• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 3
  • Tagged with
  • 30
  • 30
  • 16
  • 16
  • 16
  • 15
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Untersuchungen an einer Kolbenexpansionsmaschine mit integrierten Wärmeübertragerflächen (Wärmeübertrager-Expander) zur Realisierung eines neuartigen Neon-Tieftemperatur-Prozesses

Fredrich, Ole 23 April 2004 (has links)
Viele Anwendungen der Hochtemperatur-Supraleitung arbeiten vorteilhaft im Temperaturbereich zwischen 30 - 50 K. Für diesen Temperaturbereich existieren nur wenige geeignete Kältemaschinen mit kleiner Kälteleistung (1-2 W) u. gutem Wirkungsgrad. Neon ist aufgrund seiner Stoffeigenschaften ein hervorragendes Kältemittel für diesen Temperaturbereich, wie z.B. anhand einer realisierten Joule-Thomson (JT) Demonstrationsanlage deutlich wird. Als Ergebnis einer Prozessanalyse wird ein Kreislauf vorgestellt, der speziell den Eigenschaften von Neon angepasst ist. Durch die Überlagerung von Wärmeübertragung u. arbeitsleistender Expansion sowie der Einbeziehung einer JT-Stufe kann auch mit wenig effizienten Komponenten ein vergleichsweise hoher Gütegrad erreicht werden. Durch die Integration von Wärmeübertragerflächen in eine Kolbenexpansionsmaschine wird ein neues Konzept vorgeschlagen, um Kälte in einem großen Temperaturbereich in vielen Expansionsschritten zu erzeugen, ohne dafür viele Expander zu verwenden. Diese Einheit wird als Wärmeübertrager-Expander (WE) bezeichnet. Mit einem Arbeitsraum in konischer Grundform wird der Wärmeübergangskoeffizient günstig gestaltet u. die Wärmeübergangsfläche vergrößert. Mehrere Versuchsmaschinen wurden untersucht. Anhand der Versuche konnten die wesentlichen Verlustquellen u. Problembereiche identifiziert werden. Es wurde im Rahmen der Versuchsbedingungen nachgewiesen, dass für das vorgesehene Druckverhältnis eine nahe isotherme Expansion u. Kompression möglich ist. Es werden Möglichkeiten zur Verringerung der Längswärmeleitung vorgestellt. Zwei Simulationsprogramme wurden verwendet. Mit Hilfe des Wärmeübertrager-Programms wurden die Wärmeübertragungsvorgänge unter Berücksichtigung der Längswärmeleitung simuliert. Hierbei geht die Expansionsarbeit als stationäre Wärmesenke ein. Der im Ergebnis vorliegende stationäre Temperaturverlauf ist die Grundlage für die Berechnung der Expansionsarbeit unter Berücksichtigung der Realgaseigenschaften im Expander-Programm. Für die Neon-Tieftemperaturvariante wurde eine Grundvariante des WE definiert. Anhand dieser wurde mit Hilfe der Programme der Einfluss verschiedener Parameter auf Kälteleistung u. Gütegrad untersucht. Der WE wird als Teil des beschriebenen Prozesses mit einer JT-Stufe betrachtet. Die Kälteleistung weist sowohl in Abhängigkeit vom Massestrom als auch vom Hub ein Maximum auf. Der Shuttle-Verlust verschiebt durch Wärmetransport mittels des Kolbens die effektive Kälteleistung zu kleineren Hüben. Die durch die Güte (NTU) des JT-Wärmeübertragers bestimmte Eintrittstemperatur des Niederdruckstroms in den WE hat einen großen Einfluss auf die Kälteleistung. Mit steigender Eintrittstemperatur steigen der NTU-Wert für den Arbeitsraum u. somit auch die Kälteleistung. Das Maximum der Kälteleistung stimmt nicht mit dem Optimum für den Gütegrad überein. Der Gütegrad strebt mit sinkenden Masseströmen einem Optimum zu. Durch den zunehmenden Einfluss der Längswärmeleitung u. begrenzt durch die Minimalfüllung der Maschine aufgrund des Schadraumes ergibt sich ein Optimum. Der Einfluss des Massestroms ist entscheidend. Als untergeordnete Größen beeinflussen die Eintrittstemperatur des Niederdruckstroms u. der Hub den optimalen Gütegrad. Der Einfluss der Längswärmeleitung auf Kälteleistung u. Gütegrad wird exemplarisch anhand von vergleichenden Rechnungen gezeigt. Konkret kann für einen Eintrittsdruck von 200 bar, einen Austrittsdruck von 60 bar bei einer Eintrittstemperatur des Niederdruckstroms von 80 K für die Grundvariante eine maximale effektive Kälteleistung von 1,3 W mit einem Massestrom von 0,22 g/ s bei einem Hub von ca. 17 mm ausgewiesen werden. Der effektive Gütegrad für diese Bedingungen beträgt ca. 14%. Kommerzielle Split-Stirlingkühler erreichen bei 42 K einstufig Gütegrade von ca. 7%. Mit der vorgeschlagenen Konfiguration wird ein Konzept vorgestellt, das trotz technologisch offener Fragen das Gütegradniveau bekannter Kryokühler übertreffen kann. / Many applications of high temperature superconductivity are working advantageously within a temperature range between 30 K and 50 K. But for this temperature range only few suitable cryocooler with small refrigerating capacity (1-2 W) and good efficiency exist.Due to its properties Neon is an excellent refrigerant for this temperature level as an example with realised Joule-Thomson plant shows. A process analysis results in the presented cycle which is especially adapted to the properties of Neon. By combination of heat exchange and work extracting expansion and integration of a Joule-Thomson stage a high efficiency could be reached in spite of less efficient components.By arranging heat exchanger surfaces into a piston expansion machine a new concept is suggested to produce refrigeration in a large temperature range with a lot of expansion steps with reduced number of expanders. This unit is referred hereinafter to as heat exchanger-expander.The conical shaped working space results in an increase of the heat transfer coefficient and the heat transfer area.Several test machines were investigated. By means of testing the main loss sources and critical zones could be identified. The test results prove the opportunity of a near isothermal expansion and compression for the specified pressure ratio.Options to reduce the axial heat conduction are presented.Two simulation programs were utilised. Using the heat exchanger program the heat transfer is simulated in consideration of the axial heat conduction. Thereby the expansion work is considered as a stationary heat sink. The resulting stationary temperature pattern is the base for the expansion work calculation using the real gas properties in the expander program. Referring to the defined basic neon low temperature application the influence of different parameters on refrigerating capacity and efficiency was researched with the programs. The heat exchanger-expander is part of the described process with a Joule-Thomson stage. The refrigerating capacity shows a maximum depending as well from the mass flow as from the stroke. In result of the shuttle loss smaller strokes lead to better capacity due to heat transport with the piston.The inlet temperature of the low pressure flow influenced by the quality (NTU) of the Joule-Thomson heat exchanger has a large influence on the refrigerating capacity. With increasing inlet temperature the number of transfer units (NTU) for the fluid in the working volume increases and so the refrigerating capacity, too. The location of refrigerating capacity maximum and efficiency optimum is different. While decreasing mass flow efficiency is increasing to an optimum caused by the increased influence of axial heat conduction but limited by the minimum charge of the machine due to the dead space. The influence of the mass flow is dominating. As lower range values the inlet temperature of the low pressure flow and the stroke are influencing the optimal efficiency. The influence of axial heat conduction on refrigerating capacity and efficiency is shown using comparing calculations.For an inlet pressure of 200 bar, an outlet pressure of 60 bar, an inlet temperature of the low pressure flow of 80 K, a mass flow of 0,22 g/ s and a stroke of about 17 mm for the basic version of heat exchanger-expander a maximal effective refrigerating capacity of 1,3 We could be shown. The effective efficiency therefore is 14 %. Current commercial split Stirling cryocooler reach with single stage operation efficiencies of about 7 % at 42 K. The suggested configuration represents a concept that could be able to master the efficiency level of known cryocooler.
12

Physikalische Grundlagen des thermischen Raummodells THERAKLES / Physics of the thermal room model THERAKLES

Nicolai, Andreas 17 January 2013 (has links) (PDF)
Das thermische Raummodell THERAKLES berechnet das dynamische Verhalten eines Raumes und seiner Umschließungsflächen in Abhängigkeit von realistischen Klimarandbedingungen, sowie Nutzer- und Anlagenverhalten. Neben Energieverbrauchswerten werden die operative Temperatur sowie weitere Kriterien zur Beurteilung der Behaglichkeit berechnet. Schwerpunkt der Anwendung liegt auf Optimierung der thermischen Behaglichkeit im Sommerfall, sowie energetischer Optimierung der Regelung von Heizungsanlagen unter Ausnutzung der Dynamik schwerer Baukonstruktionen und Massivbauwände. Das Modell beschreibt das dynamische Verhalten der Umfassungskonstruktionen durch instationäre, räumlich aufgelöste Simulation der Wand-, Fußboden-, und Decken- bzw. Dachflächen. Dadurch werden in der Konstruktion enthaltene Phasenwechselmaterialien (PCM) berücksichtigt und die zeitliche Verfügbarkeit der zusätzlichen Wärmespeicherfähigkeit abgebildet.
13

Entwicklung einer Version des Reaktordynamikcodes DYN3D für Hochtemperaturreaktoren

Rohde, Ulrich, Apanasevich, Pavel, Baier, Silvio, Duerigen, Susan, Fridman, Emil, Grahn, Alexander, Kliem, Sören, Merk, Bruno 12 December 2012 (has links) (PDF)
Basierend auf dem Reaktordynamikcode DYN3D für LWR, wurde die Codeversion DYN3D-HTR für das Blockkonzept eines graphit-moderierten, helium-gekühlten Hochtemperaturreaktors entwickelt. Diese Entwicklung umfasst die: • methodische Weiterentwicklung der 3D stationären Neutronenflussberechnung für hexagonale Geometrie (HTR-Brennelement-Blöcke), • Generierung von Wirkungsquerschnittsdaten unter Berücksichtigung der doppelten Heterogenität, • Modellierung der Wärmeleitung und des Wärmetransports in der Graphitmatrix. Die nodale SP3-Neutronentransport-Methode in DYN3D wurde auf hexagonale Brennelementgeometrie erweitert. Es wird eine Unterteilung der Hexagone in Dreiecke vorgenommen, so dass die Verfeinerung hexagonaler Strukturen untersucht werden kann. Die Verifikation erfolgte durch Vergleiche mit Monte-Carlo-Referenzlösungen. Für die Behandlung der doppelten Heterogenität der Brennelementstruktur bei Homogenisierung der Wirkungsquerschnitte wurden neue Methoden entwickelt. Zum einen wurde ein zweistufiges Homogenisierungsverfahren basierend auf der Methode der sog. Reactivity Equivalent Transformation (RPT) weiterentwickelt. Zum anderen ermöglichte die Verfügbarkeit des neuen Monte-Carlo-Codes SERPENT die Anwendung eines einstufigen Verfahrens, wobei die 3D heterogenen Strukturen in einem Rechenschritt konsistent erfasst werden können. Weiterhin wur-de in DYN3D ein 3D Wärmeleitungsmodell implementiert, das den radialen und axialen Wärmetransport in der Graphitmatrix beschreiben kann. DYN3D-HTR wurde schließlich anhand der Testfälle für Reaktivitätstransienten erprobt. Die Verifikation erfolgte durch Vergleich zwischen 3D und 1D Berechnung der Wärmeleitung. Schließlich wurde DYN3D mit dem CFD-Code ANSYS-CFX gekoppelt, um auch dreidimensionale Strömungen in Reaktorkernen berechnen zu können. Der Kern wird als poröser Körper modelliert. Die Kopplung wurde an anhand von 2 Testbeispielen, dem Auswurf eines Steuerstabes und einer lokalen Strömungsblockade in einem Brennelement, erprobt.
14

Low-Dimensional Quantum Magnets

Mohan, Ashwin 24 November 2014 (has links) (PDF)
The field of low-dimensional quantum magnets has received lot of attention owing to the possibility of studying phenomena associated with the quantum nature of matter. Many materials that realize low-dimensional spin arrangements in their structure have been synthesized in the past twenty years due to the emergence and development of crystal growth techniques. These materials have been studied using various experiments in order to explore the wide range of interesting properties predicted theoretically for low-dimensional systems. In this pursuit, novel properties have been observed and many open questions have been raised. One such property that is typically observed in many low-dimensional quantum magnets is heat transport via magnetic excitations. Large magnitudes of magnetic heat conductivity has been found experimentally in materials belonging to this class in addition to the conventionally known phononic heat conduction, and interesting theoretical predictions like the divergence of heat conductivity in certain spin models exist, that have stimulated research in this field. This experimental work mainly deals with the crystal growth and heat transport properties of low-dimensional quantum magnets that include one-dimensional (1D) spin chain systems Sr$_2$CuO$_3$ and SrCuO$_2$, two-dimensional (2D) Heisenberg antiferromagnet La$_2$CuO$_4$, and a five-leg spin ladder La$_8$Cu$_7$O$_{19}$, with a view to understand propagating low-energy magnetic excitations and their interaction amongst themselves, other quasiparticles and impurities present in the systems. These interactions result in scattering processes that govern the magnitude and temperature dependence of heat conductivity. In spite of considerable theoretical and experimental work in the field of heat transport, a complete understanding of the scattering mechanisms is lacking. The work tries to add to the experimental knowledge about magnetic heat transport in such systems and presents cases which motivate the need for theoretical understanding of aspects of heat transport. The focus of this work was twofold. One part focusses on the single crystal growth using the travelling-solvent floating zone (TFSZ) method of materials which realize low-dimensional spin systems in their structure. The TFSZ method is indispensable for growing large single crystals of extraordinary purity, which can be used for investigations using neutrons and other techniques like heat conductivity measurements that probe anisotropic properties. The other part deals with the experimental results on heat transport and other thermodynamic properties of these materials. In order to study the behaviour of the magnetic heat conductivity at high temperatures, and the effect of small amount of magnetic and non-magnetic impurities on the heat transport of 2D Heisenberg antiferromagnet La$_2$CuO$_4$, single crystals of pure La$_2$CuO$_4$, and Ni- and Zn-doped versions, La$_2$Cu$_x$Ni$_{1-x}$O$_4$ and La$_2$Cu$_x$Zn$_{1-x}$O$_4$ for $x$ = 0.001 and 0.003, were grown using the TFSZ method. Heat transport in the pure compound was experimentally investigated for the first time up to very high temperatures of 813 K using two methods, namely the steady state method for low temperatures and the dynamic flash method for measuring high temperature conductivity. Analysis of the magnon mean-free path using empirical models based on semi-classical theories, and qualitative comparison to theoretical calculations seems to suggest that scattering between magnons might play an important role in addition to scattering of magnons with phonons and defects, and that the spin-spin correlation length could be crucial in limiting the mean free path of magnons at high temperatures. These experimental results and indications of probable scattering mechanisms based on non-rigorous analyses and comparisons, strongly motivate the need for theoretical studies. Heat conductivity measurements on the Ni- and Zn- doped versions of La$_2$CuO$_4$ are still incomplete and inconclusive, and hence have not been reported in this work. Heat transport experiments on Ni- and Ca-doped Sr$_2$CuO$_3$ were performed, with a motivation to investigate the role of disorder induced by impurities lying within the spin chains (Ni) and those lying outside the spin chains (Ca), on the heat transport in this system. In both the cases, the magnetic heat transport is observed to be strongly suppressed upon doping. Empirical analysis of the data seems to suggest that in the temperature regime of 100-300 K, the temperature dependence of the mean-free path of magnetic excitations for the Ni- and Ca-doped samples can be described by scattering with defects (Ni and Ca impurities) and phonons alone. However, surprisingly, a strong increase of phononic conductivity is observed perpendicular and parallel to the spin chains of the Ni-doped compounds compared to the pure compounds, whose explanation seems to lie in the existence of an additional dissipative scattering mechanism present in the pure compounds that is lifted upon doping, possibly due to the presence of a spin gap in the doped compounds. The effect of Ni on the Sr$_2$CuO$_3$ and SrCuO$_2$ was also investigated by studying the low energy regime of the spin excitation spectrum using other microscopic probes like nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS). Large single crystals of SrCu$_x$Ni$_{1-x}$O$_2$, with $x$ = 0.01 were grown and used in these experiments that observed the presence of a spin gap in the Ni-doped sample. Further theoretical investigations are however required to understand the possible role of the spin gap in influencing the spin-phonon scattering mechanism, and its relevance to the observed enhancement in phononic conduction. Although we observe that in the case of both 1D and 2D systems, a semi-classical kinetic model for heat transport along with empirical models of scattering processes describe the temperature dependence of the measured heat conductivity surprisingly well in the temperature regime up to 300 K and 800 K respectively, interpretations based on these analyses must be treated as only preliminary, and as a step towards understanding microscopically the scattering mechanisms involved in low-dimensional systems such as the ones discussed in this work. In the direction of exploratory research towards synthesis of novel low-dimensional materials, two cuprate compounds were synthesized in the form of single crystals using the floating zone method for the first time, namely, a five leg $S=tfrac{1}{2}$ antiferromagnetic spin ladder compound La$_8$Cu$_7$O$_{19}$ and an insulating delafossite LaCuO$_{2}$. A bulk 3D antiferromagnetic ordering is observed in La$_8$Cu$_7$O$_{19}$. Heat conductivity of La$_8$Cu$_7$O$_{19}$ is observed to be purely phononic and no contribution from magnetic excitations seem to exist, although the measurements indicates that there is a large anisotropy in heat transport. However, detailed diffraction experiments using x-rays and neutrons indicate that both the crystal and magnetic structures are complicated, and that the details of the structure prevent La$_8$Cu$_7$O$_{19}$ from being a perfect realization of a five-leg spin ladder.
15

WTZ mit Russland - Transientenanalysen für Kernreaktoren - Abschlussbericht

Rohde, Ulrich, Kozmenkov, Yaroslav, Pivovarov, Valeri, Matveev, Yurij 18 August 2011 (has links) (PDF)
Der Reaktordynamikcodes DYN3D wurde in der neu entwickelten Mehrgruppen-Version DYN3D-MG für die Anwendung auf wassergekühlte Reaktoren alternativ zu industriellen DWR und SWR ertüch-tigt. Es wurde die Anwendbarkeit für den graphitmoderierten Druckröhrenreaktor EGP-6 (KKW Bilibi-no), eine Konzeptstudie eines fortgeschrittenen Siedewasserreaktors mit schnellem Neutronenspekt-rum (RMWR) und das Reaktorkonzept RUTA-70 zur Wärmeversorgung nachgewiesen. Beim RUTA-Reaktor geht es vor allem um die Modellierung des Naturumlaufs des Kühlmittels bei niedrigen Sys-temdrücken. Zur Validierung wurden Experimente zu flashing-induzierten Naturumlaufinstabilitäten an der Versuchsanlage CIRCUS der TU Delft mit RELAP5 nachgerechnet. Für die Anwendung von DYN3D auf die alternativen Reaktorkonzepte wurden Modellerweiterungen und Anpassungen vorgenommen, u.a. Modifikationen in den Wärmeleitungs- und -übergangsmodellen. Vergleichsrechnungen mit dem stationären russischen Feingitter-Diffusionscode ACADEM ergänzen die Verifikationsdatenbasis von DYN3D-MG. Zur Validierung wurden zwei reak-tordynamische Experimente am Reaktor EGP-6 nachgerechnet. Für Reaktoren EGP-6, RMWR und RUTA wurden verschiedene Transienten mit Ausfahren von Re-gelstäben mit und ohne Reaktorschnellabschaltung gerechnet. Weiterhin wurden Analysen für den ATWS-Störfall \"Abschalten aller Hauptkühlmittelpumpen bei Vollleistung\" für den RUTA-Reaktor mit den gekoppelten Programmkomplexen DYN3D/ATHLET und DYN3D/RELAP5 durchgeführt. Der Reaktor geht in einen sicheren Zustand mit reduzierter Leistung bei Naturumlauf des Kühlmittels über. Die Ergebnisse von Analysen zum unkontrollierten Ausfahren einer Regelgruppe für den RMWR lassen dagegen eine belastbare Schlussfolgerung bezüglich der Beherrschbarkeit des Aus-fahrens einer Regelgruppe nicht zu. Abschließend wurde der Nutzen der Programmertüchtigung von DYN3D für die Anwendung auf GenIV -Konzepte und LWR mit hohem Konversionsfaktor bewertet.
16

Grenzflächen beim Mehrkunststoffspritzgießen

Kühnert, Ines 04 October 2005 (has links)
Aufbauend auf den Grundlagen der Standard- und Mehrkunststoffspritzgießtechnik sowie der verarbeitungsinduzierten Grenzflächen (Bindenaht, Zwei-K-Grenzflächen) erfolgt eine detaillierte experimentelle Analyse von wichtigen Einflussfaktoren. Dabei werden Material- und Prozessparameter variiert und deren Auswirkungen auf die resultierende Verbundfestigkeit untersucht. Es wird auf das komplexe Zusammenspiel der Formänderungen und dadurch veränderter Wärmetransportbedingungen eingegangen. Im theoretischen Teil der Arbeit werden die experimentellen Erkenntnisse zur Festlegung der Anfangs- und Randbedingungen eines zweidimensionalen Berechnungsmodells angewandt, so dass die für eine Grenzfläche relevanten Abkühl- und Temperaturausgleichsabläufe nachgebildet werden können. Schwerpunkt ist dabei die Anpassung der lokal unterschiedlichen Wärmeübergangsbedingungen hinsichtlich der einzelnen Prozessphasen. Im Ergebnis der Analyse der Einflussgrößen konnte ein Beitrag zur Optimierung der Prozessführung und somit der Verbundfestigkeit erbracht werden.
17

Entwicklung stochastischer Charakteristika der FE-Lösung von Wärmeleitproblemen mit zufälligem Koeffizienten

Hähnel, Holger, vom Scheidt, Jürgen 16 May 2008 (has links)
Untersucht werden instationäre Wärmeleitprobleme mit gemischen Randbedingungen 2. und 3. Art. Die Probleme weisen als stochastische Einflussgröße einen zufälligen Wärmeleitkoeffizienten auf. Aus einer Ortsdiskretisierung nach dem Vorbild der Methode der finiten Elemente (FEM) geht ein System gewöhnlicher Differentialgleichungen mit zufälliger Systemmatrix hervor. Unter der Annahme kleiner stochastischer Schwankungen lässt sich die Lösung der zugehörigen Anfangswertaufgabe als Entwicklung bezüglich eines Störungsparameters darstellen. Dies ermöglicht die genäherte Berechnung von Erwartungswert- und Korrelationsfunktion der approximativen Lösung des ursprünglichen Randanfangswertproblems. Konkrete Berechnungen werden für ein eindimesionales Wärmeleitproblem angegeben, wobei der Wärmeleitkoeffizient als zufällige Funktion sowie als Zufallsgröße modelliert wird.
18

Ableitung einer analytische Lösung für die Dämpfung einer Temperaturwelle in einem halbunendlichen Bauteil bei Randbedingung 3. Art

Sontag, Luisa, Häupl, Peter, Nicolai, Andreas 01 June 2015 (has links)
Im Folgenden wird die analytische Lösung der eindimensionalen, instationären Wärmeleitungsgleichung mit einer Randbedingung 3. Art gegeben. Die Außentemperatur wird dabei als harmonische Schwingung angenommen. Abhängig von den materialspezifischen Eigenschaften des Bauteils (Wärmeleitfähigkeit, Rohdichte, spezifische Wärmekapazität) kommt es zur Dämpfung und zeitlichen Verschiebung der Temperaturwelle im Bauteil. Die analytische Lösung liefert den raum- und zeitaufgelösten Temperaturverlauf innerhalb des Bauteils. Die analytische Lösung ist primär für die Kalibrierung und Validierung numerischer Approximationsverfahren relevant. Die zeitliche Verfügbarkeit von thermischer Speichermasse ist für die thermische Gebäude- und Raumsimulation von besonderer Wichtigkeit. Daher muss ein numerisches Berechnungsverfahren diese Prozesse gut abbilden können. Die hier gezeigte analytische Lösung kann daher zur Bewertung der Güte der gewählten numerischen Approximation verwendet werden. Zu diesem Zweck werden Ergebnisse beispielhaft für zwei getrennte Konstruktionen angegeben.
19

Thermische und elektrische Transportuntersuchungen an niederdimensionalen korrelierten Elektronensystemen

Steckel, Frank 03 November 2015 (has links) (PDF)
In dieser Arbeit werden Messungen der elektrischen und thermischen Transportkoeffizienten an einem antiferromagnetisch ordnenden Iridat und FeAs-basierten Hochtemperatursupraleitern vorgestellt und analysiert. Iridate sind Materialien mit starker Spin-Bahn-Kopplung. In dem zweidimensionalen Vertreter Sr_2IrO_4 führt diese Kopplung zu isolierendem Mott-Verhalten mit gleichzeitiger antiferromagnetischer Ordnung der gekoppelten Spin-Bahn-Momente. Somit stellt Sr2IrO4 ein Modellsystem für die Untersuchung magnetischer Anregungen dieser Momente in Iridaten dar. Die Analyse der Wärmeleitfähigkeit von Sr_2IrO_4 liefert erstmals klare Hinweise auf magnetische Wärmeleitung in den Iridaten. Die extrahierte magnetische freie Weglänge gibt Aufschluss über die Streuprozesse der zum Wärmetransport beitragenden Magnonen und lässt Schlüsse über die Anregungen des gekoppelten Spin-Bahnsystems zu. Die FeAs-Hochtemperatursupraleiter haben aufgrund ihrer geschichteten Kristallstruktur einen hauptsächlich zweidimensionalen Ladungstransport. Die Phasendiagramme dieser Materialien setzen sich aus Ordnungsphänomenen zusammen, die Magnetismus, Supraleitung und eine Strukturverzerrung umfassen. Das Hauptaugenmerk richtet sich auf die Reaktion der Transportkoeffizienten mit den sich ausbildenden Phasen in Vertretern der 111- und 122-Familien unter chemischer Dotierung innerhalb und außerhalb der Schichtstruktur. Mithilfe von Widerstand und magnetischer Suszeptibilität lassen sich Phasendiagramme der verschiedenen Supraleiterfamilien konstruieren. In ausgewählten Fällen werden der Hall-Koeffizient und elektrothermische Transporteffekte genutzt, um das Phasendiagramm näher zu erforschen. Der Großteil der Untersuchungen zeigt omnipräsente elektrische Ordnungsphänomene, die als nematische Phase bezeichnet werden. Die Messdaten zeigen, dass die Wärmeleitfähigkeit und der Nernst-Koeffizient dominant von Fluktuationen, die der nematischen Phase vorausgehen, beeinflusst werden. Aus den Ergebnissen der Nernst-Daten an dotiertem BaFe_2As_2 werden Schlüsse über die der nematischen Phase zugrunde liegenden Mechanismen des korrelierten Elektronensystems gezogen.
20

Low-Dimensional Quantum Magnets: Single Crystal Growth and Heat Transport Studies

Mohan, Ashwin 13 November 2014 (has links)
The field of low-dimensional quantum magnets has received lot of attention owing to the possibility of studying phenomena associated with the quantum nature of matter. Many materials that realize low-dimensional spin arrangements in their structure have been synthesized in the past twenty years due to the emergence and development of crystal growth techniques. These materials have been studied using various experiments in order to explore the wide range of interesting properties predicted theoretically for low-dimensional systems. In this pursuit, novel properties have been observed and many open questions have been raised. One such property that is typically observed in many low-dimensional quantum magnets is heat transport via magnetic excitations. Large magnitudes of magnetic heat conductivity has been found experimentally in materials belonging to this class in addition to the conventionally known phononic heat conduction, and interesting theoretical predictions like the divergence of heat conductivity in certain spin models exist, that have stimulated research in this field. This experimental work mainly deals with the crystal growth and heat transport properties of low-dimensional quantum magnets that include one-dimensional (1D) spin chain systems Sr$_2$CuO$_3$ and SrCuO$_2$, two-dimensional (2D) Heisenberg antiferromagnet La$_2$CuO$_4$, and a five-leg spin ladder La$_8$Cu$_7$O$_{19}$, with a view to understand propagating low-energy magnetic excitations and their interaction amongst themselves, other quasiparticles and impurities present in the systems. These interactions result in scattering processes that govern the magnitude and temperature dependence of heat conductivity. In spite of considerable theoretical and experimental work in the field of heat transport, a complete understanding of the scattering mechanisms is lacking. The work tries to add to the experimental knowledge about magnetic heat transport in such systems and presents cases which motivate the need for theoretical understanding of aspects of heat transport. The focus of this work was twofold. One part focusses on the single crystal growth using the travelling-solvent floating zone (TFSZ) method of materials which realize low-dimensional spin systems in their structure. The TFSZ method is indispensable for growing large single crystals of extraordinary purity, which can be used for investigations using neutrons and other techniques like heat conductivity measurements that probe anisotropic properties. The other part deals with the experimental results on heat transport and other thermodynamic properties of these materials. In order to study the behaviour of the magnetic heat conductivity at high temperatures, and the effect of small amount of magnetic and non-magnetic impurities on the heat transport of 2D Heisenberg antiferromagnet La$_2$CuO$_4$, single crystals of pure La$_2$CuO$_4$, and Ni- and Zn-doped versions, La$_2$Cu$_x$Ni$_{1-x}$O$_4$ and La$_2$Cu$_x$Zn$_{1-x}$O$_4$ for $x$ = 0.001 and 0.003, were grown using the TFSZ method. Heat transport in the pure compound was experimentally investigated for the first time up to very high temperatures of 813 K using two methods, namely the steady state method for low temperatures and the dynamic flash method for measuring high temperature conductivity. Analysis of the magnon mean-free path using empirical models based on semi-classical theories, and qualitative comparison to theoretical calculations seems to suggest that scattering between magnons might play an important role in addition to scattering of magnons with phonons and defects, and that the spin-spin correlation length could be crucial in limiting the mean free path of magnons at high temperatures. These experimental results and indications of probable scattering mechanisms based on non-rigorous analyses and comparisons, strongly motivate the need for theoretical studies. Heat conductivity measurements on the Ni- and Zn- doped versions of La$_2$CuO$_4$ are still incomplete and inconclusive, and hence have not been reported in this work. Heat transport experiments on Ni- and Ca-doped Sr$_2$CuO$_3$ were performed, with a motivation to investigate the role of disorder induced by impurities lying within the spin chains (Ni) and those lying outside the spin chains (Ca), on the heat transport in this system. In both the cases, the magnetic heat transport is observed to be strongly suppressed upon doping. Empirical analysis of the data seems to suggest that in the temperature regime of 100-300 K, the temperature dependence of the mean-free path of magnetic excitations for the Ni- and Ca-doped samples can be described by scattering with defects (Ni and Ca impurities) and phonons alone. However, surprisingly, a strong increase of phononic conductivity is observed perpendicular and parallel to the spin chains of the Ni-doped compounds compared to the pure compounds, whose explanation seems to lie in the existence of an additional dissipative scattering mechanism present in the pure compounds that is lifted upon doping, possibly due to the presence of a spin gap in the doped compounds. The effect of Ni on the Sr$_2$CuO$_3$ and SrCuO$_2$ was also investigated by studying the low energy regime of the spin excitation spectrum using other microscopic probes like nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS). Large single crystals of SrCu$_x$Ni$_{1-x}$O$_2$, with $x$ = 0.01 were grown and used in these experiments that observed the presence of a spin gap in the Ni-doped sample. Further theoretical investigations are however required to understand the possible role of the spin gap in influencing the spin-phonon scattering mechanism, and its relevance to the observed enhancement in phononic conduction. Although we observe that in the case of both 1D and 2D systems, a semi-classical kinetic model for heat transport along with empirical models of scattering processes describe the temperature dependence of the measured heat conductivity surprisingly well in the temperature regime up to 300 K and 800 K respectively, interpretations based on these analyses must be treated as only preliminary, and as a step towards understanding microscopically the scattering mechanisms involved in low-dimensional systems such as the ones discussed in this work. In the direction of exploratory research towards synthesis of novel low-dimensional materials, two cuprate compounds were synthesized in the form of single crystals using the floating zone method for the first time, namely, a five leg $S=tfrac{1}{2}$ antiferromagnetic spin ladder compound La$_8$Cu$_7$O$_{19}$ and an insulating delafossite LaCuO$_{2}$. A bulk 3D antiferromagnetic ordering is observed in La$_8$Cu$_7$O$_{19}$. Heat conductivity of La$_8$Cu$_7$O$_{19}$ is observed to be purely phononic and no contribution from magnetic excitations seem to exist, although the measurements indicates that there is a large anisotropy in heat transport. However, detailed diffraction experiments using x-rays and neutrons indicate that both the crystal and magnetic structures are complicated, and that the details of the structure prevent La$_8$Cu$_7$O$_{19}$ from being a perfect realization of a five-leg spin ladder.

Page generated in 0.0391 seconds