• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 205
  • 72
  • 64
  • 50
  • 25
  • 21
  • 15
  • 10
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 681
  • 198
  • 163
  • 137
  • 136
  • 135
  • 128
  • 124
  • 119
  • 85
  • 81
  • 75
  • 73
  • 69
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

A Column-Parallel Two-Step Successive Approximation Analog-To-Digital Converter

Wang, Hongtao 01 January 2013 (has links) (PDF)
The ever-increasing resolution of CMOS imagers has steadily driven the requirements of readout circuitry. As the number of sensors on a chip increases, the bandwidth of the readout circuit must be increased correspondingly to maintain a constant frame rate. Column parallel A/D converters are commonly used to divide the conversions among many converters. However, implementing high-speed, high-resolution A/D converters at the column level is challenging because the entire circuit needs to be as narrow as the sensor. This thesis presents the design of a 10-bit, one million conversions per second column-parallel A/D converter. A factor of four increase in speed over conventional converters was achieved by combining techniques of successive approximation and two-step subranging in a distributed column-parallel architecture. The speed of the converter makes it suitable to be integrated with a 1-megapixel sensor array providing a frame rate at 1000fps with 11µm pixels in a 0.35µm CMOS technology.
422

Enhanced Search And Efficient Storage Using Data Compression In Nand Flash Memories

Vyas, Shruti S 01 January 2011 (has links) (PDF)
NAND flash memories are popular due to their density and lower cost. However, due to serial access, NAND flash memories have low read and write speeds. As the flash sizes increase to 64GB and beyond, searches through flash memories become painfully slow. In this work we present a hardware design enhancement technique to speed-up search through flash memories. The basic idea is to generate a small signature for every memory block and store them in a signature block(s). When a search is initiated, signature block is searched which produces reference of possible blocks where data might be contained, reducing the total number of read operations. The additional hardware has no impact on read access times or sequential write times but increases the random write times by an average of 8-9%. Simulation experiments were performed for flash memory of size up to 16Gb. Simulation results show that the performance of searches improve by 2000X by using the proposed technique. The signature-based technique is used to find exact matching data. A discrete cosine transform based technique is used when partial matching of data is required. The same setup is also used to increase storage efficiency of data by performing data deduplication on the flash memory. The hardware implementation of the search technique results in 0.02% increase in area, 3.53% increase in power and can operate at a maximum frequency of 0.47GHz.
423

Protecting Network Processors with High Performance Logic Based Monitors

Kumarapillai Chandrikakutty, Harikrishnan 01 January 2013 (has links) (PDF)
Technological advancements have transformed the way people interact with the world. The Internet now forms a critical infrastructure that links different aspects of our life like personal communication, business transactions, social networking, and advertising. In order to cater to this ever increasing communication overhead there has been a fundamental shift in the network infrastructure. Modern network routers often employ software programmable network processors instead of ASIC-based technology for higher throughput performance and adaptability to changing resource requirements. This programmability makes networking infrastructure vulnerable to new class of network attacks by compromising the software on network processors. This issue has resulted in the need for security systems which can monitor the behavior of network processors at run time. This thesis describes an FPGA-based security monitoring system for multi-core network processors. The implemented security monitor improves upon previous hardware monitoring schemes. We demonstrate a state machine based hardware programmable monitor which can track program execution flow at run time. Applications are analyzed offline and a hash of the instructions is generated to form a state machine sequence. If the state machine deviates from expected behavior, an error flag is raised, forcing a network processor reset. For testing purposes, the monitoring logic along with the multi-core network processor system is implemented in FPGA logic. In this research, we modify the network processor memory architecture to improve security monitor functionality. The efficiency of this approach is validated using a diverse set of network benchmarks. Experiments are performed on the prototype system using known network attacks to test the performance of the monitoring subsystem. Experimental results demonstrate that out security monitor approach provides an efficient monitoring system in detecting and recovering from network attacks with minimum overhead while maintaining line rate packet forwarding. Additionally, our monitor is capable of defending against attacks on processor with a Harvard architecture, the dominant contemporary network processor organization. We demonstrate that our monitor architecture provides no network slowdown in the absence of an attack and provides the capability to drop packets without otherwise affecting regular network traffic when an attack occurs.
424

Parameter Variation Sensing and Estimation in Nanoscale Fabrics

Zhang, Jianfeng 01 January 2013 (has links) (PDF)
Parameter variations introduced by manufacturing imprecision are becoming more influential on circuit performance. This is especially the case in emerging nanoscale fabrics due to unconventional manufacturing steps (e.g., nano-imprint) and aggressive scaling. These parameter variations can lead to performance deterioration and consequently yield loss. Parameter variations are typically addressed pre-fabrication with circuit design targeting worst-case timing scenarios. However, this approach is pessimistic and much of performance benefits can be lost. By contrast, if parameter variations can be estimated post-manufacturing, adaptive techniques or reconfiguration could be used to provide more optimal level of tolerance. To estimate parameter variations during run-time, on-chip variation sensors are gaining in importance because of their easy implementation. In this thesis, we propose novel on-chip variation sensors to estimate variations in physical parameters for emerging nanoscale fabrics. Based on the characteristics of systematic and random variations, two separate sensors are designed to estimate the extent of systematic variations and the statistical distribution of random variations from measured fall and rise times in the sensors respectively. The proposed sensor designs are evaluated through HSPICE Monte Carlo simulations with known variation cases injected. Simulation results show that the estimation error of the systematic-variation sensor is less than 1.2% for all simulated cases; and for the random-variation sensor, the worst-case estimation error is 12.7% and the average estimation error is 8% for all simulations. In addition, to address the placement of on-chip sensors, we calculate sensor area and the effective range of systematic-variation sensor. Then using a processor designed in nanoscale fabrics as a target, an example for sensor placement is introduced. Based on the sensor placement, external noises that may affect the measured fall and rise times of outputs are identified. Through careful analysis, we find that these noises do not deteriorate the accuracy of the systematic-variation sensor, but affect the accuracy of the random-variation sensor. We believe that the proposed on-chip variation sensors in conjunction with post-fabrication compensation techniques would be able to improve system-level performance in nanoscale fabrics, which may be an efficient alternative to making worst-case assumptions on parameter variations in nanoscale designs.
425

Secure and Energy Efficient Physical Unclonable Functions

Srivathsa, Sudheendra 01 January 2012 (has links) (PDF)
Physical Unclonable Functions are a unique class of circuits that leverage the inherentvariations in manufacturing process to create unique,unclonableIDs and secret keys.The distinguishing feature of PUFs is that even an untrusted foundry cannot create a copy of the circuit as it is impossible to control the manufacturing process variations.PUFs can operate reliably in presence of voltage and temperature variations. In thisthesis, weexplorethe security offered by PUFs and tradeoffs between different metrics such as uniqueness, reliability and energy consumption.Benefits of sub-threshold PUF operation and the use of delay based Arbiter PUFs and ring oscillator PUFs in low power applications is evaluated. As we scale into lower technology nodes, there exists sufficient inter chip variation that enables each IC to be identified securely.The impact of scaling on the identification capabilities of a PUF and its reliability has been demonstrated in this work by analyzing the behavior of an Arbiter PUF in 45nm, 32nm and 22nm technology nodes. Further,the Arbiter PUF design has been implemented on a test-chip and fabricated using 45nm industry models andresults from post silicon validation are presented. Finally, we investigate a new class of PUF circuits in this work, that provide better security against machine learning based software modeling attacks. The strong identification capabilities and sufficiently high reliability offered by these PUF circuits make them promising candidates for future applications requiring securehardware cryptographic primitives.
426

Approaches to multiprocessor error recovery using an on-chip interconnect subsystem

Vadlamani, Ramakrishna P 01 January 2010 (has links) (PDF)
For future multicores, a dedicated interconnect subsystem for on-chip monitors was found to be highly beneficial in terms of scalability, performance and area. In this thesis, such a monitor network (MNoC) is used for multicores to support selective error identification and recovery and maintain target chip reliability in the context of dynamic voltage and frequency scaling (DVFS). A selective shared memory multiprocessor recovery is performed using MNoC in which, when an error is detected, only the group of processors sharing an application with the affected processors are recovered. Although the use of DVFS in contemporary multicores provides significant protection from unpredictable thermal events, a potential side effect can be an increased processor exposure to soft errors. To address this issue, a flexible fault prevention and recovery mechanism has been developed to selectively enable a small amount of per-core dual modular redundancy (DMR) in response to increased vulnerability, as measured by the processor architectural vulnerability factor (AVF). Our new algorithm for DMR deployment aims to provide a stable effective soft error rate (SER) by using DMR in response to DVFS caused by thermal events. The algorithm is implemented in real-time on the multicore using MNoC and controller which evaluates thermal information and multicore performance statistics in addition to error information. DVFS experiments with a multicore simulator using standard benchmarks show an average 6% improvement in overall power consumption and a stable SER by using selective DMR versus continuous DMR deployment.
427

Design of an Integrated Acceleration Acquisition Subsystem to Satisfy High-Speed and Low-Area Requirements for CubeSats

Rumsey, Ryan J 01 June 2016 (has links) (PDF)
Cal Poly San Luis Obispo’s PolySat team is designing the Multipurpose Orbital Spring Ejection System (MOSES) in order to record acceleration data during the launch of CubeSats as well as to provide GPS coordinates to locate the position of CubeSats once they are injected into orbit. This work focuses on the design and development of the acceleration data acquisition (DAQ) subsystem of MOSES. This subsystem is designed around the need for a high-speed sampling system of at least 200 kHz across four channels of data, plus low-area limitations in the MOSES form factor which is roughly half the size of a standard CubeSat. To address these specifications, the design explores system implementation around a Xilinx Artix-7 FPGA with a built-in analog-to-digital converter and a custom hardware solution.
428

Analysis of MOS Current Mode Logic (MCML) and Implementation of MCML Standard Cell Library for Low-Noise Digital Circuit Design

Heim, Marcus Edwin Allan 01 June 2015 (has links) (PDF)
MOS current mode logic (MCML) offers low noise digital circuits that reduce noise that can cripple analog components in mixed-signal integrated circuits, when compared to CMOS digital circuits. An MCML standard cell library was developed for the Cadence Virtuoso Integrated Circuit (IC) design software that gives IC designers the ability to design complex, low noise digital circuits for use in mixed-signal and noise sensitive systems at a high level of abstraction, allowing them to get superior products to market faster than competitors. The MCML standard cell library developed and presented here allows for fast development of mixed signal circuits by providing quiet digital building block gates that reduce the simultaneous switching noise (SSN) by an order of magnitude over conventional CMOS based designs [3]. This thesis project developed the following digital gates in MCML as a standard cell library for general-purpose low noise and very low noise applications: inverter, buffer, NAND, AND, NOR, OR, XOR, NXOR, 2:1 MUX, CMOS to MCML, MCML to CMOS, and double edge triggered flip-flop (DETFF).
429

Reliable Software Updates for On-Orbit CubeSat Satellites

Fitzsimmons, Sean 01 June 2012 (has links) (PDF)
CubeSat satellites have redefined the standard solution for conducting missions in space due to their unique form factor and cost. The harsh environment of space necessitates examining features that improve satellite robustness and ultimately extend lifetime, which is typical and vital for mission success. The CubeSat development team at Cal Poly, PolySat, has recently redefined its standard avionics platform to support more complex mission capabilities with this robustness in mind. A significant addition was the integration of the Linux operating system, which provides the flexibility to develop much more elaborate protection mechanisms within software, such as support for remote on-orbit software updates. This thesis details the design and development of such a feature-set with critical software recovery and multiple-mission single-CubeSat functionality in mind. As a result, features that focus on software update usability, validation, system recovery, upset tolerance, and extensibility have been developed. These include backup Linux kernel and file system image availability, image validation prior to boot, and the use of multiple file system devices to protect against system upsets. Furthermore, each feature has been designed for usability on current and future missions.
430

An Investigation Into Partitioning Algorithms for Automatic Heterogeneous Compilers

Leija, Antonio M 01 September 2015 (has links) (PDF)
Automatic Heterogeneous Compilers allows blended hardware-software solutions to be explored without the cost of a full-fledged design team, but limited research exists on current partitioning algorithms responsible for separating hardware and software. The purpose of this thesis is to implement various partitioning algorithms onto the same automatic heterogeneous compiler platform to create an apples to apples comparison for AHC partitioning algorithms. Both estimated outcomes and actual outcomes for the solutions generated are studied and scored. The platform used to implement the algorithms is Cal Poly’s own Twill compiler, created by Doug Gallatin last year. Twill’s original partitioning algorithm is chosen along with two other partitioning algorithms: Tabu Search + Simulated Annealing (TSSA) and Genetic Search (GS). These algorithms are implemented inside Twill and test bench input code from the CHStone HLS Benchmark tests is used as stimulus. Along with the algorithms cost models, one key attribute of interest is queue counts generated, as the more cuts between hardware and software requires queues to pass the data between partition crossings. These high communication costs can end up damaging the heterogeneous solution’s performance. The Genetic, TSSA, and Twill’s original partitioning algorithm are all scored against each other’s cost models as well, combining the fitness and performance cost models with queue counts to evaluate each partitioning algorithm. The solutions generated by TSSA are rated as better by both the cost model for the TSSA algorithm and the cost model for the Genetic algorithm while producing low queue counts.

Page generated in 0.0304 seconds