Spelling suggestions: "subject:"algèbre""
111 |
Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées.Dahamna, Khaled 23 September 2011 (has links) (PDF)
Dans cette thèse, on s'intéresse en premier aux problèmes sous-riemanniens sur un groupe de Lie nilpotent d'ordre 2. Dans un premier temps, on réalise la classification complète des algèbres de Lie sous-riemanniennes (SR-algèbres de Lie) nilpotentes d'ordre 2 de dimension n compris entre 3 et 7, et celles de dimension arbitraire n telle que l'algèbre dérivée est de dimension une.De plus, nous avons distingué les SR-algèbres de Lie de contact et de quasi-contact et nous avons calculé, en dimension 5, le groupe des SR-symétries infinitésimales. Une fois cette classification réalisée, on étudie les géodésiques sous-riemanniennes associées aux SR-algèbres de Lie nilpotentes d'ordre 2 obtenues dans notre classification. Nous avons étudié l'intégrabilité des équations géodésiques adjointes et donné les contrôles optimaux ainsi que les trajectoires optimales dans chacun des cas. Dans une seconde partie de la thèse, on étudie les géodésiques sous-riemanniennes pour un groupe de Lie sous-riemannien (G;D;B) où G = SO(4) ou G = SO(2; 2) et D est de codimension2 (donnant des espaces SR-homogènes de contact). Nous avons donné un modèle canonique de ces espaces et ensuite montré que les systèmes adjoints de Lie-Poisson associés au modèle étaient toujours intégrables au sens de Liouville. De plus, nous montrons que le système de Lie-Poisson est soit un système linéaire qui est super-intégrable en fonctions trigonométriques du temps ou constantes ; soit un système non linéaire intégrable au sens de Liouville et dont les solutions sont exprimables à l'aide de la fonction elliptique de Weierstrass.
|
112 |
Titre : Inégalités de martingales non commutatives et ApplicationsPerrin, Mathilde 05 July 2011 (has links) (PDF)
Cette thèse présente quelques résultats de la théorie des probabilités non commutatives, et traite en particulier des inégalités de martingales dans des algèbres de von Neumann et de leurs espaces de Hardy associés. La première partie démontre un analogue non commutatif de la décomposition de Davis faisant intervenir la fonction carrée. Les arguments classiques de temps d'arrêt ne sont plus valides dans ce cadre, et la preuve se base sur une approche duale. Le deuxième résultat important de cette partie détermine ainsi le dual de l'espace de Hardy conditionnel h_1(M). Ces résultats sont ensuite étendus au cas 1
|
113 |
Sur les opérations de tores algébriques de complexité un dans les variétés affines / On affine varieties with an algebraic torus action of complexity oneLanglois, Kevin 24 September 2013 (has links)
Cette thèse est consacrée aux propriétés géométriques des opérations de tores algébriques dans les variétés affines. Elle est issue de trois prépublications qui correspondent aux points (1), (2), (3) ci-après. Soit X une variété affine munie d’une opération d’un tore algébrique T. Nous appelons complexité la codimension de l’orbite générale de T dans X. Sous l’hypothèse de normalité et lorsque le corps de base est algébriquement clos de caractéristique 0, la variété X admet une description combinatoire en termes de géométrie convexe. Cette description, obtenue en 2006 par Altmann et Hausen, généralise celle classique des variétes toriques. Notre but consiste à étudier des problèmes nouveaux concernant les propriétés algébriques et géométriques de X lorsque l’operation de T dans X est de complexité 1. (1) Dans la première partie, un résultat donne une manière explicite de déterminer la clôture intégrale de toute variété affine définie sur un corps algébriquement clos de caractérisque 0 munie d’une opération de T de complexité 1 en termes de la description combinatoire d’Altmann-Hausen. Comme application, nous donnons une classification complète des idéaux intégralement clos homogènes de l’algèbre des fonctions régulières de X et généralisons un théorème de Reid-Roberts-Vitulli sur la description de certains idéaux normaux de l’algèbre des polynômes à plusieurs variables. (2) Les calculs de la première partie suggèrent une démonstration de la validité de la présentation d’Altmann-Hausen sur un corps quelconque dans le cas de complexité 1. Ce qui est fait dans la deuxième partie. Dans la situation non déployée, la descente galoisienne d’une variété affine normale munie d’une opération d’un tore algébrique de complexité 1 est décrite par un nouvel objet combinatoire que nous appelons diviseur polyédral Galois stable. (3) Dans la troisième partie, lorsque que le corps de base est parfait, nous classifions toutes les opérations du groupe additif dans X normalisées par l’action de T de complexité 1. Cette classification généralise des travaux classiques de Flenner et Zaidenberg dans le cas des surfaces et de Liendo dans le cas où le corps ambiant est algébriquement clos de caractéristique 0. / This thesis is devoted to the study of geometric properties of affine algebraic varieties endowed with an action of an algebraic torus. It comes from three preprints which correspond to the indicated points (1), (2), (3). Let X be an affine variety equipped with an action of the algebraic torus T. The complexity of the T-action on X is the codimension of the general T-orbit. Under the assumption of normality and when the ground field is algebraically closed of characteristic 0, the variety X admits a combinatorial description in terms of convex geometry. This description obtained by Altmann and Hausen in the year 2006 generalizes the classical one for toric varieties. Our purpose is to investigate new problems on the algebraic and geometric properties of the variety X when the T-action on X is of complexity 1. (1) In the first part, a result gives an effective method to determine the integral closure of any affine variety defined over an algebraically field of characteristic 0 with a T-action of complexity 1 in terms of the combinatorial description of Altmann-Hausen. As an application, we provide an entire classification of the homogeneous integrally closed ideals of the algebra of regular functions on X and generalize the Reid-Roberts-Vitulli's theorem on the description of certain normal ideals of the polynomial algebra. (2) The calculations of the first part suggest a proof of the validity of the presentation of Altmann-Hausen in the case of complexity 1 over an arbitrary ground field. This is done in the second part of this thesis. In the non-split situation, the Galois descent of normal affine varieties with a T-action of complexity 1 is described by a new combinatorial object which we call a Galois invariant polyhedral divisor. (3) In the third part, when the base field is perfect, we classify all the actions of the additive group on X normalized by the T-action of complexity 1. This classification generalizes classical works of Flenner and Zaidenberg in the surface case and of Liendo when the base field is algebraically closed of characteristic 0.
|
114 |
Le cône diamant / Diamond coneKhlifi, Olfa 18 February 2010 (has links)
Le cône diamant a été introduit par N. J. Wildberger pour l'algèbre de Lie sl(n;R). C'est une présentation combinatoire d'une base de l'espace C[N] des fonctions polynomiales sur le facteur nilpotent N de la décompositon d'Iwasawa de SL(n;R), qui respecte la stratification naturelle de ce N-module indécomposable. Cette approche combinatoire peut se réaliser à l'aide de tableaux de Young, qui indexent une telle base. On réalise l'algèbre C[N] comme un quotient, appelé algèbre de forme réduite, de l'algèbre de forme S_ de SL(n;R), on en déduit une base indexée par des tableaux de Young semi standards particuliers, dits tableaux quasi standards. Dans cette thèse cette construction est étendue aux cas des algèbres semi simples de rang 2, puis des algèbres sp(2n), enfin aux super algèbres de Lie sl(m; 1). Dans chaque cas, on définit les tableaux quasi standards, et on montre qu'ils forment une bonne base de l'algèbre de forme réduite, soit directement, soit en utilisant une variante du jeu de taquin de Schützenberger. / The diamond cone was introduced by N. J. Wildberger for the Lie algebra sl(n;R). It is a combinatoric presentation for the space C[N] of polynomials functions on the nilpotent factor N in the Iwasawa decomposition of SL(n;R). This presentation describes the natural layering of this indecomposable N-module. This basis can be indexeded by using some semi standard Young tableaux. We realize the algebra C[N] as a quotient of the shape algebra S_ for SL(n;R). Let us call reduced shape algebra this quotient. It is possible to select a family of semi standard Young tableaux, the quasi standard tableaux, in such a manner to get a basis for the reduced shape algebra. In the present thesis, this construction is extended to the case of rank 2 semi simple Lie algebras, then to the cas of the Lie algebras sp(2n), finally, to the case of the super simple Lie algebra sl(m; 1). In each case, we define the quasi standard Young tableaux, and show they define a good basis for the reduced shape algebra, either directly, or using an adapted version of the jeu de taquin defined by Schützenberger.
|
115 |
Périodes des arrangements d'hyperplans et coproduit motivique. / Periods of hyperplane arrangements and motivic coproductDupont, Clement 26 September 2014 (has links)
Dans cette thèse, on s'intéresse à des questions relatives aux arrangements d'hyperplans du point de vue des périodes motiviques. Suivant un programme initié par Beilinson et al., on étudie une famille de périodes appelée polylogarithmes d'Aomoto et leurs variantes motiviques, vues comme éléments de l'algèbre de Hopf fondamentale de la catégorie des structures de Hodge-Tate mixtes, ou de la catégorie des motifs de Tate mixtes sur un corps de nombres. On commence par calculer le coproduit motivique d'une famille de telles périodes, appelées polylogarithmes de dissection génériques, en montrant qu'il est régi par une formule combinatoire. Ce résultat généralise un théorème de Goncharov sur les intégrales itérées. Puis, on introduit les bi-arrangements d'hyperplans, objets géométriques et combinatoires qui généralisent les arrangements d'hyperplans classiques. Le calcul de groupes de cohomologie relative associés aux bi-arrangements d'hyperplans est une étape cruciale dans la compréhension du coproduit motivique des polylogarithmes d'Aomoto. On définit des outils cohomologiques et combinatoires pour calculer ces groupes de cohomologie, qui éclairent dans un cadre global des objets classiques tels que l'algèbre d'Orlik-Solomon. / In this thesis, we deal with some questions about hyperplane arrangements from the viewpoint of motivic periods. Following a program initiated by Beilinson et al., we study a family of periods called Aomoto polylogarithms and their motivic variants, viewed as elements of the fundamental Hopf algebra of the category of mixed Hodge-Tate structures, or the category of mixed Tate motives over a number field. We start by computing the motivic coproduct of a family of such periods, called generic dissection polylogarithms, showing that it is governed by a combinatorial formula. This result generalizes a theorem of Goncharov on iterated integrals. Then, we introduce bi-arrangements of hyperplanes, which are geometric and combinatorial objects which generalize classical hyperplane arrangements. The computation of relative cohomology groups associated to bi-arrangements of hyperplanes is a crucial step in the understanding of the motivic coproduct of Aomoto polylogarithms. We define cohomological and combinatorial tools to compute these cohomology groups, which recast classical objects such as the Orlik-Solomon algebra in a global setting.
|
116 |
Classification des algèbres de Lie sous-riemanniennes et intégrabilité des équations géodésiques associées. / Classification of sub-Riemannian Lie algebras and integrability of associated geodesics equationsDahamna, Khaled 23 September 2011 (has links)
Dans cette thèse, on s'intéresse en premier aux problèmes sous-riemanniens sur un groupe de Lie nilpotent d'ordre 2. Dans un premier temps, on réalise la classification complète des algèbres de Lie sous-riemanniennes (SR-algèbres de Lie) nilpotentes d'ordre 2 de dimension n compris entre 3 et 7, et celles de dimension arbitraire n telle que l'algèbre dérivée est de dimension une. De plus, nous avons distingué les SR-algèbres de Lie de contact et de quasi-contact et nous avons calculé, en dimension 5, le groupe des SR-symétries infinitésimales. Une fois cette classification réalisée, on étudie les géodésiques sous-riemanniennes associées aux SR-algèbres de Lie nilpotentes d'ordre 2 obtenues dans notre classification. Nous avons étudié l'intégrabilité des équations géodésiques adjointes et donné les contrôles optimaux ainsi que les trajectoires optimales dans chacun des cas. Dans une seconde partie de la thèse, on étudie les géodésiques sous-riemanniennes pour un groupe de Lie sous-riemannien (G;D;B) où G = SO(4) ou G = SO(2; 2) et D est de codimension 2 (donnant des espaces SR-homogènes de contact). Nous avons donné un modèle canonique de ces espaces et ensuite montré que les systèmes adjoints de Lie-Poisson associés au modèle étaient toujours intégrables au sens de Liouville. De plus, nous montrons que le système de Lie-Poisson est soit un système linéaire qui est super-intégrable en fonctions trigonométriques du temps ou constantes ; soit un système non linéaire intégrable au sens de Liouville et dont les solutions sont exprimables à l'aide de la fonction elliptique de Weierstrass. / In this thesis, we are interested first in the sub-Riemannian problems on 2-step nilpotent Lie groups. We start by obtaining a complete classification of 2-step nilpotent sub-Riemannian Lie algebras (SR-Lie algebras) of dimension n between 3 and 7, and those of arbitrary dimension n such that the derivated algebra is of dimension one. In addition, we characterize the contact and quasi contact SR-Lie algebras and we calculate, in dimension 5, the group of SR-infinitesimal symmetries. Having presented that classification, we study the sub-Riemannian geodesics associated with the 2 step nilpotent SR-Lie algebras obtained in our classification. We study the integrability of the adjoint geodesic equations and we give the optimal controls and optimal trajectories in each case. In the second part of the thesis, we study the sub-Riemannian geodesics for a sub-RiemannianLie group (G;D;B) where G = SO(4) or G = SO(2; 2) and D is of codimension 2 (giving contactSR-homogeneous spaces). We give canonical models of these spaces and then show that the Lie-Poisson adjoint systems associated with the models are always integrable in the Liouville sense. More over, we show that the Lie-Poisson system is either a linear system which is super-integrable with the help of trigonometric functions of time (or constant ones) or a non-linear system which is integrable in the Liouville sense and whose solutions can be expressed using the Weierstrass elliptic function.
|
117 |
Arithmetic and hyperbolic structures in string theory / Structures arithmétiques et hyperboliques en théorie des cordesPersson, Daniel 12 June 2009 (has links)
Résumé anglais: <p><p>This thesis consists of an introductory text followed by two separate parts which may be read independently of each other. In Part I we analyze certain hyperbolic structures arising when studying gravity in the vicinity of spacelike singularities (the BKL-limit). In this limit, spatial points decouple and the dynamics exhibits ultralocal behaviour which may be mapped to an auxiliary problem given in terms of a (possibly chaotic) hyperbolic billiard. In all supergravities arising as low-energy limits of string theory or M-theory, the billiard dynamics takes place within the fundamental Weyl chambers of certain hyperbolic Kac-Moody algebras, suggesting that these algebras generate hidden infinite-dimensional symmetries of gravity. We investigate the modification of the billiard dynamics when the original gravitational theory is formulated on a compact spatial manifold of arbitrary topology, revealing fascinating mathematical structures known as galleries. We further use the conjectured hyperbolic symmetry E10 to generate and classify certain cosmological (S-brane) solutions in eleven-dimensional supergravity. Finally, we show in detail that eleven-dimensional supergravity and massive type IIA supergravity are dynamically unified within the framework of a geodesic sigma model for a particle moving on the infinite-dimensional coset space E10/K(E10). <p><p>Part II of the thesis is devoted to a study of how (U-)dualities in string theory provide powerful constraints on perturbative and non-perturbative quantum corrections. These dualities are typically given by certain arithmetic groups G(Z) which are conjectured to be preserved in the effective action. The exact couplings are given by moduli-dependent functions which are manifestly invariant under G(Z), known as automorphic forms. We discuss in detail various methods of constructing automorphic forms, with particular emphasis on a special class of functions known as (non-holomorphic) Eisenstein series. We provide detailed examples for the physically relevant cases of SL(2,Z) and SL(3,Z), for which we construct their respective Eisenstein series and compute their (non-abelian) Fourier expansions. We also discuss the possibility that certain generalized Eisenstein series, which are covariant under the maximal compact subgroup K(G), could play a role in determining the exact effective action for toroidally compactified higher derivative corrections. Finally, we propose that in the case of rigid Calabi-Yau compactifications in type IIA string theory, the exact universal hypermultiplet moduli space exhibits a quantum duality group given by the emph{Picard modular group} SU(2,1;Z[i]). To verify this proposal we construct an SU(2,1;Z[i])-invariant Eisenstein series, and we present preliminary results for its Fourier expansion which reveals the expected contributions from D2-brane and NS5-brane instantons. <p><p>/<p><p>Résumé francais: <p><p>Cette thèse est composée d'une introduction suivie de deux parties qui peuvent être lues indépendemment. Dans la première partie, nous analysons des structures hyperboliques apparaissant dans l'étude de la gravité au voisinage d'une singularité de type espace (la limite BKL). Dans cette limite, les points spatiaux se découplent et la dynamique suit un comportement ultralocal qui peut être reformulé en termes d'un billiard hyperbolique (qui peut être chaotique). Dans toutes les supergravités qui sont des limites de basse énergie de théories de cordes ou de la théorie M, la dynamique du billiard prend place à l'intérieur des chambres de Weyl fondamentales de certaines algèbres de Kac-Moody hyperboliques, ce qui suggère que ces algèbres correspondent à des symétries cachées de dimension infinie de la gravité. Nous examinons comment la dynamique du billard est modifiée quand la théorie de gravité originale est formulée sur une variété spatiale compacte de topologie arbitraire, révélant ainsi de fascinantes structures mathématiques appelées galleries. De plus, dans le cadre de la supergravité à onze dimensions, nous utilisons la symétrie hyperbolique conjecturée E10 pour engendrer et classifier certaines solutions cosmologiques (S-branes). Finalement, nous montrons en détail que la supergravité à onze dimensions et la supergravité de type IIA massive sont dynamiquement unifiées dans le contexte d'un modèle sigma géodesique pour une particule se déplaçant sur l'espace quotient de dimension infinie E10/K(E10).<p><p><p>La deuxième partie de cette thèse est consacrée à étudier comment les dualités U en théorie des cordes fournissent des contraintes puissantes sur les corrections quantiques perturbatives et non perturbatives. Ces dualités sont typiquement données par des groupes arithmétiques G(Z) dont il est conjecturé qu'ils préservent l'action effective. Les couplages exacts sont donnés par des fonctions des moduli qui sont manifestement invariantes sous G(Z), et qu'on appelle des formes automorphiques. Nous discutons en détail différentes méthodes de construction de ces formes automorphiques, en insistant particulièrement sur une classe spéciale de fonctions appelées séries d'Eisenstein (non holomorphiques). Nous présentons comme exemples les cas de SL(2,Z) et SL(3,Z), qui sont physiquement pertinents. Nous construisons les séries d'Eisenstein correspondantes et leurs expansions de Fourier (non abéliennes). Nous discutons également la possibilité que certaines séries d'Eisenstein généralisées, qui sont covariantes sous le sous-groupe compact maximal, pourraient jouer un rôle dans la détermination des actions effectives exactes pour les théories incluant des corrections de dérivées supérieures compactifiées sur des tores.<p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
118 |
Analyse de ressources pour les systèmes concurrents dynamiques / Resource analysis for concurrent and dynamic systemsDeharbe, Aurélien 21 September 2016 (has links)
Durant leur exécution, les systèmes concurrents manipulent diverses ressources dynamiques en nombre : fichiers, liens de communication, mémoire, etc. Les propriétés comportementales de ces systèmes sont alors étroitement liées aux manipulations de ces ressources qu'ils allouent, utilisent, puis détruisent. Nous proposons dans cette thèse une analyse quantitative, effectuée de manière statique, de ce type de ressources pour les systèmes concurrents et dynamiques. Les systèmes que l'on considère peuvent être des programmes concurrents et parallèles (le langage Piccolo développé dans le cadre de ce travail en est un exemple), ou encore la modélisation de systèmes plus généraux. Pour atteindre cette généricité, notre travail repose fortement sur les algèbres de processus, et plus particulièrement sur le pi-calcul pour lequel nous proposons une variante sémantique ainsi que plusieurs abstractions adaptées à l'observation des ressources en particulier. Le socle théorique de notre analyse est présenté sous la forme d'un nouveau type d'automates nominaux : les nu-automates. Ils permettent de raisonner spécifiquement sur les ressources dynamiques, tant pour caractériser les notions quantitatives de consommation en ressources que pour de futures analyses qualitatives. À partir de ce formalisme nous réalisons ensuite un ensemble d'algorithmes ayant pour but de mettre en oeuvre les résultats introduits sur les nu-automates. Enfin, nous proposons plusieurs expérimentations, sur la base d'exemples classiques du pi-calcul, de notre prototype d'analyse de ressources. / Concurrent activities involve undoubtedly many dynamic resources manupulations: files, communication links, memory, etc. Then, the behavioral properties of such systems are closely linked to their usage of those resources that they allocate, use, and finally destroy. In this work, we develop a quantitative static analysis of concurrent and parallel systems for this kind of resources. Systems that we consider can be concurrent and parallel programs (written for example in the Piccolo programming language which was developped during this thesis), or models descriptions of more general systems. To be generic, our work lies on process algebra, specifically pi-calculs for which we propose a variant semantics in addition to several resources abstractions strategies. The underlying theory is developped as a nominal automata framework (namely the nu-automata). They allow one to reason about dynamic resources usage to charaterize both quantitative and qualitative properties. From this formalism we establish an algorithmic framework that enforce the qualitative results defined on nu-automata. Finally, our resources abstractions and resources analysis are tested experimentally on classical pi-calculus examples using our prototype analysis tool.
|
119 |
Symétries et singularités des équations aux variables discrètesTremblay, Sébastien January 2001 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
120 |
Phénoménologie des neutrinos dans une théorie de matrices aléatoiresGiasson, Nicolas 08 February 2019 (has links)
Le mécanisme permettant d’expliquer l’origine de la masse des neutrinos demeure, encore aujourd’hui, un mystère complet dont la résolution est susceptible de modifier considérablement la structure du modèle standard en physique des particules élémentaires. Dans la littérature, plusieurs candidats potentiels sont donc proposés afin de combler cette lacune et, ainsi, faire la lumière sur certaines des propriétés les plus étranges des neutrinos. Parmi ceux-ci, les mécanismes seesaw de type I, II et III constituent sans doute les approches les plus attrayantes et les plus étudiées. Cependant, bien que ces mécanismes offrent un cadre de travail simple et élégant pour expliquer la faible masse des neutrinos (l’ordre de grandeur), ceux-ci n’offrent aucune prédiction sur les paramètres fondamentaux caractérisant le phénomène d’oscillation, soit les angles de mélange, les phases complexes et la hiérarchie des masses. Afin d’obtenir des prédictions concrètes sur la phénoménologie des neutrinos, certaines hypothèses de travail supplémentaires doivent donc être formulées pour contraindre la structure des matrices de masse obtenue. Dans ce travail, l’hypothèse anarchique propre au secteur des neutrinos est adoptée. Les matrices de masse générées par les trois mécanismes seesaw dans la limite des basses énergies sont traitées dans le contexte d’une théorie de matrices aléatoires, ce qui permet de définir et d’analyser de nouveaux ensembles matriciels aléatoires appelés ensembles seesaw. Un cadre théorique unifié est donc présenté pour la construction de ces ensembles. Grâce au formalisme élaboré, qui repose sur les outils traditionnels relevant de la théorie des matrices aléatoires, les densités de probabilité jointes caractérisant ces ensembles sont obtenues de façon analytique. Une étude détaillée de leurs propriétés est alors réalisée, ce qui permet d’extraire les tendances dominantes propres à ces mécanismes de masse et d’analyser leurs conséquences pour le secteur des neutrinos du modèle standard étendu. En ce qui concerne le spectre de masse, les résultats obtenus indiquent que les mécanismes seesaw de type I et de type III sont plus adéquats pour reproduire les observations expérimentales. De plus, une forte préférence pour la différence de masses associée à la hiérarchie normale est observée. En contrepartie, il est également démontré que pour une différence de masses donnée entre les trois générations, toutes les permutations des masses sont équiprobables, ce qui rend hors de portée toute prédiction concernant la hiérarchie du spectre (normale ou inverse) sous l’hypothèse anarchique. En ce qui concerne les variables du groupe de symétrie (les angles de mélange et les phases complexes), on constate, d’une part, que la notion de mélange quasi-maximal est naturellement favorisée et, d’autre part, que la matrice PMNS peut être décrite comme une matrice unitaire générique tirée au hasard d’un ensemble matriciel caractérisé par la mesure de Haar du groupe de Lie correspondant. Par ailleurs, il est également démontré que ces conclusions sont indépendantes du mécanisme de masse considéré. / The neutrino mass generation mechanism remains, to this day, a complete mystery which is likely to play an important role in understanding the foundations of the Standard Model of particle physics. In an effort to fill this gap and, ultimately, shed some light on some of the most intriguing properties of neutrinos, many theoretical models are proposed in the literature. Among the many candidates, the type I, type II and type III seesaw mechanisms may very well be the most attractive and the most studied propositions. However, despite the fact that these mechanisms provide a simple and elegant framework for explaining the smallness of neutrino masses (the order of magnitude), no prediction can be made on the fundamental parameters governing neutrino oscillations (the mixing angles, the CP-violating phases and the mass differences). Thus, to obtain concrete results regarding neutrino phenomenology, additional working assumptions must be made in order to constrain the structure of the corresponding mass matrices. In this work, the anarchy hypothesis relevant to the neutrino sector is investigated. The mass matrices generated by the three seesaw mechanisms in the low-energy limit are studied within the framework of random matrix theory, which leads to the development and the analysis of the seesaw ensembles. A unified and precise theoretical formalism, based on the usual tools of random matrix theory, is presented for the construction of these new random matrix ensembles. Using this formalism, the joint probability density functions characterizing these ensembles are obtained analytically, thus paving the way for a detailed study of their properties. This study is then carried out, revealing the underlying trends in these ensembles and, thereby, offering a thorough analysis of their consequences for the neutrino sector of the seesaw-extended Standard Model. Regarding the mass spectrum, it is found that the type I and type III seesaw mechanisms are better suited to accommodate experimental data. Moreover, the results indicate a strong preference for the mass splitting associated to normal hierarchy. However, since all permutations of the masses are found to be equally probable for a particular mass splitting between the three generations, predictions concerning the hierarchy of the mass spectrum (normal or inverted) remains out of reach in the framework of anarchy. Regarding the group variables (the mixing angles an CP-violating phases), it is found that near-maximal mixing is naturally favored by these ensembles and, that the PMNS matrix can be described as a generic unitary matrix drawn at random from a matrix ensemble characterized by the Haar measure of the corresponding Lie group. Furthermore, these conclusions are found to be independent of the mass mechanism considered.
|
Page generated in 0.056 seconds