletrodeposição assistida por molde de nanoesferas de poliestireno. Os filmes de óxido de vanádio foram preparados também por automontagem camada-por-camada e por deposição eletroforética. Diversos aspectos relacionados ao uso dos líquidos iônicos como eletrólitos foram discutidos: os resultados obtidos para os filmes de óxido de manganês por automontagem camada-por-camada mostraram que os íons do líquido iônico participam do processo de compensação de carga superficialmente e que o cátion do líquido iônico, apesar de mais volumoso, apresenta coeficiente de difusão maior que o Li+, formando uma barreira à intercalação dos mesmos na estrutura do material. A partir dos resultados obtidos para os filmes de óxido de manganês por eletrodeposição assistida por nanoesferas de poliestireno, foi possível verificar que o desempenho do sistema depende da natureza do líquido iônico utilizado, sendo possível obter desempenho superior aos solventes orgânicos convencionais com um dos líquidos iônicos utilizados do ponto de vista da ciclabilidade. Desempenho superior aos eletrólitos convencionais também foi observado para os filmes de óxido de vanádio obtidos por automontagem camada-por-camada. Por fim, a caracterização eletroquímica em líquidos iônicos dos filmes de óxido de vanádio obtidos por deposição eletroforética mostrou que não apenas o uso de nanopartículas, mas também o modo de deposição das mesmas influencia no desempenho eletroquímico do sistema. De maneira geral, os resultados obtidos mostraram que o uso de filmes nanoestruturados e de líquidos iônicos como eletrólitos constituem alternativas promissoras para a obtenção de dispositivos de armazenamento e conversão de energia de alto desempenho e segurança. / This work presents the preparation of manganese and vanadium oxides nanostructured films by different techniques and their electrochemical characterization in different ionic liquids based electrolytes. Manganese oxide films have been prepared by self-assembly layer-by-layer and by electrodeposition assisted by polystyrene nanospheres template. Vanadium oxide films have been also prepared by self-assembly layer-by-layer deposition and by electrophoretic deposition. Several aspects related with the use of ionic liquids as electrolytes have been discussed: the obtained results from layer-by-layer deposition of manganese oxide have shown that ionic liquid ions also participate in the charge compensation process, but only superficially; in spite of ionic liquid cation been larger than Li+, it moves faster, achieving the electrode surface before, being a barrier for Li+ intercalation. From the results obtained for the manganese oxide prepared by template assisted electrodeposition, it was possible to notice that electrochemical performance is dependent on the ionic liquid structure, being possible to achieve higher performance than with conventional organic solvent electrolyte with one of the studied ionic liquid. Superior performance in comparison with conventional electrolyte has also been achieved for vanadium oxide films prepared by layer-by-layer deposition from the point of view of cyclability. Finally, the electrochemical characterization of vanadium oxide films prepared by electrophoretic deposition in ionic liquids has shown that not only the use of nanoparticles but also the deposition method employed influences the electrochemical performance. To conclude, the obtained results have shown that the use of nanostructured films and ionic liquids as electrolytes are promising alternatives for the obtention of high performance energy storage and conversion devices.
|
Page generated in 0.04 seconds