• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 57
  • 25
  • 18
  • 12
  • 6
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 370
  • 124
  • 79
  • 59
  • 58
  • 48
  • 46
  • 41
  • 38
  • 37
  • 35
  • 34
  • 33
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Guided waves in rectangular integrated magnetooptic devices / Lichtführung in rechtwinkligen integriert magnetooptischen Bauelementen

Lohmeyer, Manfred 08 September 2000 (has links)
By means of numerical simulations, the thesis aims at improvements in the understanding of light propagation in dielectric optical waveguides, with emphasis on nonreciprocal integrated magnetooptic devices. The results include: Proposal, implementation, and assessment of the WMM mode solver (Wave Matching Method) For waveguides with piecewise constant, rectangular permittivity profiles, the calculation of guided modes can be based on a local expansion into factorizing harmonic or exponential trial functions. A least squares expression for the mismatch in the continuity conditions at dielectric boundaries connects the fields on neighbouring regions. Minimization of this error allows to compute propagation constants and mode fields. The procedure has been implemented both for semivectorial and fully vectorial mode analysis. The piecewise defined trial fields are well suited to deal with field discontinuities or discontinuous derivatives. Numerical assessment shows excellent agreement with accepted previous results from other methods. The WMM turns out to be effective especially for structures described by only a few rectangles. It yields semianalytical mode field representations which are not restricted to a computational window. The fields are therefore perfectly suited for further processing, e.g. in the framework of various kinds of perturbation theory. Perturbational geometry tolerancing procedure Shifting the location of a dielectric boundary in the cross section of a waveguide with piecewise constant refractive index profile results in a permittivity perturbation in a layer along the discontinuity line. On the basis of these thin layer perturbations, perturbational expressions for the derivatives of the propagation constants with respect to geometry parameters are discussed. The approach provides direct access to wavelength dependences. Comparison with rigorously calculated data shows that the accuracy is sufficient to yield reasonable tolerance estimates for realistic integrated optical devices, at almost no extra computational cost. This perturbational approach allows to establish and to quantify guidelines for geometry tolerant devices. Numerical assessment of nonreciprocal wave propagation The coefficients of coupled mode theory for the magnetooptic permittivity contribution allow a classification of the influences of gyrotropy on guided wave propagation. For mirror symmetric waveguides, one identifies the dominant effects of TE phase shift, TM phase shift, and TE/TM polarization conversion, for polar, equatorial, and longitudinal magnetooptic configurations, respectively. Layered equatorial magnetooptic profiles lead to the well known phase shifters for TM modes. Analogously, sliced asymmetric polar magnetooptic profiles yield phase shifts for TE polarized modes. Simulations of rib waveguides with a magnetooptic domain lattice predict effects of the same order of magnitude as the phase shift for TM modes. Phase matching as a condition for complete polarization conversion in longitudinally magnetized waveguides can be realized with selected geometries of raised strip waveguides or embedded square waveguides. Based on coupled mode theory for hybrid fundamental modes, the analysis of the performance of such devices in an isolator setting includes birefringence, optical absorption, and an explicit perturbational evaluation of fabrication tolerances. A magnetooptic waveguide which is magnetized at a tilted angle may perform as a unidirectional polarization converter. The term specifies a device that converts TE to TM light for one direction of propagation, while it maintains the polarization for the opposite direction. A double layer setup with two magnetooptic films of opposite Faraday rotation is proposed and simulated. Designs of three waveguide couplers for applications as isolators/circulators and polarization splitters Three-guide couplers with multimode central waveguides allow for a remote coupling between the outer waveguides. While the power transfer is a truly multimode interference process, one can identify two different regimes where either two or three supermodes dominate the coupling behaviour. Numerical simulations show reasonable agreement between the main coupling features in planar an three dimensional devices. The specific form of the relevant modes suggests the design of integrated optical isolators and circulators. Both planar and three dimensional concepts are investigated. A radiatively coupled waveguide polarization splitter should be designed such that the entire dynamic range of the coupling length variations is exploited. This is easily possible with a three dimensional raised strip configuration. Combination of two magnetooptic unidirectional polarization converters and two radiatively coupled waveguide based polarization splitters leads to a concept for a polarization independent integrated four port circulator device. The simulation predicts a total length of about three millimeters.
292

Design and Fabrication of Suspended Waveguides With Photonic Grating Structures

Lombardo, David 29 June 2020 (has links)
No description available.
293

Novel Metamaterial Blueprints and Elements for Electromagnetic Applications

Odabasi, Hayrettin 08 August 2013 (has links)
No description available.
294

III-V semiconductor waveguides for application in nonlinear optics. / III-V halvledarvågledare för tillämpning i icke-linjär optik.

Charalampous, Andreas January 2022 (has links)
This thesis presents studies on III-V semiconductor waveguides with particular emphasis on second-order optical nonlinearity. The nonlinear processes that were investigated in this thesis are the Second Harmonic Generation (SHG) and the Spontaneous Parametric Down-Conversion (SPDC). The optical waveguides are made of InGaP and the waveguide design includes tapered parts for in- and out-coupling of guided light. Simulation of light propagation and modal solutions were done using Lumerical MODE, FDTD, and COMSOL Multiphysics software. The in- and outcoupling for the design of tapered waveguide that utilize the bulk non-linearity is 65 % when the waveguide is 145 nm thick and 2.60 μm wide having PMMA as top cladding. The SHG conversion efficiency for this configuration when the waveguide length is 2 μm long, is found 31 %/W. Three cases of the utilization of the surface non-linearity are proposed too. Preliminary steps toward the fabrication of the waveguide structures are also reported. The particular mesa-isolated substrates are fabricated having a side wall with a negative angle profile that result to a significant undercut. InGaP waveguides were transferred to the target substrates successfully and the process that was used can enable heterogeneous integration of InGaP and SOI platform. / Denna avhandling presenterar studier av III-V-halvledarvågledare med särskild tonvikt på andra ordningens optisk olinjäritet. De olinjära processer som undersöktes i denna avhandling är SHG och SPDC. De optiska vågledarna är gjorda av InGaP och vågledardesignen inkluderar avsmalnande delar för in- och utkoppling av styrt ljus. Simulering av ljusutbredning och modala lösningar gjordes med Lumerical MODE, FDTD och COMSOL Multiphysics mjukvara. In- och utkopplingen för konstruktionen av avsmalnande vågledare som utnyttjar bulkolinjäriteten är 65 % när vågledaren är 145 nm tjock och 2,60 μm bred med PMMA som toppbeklädnad. SHGkonverteringseffektiviteten för denna konfiguration när vågledarlängden är 2 μm lång, är 31 %/W. Tre fall av utnyttjande av ytolinjäriteten föreslås också. Preliminära steg mot tillverkningen av vågledarstrukturerna rapporteras också. De speciella mesa-isolerade substraten är tillverkade med en sidovägg med en negativ vinkelprofil som resulterar i en betydande underskärning. InGaP-vågledare överfördes till målsubstraten framgångsrikt och processen som användes kan möjliggöra heterogen integration av InGaP och SOI-plattformen.
295

MIMO Communication Capacity: Antenna Coupling and Precoding for Incoherent Detection

Bikhazi, Nicolas W. 17 November 2006 (has links) (PDF)
While the capacity of multiple-input multiple-output (MIMO) systems has been explored in considerable detail, virtually all literature on this topic ignores electromagnetic considerations. This dissertation explores electromagnetic effects on the capacity performance of these multi-antenna architectures. Specifically, it examines the impact of superdirectivity for compact antenna arrays, the effect of antenna mutual coupling, and MIMO performance of multi-mode optical fiber with non-linear detection. Superdirectivity can lead to abnormally large capacity bounds in a MIMO communication system, especially when the antennas are placed close together. Because superdirective behavior is difficult to achieve in practice, this work formulates an approach for limiting the impact of superdirectivity by introducing finite ohmic loss into the capacity expressions. Results show that even a small amount of ohmic loss significantly affects the achievable system capacity and suppresses superdirective solutions. This formulation allows a more detailed examination of the capacity of MIMO systems for compact arrays. For channels which do not vary in time, placing antennas closer together generally reduces the system capacity. However, recent work has demonstrated that for a MIMO system operating in a fast fading environment where the transmitter and receiver know the channel covariance information, the capacity increases as antennas are placed near each other due to an increase in spatial correlation. Analysis of this behavior illustrates that when these capacity gains (due to closely spaced antennas) are observed the radiated power is also increased. Constraining the radiated power leads to superdirective solutions in which the ohmic loss constraint developed must be used to properly determine the capacity behavior of this system. Application of this constraint then leads to an optimum antenna spacing in contrast to the findings of previous research which indicate that antennas should be as close together as possible. Additionally, this section provides an analysis regarding the number of spatial modes that can be used for various system configurations. Recent research has shown that it is possible for MIMO communication techniques to be used with multimode optical fibers to increase the available distance-bandwidth. However, implementation of traditional MIMO schemes requires the use of coherent optical detection which can lead to high system complexity and cost. This dissertation proposes a multimode fiber MIMO system architecture which allows simultaneous transmission of unique streams to different users on the same fiber while using incoherent detection with amplitude and phase modulation at the transmitter. The resulting capacity scales nearly linearly with the number of transmitters and receivers. Because the architecture requires channel state information at the transmitter, a training scheme appropriate for use with optical intensity detection is also discussed.
296

Tailoring the Spectral Transmission of Optofluidic Waveguides

Phillips, Brian S. 09 August 2011 (has links) (PDF)
Optofluidics is a relatively new and exciting field that includes the integration of optical waveguides into microfluidic platforms. The purpose of this field of study is to miniaturize previously developed optical systems used for biological and chemical analysis with the end goal of placing bench-top optics into microscopic packages. Mundane optical alignment and sample manipulation procedures would then be intrinsic to the platform and allow measurements to be completed quickly and with reduced human interaction. Biosensors based on AntiResonant Reflecting Optical Waveguides (ARROWs) consist of hollow-core waveguides used for fluid sample manipulation and analysis, as well as solid-core waveguides used in interfacing external components located at the chip edges. Hollow-core ARROWs are particularly useful for their ability to provide specifically tailored analyte volumes that are easily configurable depending upon the target experiment. Adaptations of standard planar microfabrication methods allow for complex integrated ARROW designs. Integrated spectral filtering with high rejection can be implemented on-chip, removing the need for additional off-chip components and increasing device sensitivity. Additional techniques to increase device sensitivity and utility, such as hybrid ARROW platforms and optical manipulation of samples, are also explored.
297

Finite Element Method Modeling Of Advanced Electronic Devices

Chen, Yupeng 01 January 2006 (has links)
In this dissertation, we use finite element method together with other numerical techniques to study advanced electron devices. We study the radiation properties in electron waveguide structure with multi-step discontinuities and soft wall lateral confinement. Radiation mechanism and conditions are examined by numerical simulation of dispersion relations and transport properties. The study of geometry variations shows its significant impact on the radiation intensity and direction. In particular, the periodic corrugation structure exhibits strong directional radiation. This interesting feature may be useful to design a nano-scale transmitter, a communication device for future nano-scale system. Non-quasi-static effects in AC characteristics of carbon nanotube field-effect transistors are examined by solving a full time-dependent, open-boundary Schrödinger equation. The non-quasi-static characteristics, such as the finite channel charging time, and the dependence of small signal transconductance and gate capacitance on the frequency, are explored. The validity of the widely used quasi-static approximation is examined. The results show that the quasi-static approximation overestimates the transconductance and gate capacitance at high frequencies, but gives a more accurate value for the intrinsic cut-off frequency over a wide range of bias conditions. The influence of metal interconnect resistance on the performance of vertical and lateral power MOSFETs is studied. Vertical MOSFETs in a D2PAK and DirectFET package, and lateral MOSFETs in power IC and flip chip are investigated as the case studies. The impact of various layout patterns and material properties on RDS(on) will provide useful guidelines for practical vertical and lateral power MOSFETs design.
298

Light-matter Interactions Of Plasmonic Nanostructures

Reed, Jennifer 01 January 2013 (has links)
Light interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective oscillation of the conduction electrons in the metal. Since the conduction electrons can be thought of as harmonic oscillators, they are quantized in a similar fashion. Just as a photon is a quantum of oscillations of an electromagnetic field, the plasmon is a quantum of electron oscillations of a metal. There are three types of plasmons: 1. Bulk plasmons, also called volume plasmons, are longitudinal density fluctuations which propagate through a bulk metal with an eigenfrequency of �� called the plasma frequency. 2. Localized surface plasmons are non-propagating excitations of the conduction electrons of a metallic nanoparticle coupled to an electromagnetic field. 3. Surface plasmon polaritons are evanescent, dispersive propagating electromagnetic waves formed by a coupled state between a photon and the excitation of the surface plasmons. They propagate along the surface of a metal-dielectric interface with a broad spectrum of eigenfrequencies from � = 0 to � = ��⁄√2. iv Plasmonics is a subfield of photonics which focuses on the study of surface plasmons and the optical properties that result from light interacting with metal films and nanostructures on the deep subwavelength scale. In this thesis, plasmonic nanostructures are investigated for optical waveguides and other nanophotonic applications through computational simulations primarily base on electrodynamic theory. The theory was formulated by several key figures and established by James Clerk Maxwell after he published a set of relations which describe all classical electromagnetic phenomena, known as Maxwell’s equations. Using methods based on Maxwell’s equations, the optical properties of metallic nanostructures utilizing surface plasmons is explored. In Chapter 3, light propagation of bright and dark modes of a partially and fully illuminated silver nanorod is investigated for waveguide applications. Then, the origin of the Fano resonance line shape in the scattering spectra of a silver nanorod is investigated. Next, in Chapter 4, the reflection and transmission of a multilayer silver film is simulated to observe the effects of varying the dielectric media between the layers on light propagation. Building on the multilayer film work, metal-insulator-metal waveguides are explored by perforating holes in the bottom layer of a two layer a silver film to investigate the limits of subwavelength light trapping, confinement, and propagation. Lastly, in Chapter 5, the effect of surface plasmons on the propagation direction of electromagnetic wave around a spherical silver nanoparticle which shows an effective negative index of refraction is examined. In addition, light manipulation using a film of silver prisms with an effective negative index of refraction is also investigated. The silver prisms demonstrate v polarization selective propagation for waveguide and optical filter applications. These studies provide insight into plasmonic mechanisms utilized to overcome the diffraction limit of light. Through better understanding of how to manipulating light with plasmonic nanostructures, further advancements in nanophotonic technologies for applications such as extremely subwavelength waveguides, sensitive optical detection, optical filters, polarizers, beam splitters, optical data storage devices, high speed data transmission, and integrated subwavelength photonic circuits can be achieved.
299

PARALLEL FABRICATION OF PHOTONIC CRYSTALS USING INTERFERENCE LITHOGRAPHY

CHINCHOLI, ASHWIN 13 July 2005 (has links)
No description available.
300

Optical Properties of Organic Films, Multilayers and Plasmonic Metal-organic Waveguides Fabricated by Organic Molecular Beam Deposition

Wickremasinghe, Niranjala D. 12 October 2015 (has links)
No description available.

Page generated in 0.0257 seconds