Spelling suggestions: "subject:"algèbre""
91 |
"Abstract" homomorphisms of split Kac-Moody groupsCaprace, Pierre-Emmanuel 20 December 2005 (has links)
Cette thèse est consacrée à une classe de groupes, appelés groupes de Kac-Moody, qui généralise de façon naturelle les groupes de Lie semi-simples, ou plus précisément, les groupes algébriques réductifs, dans un contexte infini-dimensionnel. On s'intéresse plus particulièrement au problème d'isomorphismes pour ces groupes, en vue d'obtenir un analogue infini-dimensionnel de la célèbre théorie des homomorphismes 'abstraits' de groupes algébriques simples, due à Armand Borel et Jacques Tits.<p><p>Le problème d'isomorphismes qu'on étudie s'avère être un cas particulier d'un problème plus général, qui consiste à caractériser les homomorphismes de groupes algébriques vers les groupes de Kac-Moody, dont l'image est bornée. Ce problème peut à son tour s'énoncer comme un problème de rigidité pour les actions de groupes algébriques sur les immeubles, via l'action naturelle d'un groupe de Kac-Moody sur une paire d'immeubles jumelés. Les résultats partiels, relatifs à ce problème de rigidité, que nous obtenons, nous permettent d'apporter une solution complète au problème d'isomorphismes pour les groupes de Kac-Moody déployés.<p>En particulier, on obtient un résultat de dévissage pour les automorphismes de ces objets. Celui-ci fournit à son tour une description complète de la structure du groupe d'automorphismes d'un groupe de Kac-Moody déployé sur un corps de caractéristique~$0$.<p><p>Nos arguments permettent également de traiter de façon analogue certaines formes anisotropes de groupes de Kac-Moody complexes, appelées formes unitaires. On montre en particulier que la topologie Hausdorff naturelle que portent ces formes est un invariant de leur structure de groupe abstrait. Ceci généralise un résultat bien connu de H. Freudenthal pour les groupes de Lie compacts.<p><p>Enfin, l'on s'intéresse aux homomorphismes de groupes de Kac-Moody à image fini-dimensionnelle, et l'on démontre la non-existence de tels homomorphismes à noyau central, lorsque le domaine est un groupe de Kac-Moody de type indéfini sur un corps infini. Ceci réduit un problème ouvert, dit problème de linéarité pour les groupes de Kac-Moody, au cas de corps de base finis. / Doctorat en sciences, Spécialisation mathématiques / info:eu-repo/semantics/nonPublished
|
92 |
Règles de fusion pour certains modules remarquables de l’algèbre quantique Uqsl2Robitaille-Grou, Philippe 08 1900 (has links)
Ce mémoire porte sur la théorie des représentations de l’algèbre quantique Uqsl2 en q une racine de l’unité. Il étudie plus précisément certains modules de l’algèbre LUqsl2, l’extension de Lusztig de Uqsl2, lorsque q² est une p-racine primitive de l’unité pour p un entier supérieur ou égal à 2. Quatre familles de LUqsl2-modules de dimension finie, qualifiés de modules remarquables, sont identifiées : les modules simples et projectifs ainsi que les modules et comodules de Weyl. L’algèbre Uqsl2 possède une structure d’algèbre de Hopf ; cette dernière peut être étendue sur LUqsl2. L’antipode découlant de cette structure permet de définir la notion de dualité de LUqsl2-modules, à partir de laquelle sont construits les comodules de Weyl, tandis que le coproduit permet de définir le produit tensoriel de LUqsl2-modules, aussi appelé la fusion de modules. Le mémoire détermine les règles de fusion des modules remarquables : le produit tensoriel de toute paire de modules remarquables est exprimé comme une somme directe de modules indécomposables. Quoique les règles de fusion entre modules simples et projectifs aient été obtenues par Bushlanov, Feigin, Gainutdinov et Tipunin (cf. [7]), celles impliquant au moins un module ou comodule de Weyl sont nouvelles. / This thesis is devoted to the representation theory of the quantum algebra Uqsl2 for q a root of unity. More precisely it studies some modules of the algebra LUqsl2, the Lusztig extension of Uqsl2, when q² is a primitive p-root of unity for p an integer greater than or equal to 2. Four families of finite dimensional LUqsl2-modules, called remarkable modules, are identified: simple and projective modules as well as Weyl modules and comodules. The algebra Uqsl2 has a Hopf algebra structure; the latter can be extended to LUqsl2. The antipode of this structure is used to define a duality of LUqsl2-modules, from which the Weyl comodules are built, while the coproduct is used to define a tensor product of LUqsl2-modules, also called fusion of modules. This thesis determines the fusion rules of remarkable modules: the tensor product of any pair of remarkable modules is expressed as a direct sum of indecomposable modules. Although the fusion rules between simple and projective modules were obtained by Bushlanov, Feigin, Gainutdinov and Tipunin (cf. [7]), those involving at least one Weyl module or comodule are new.
|
93 |
Die Konjugationsklassenanzahlen der endlichen Untergruppen in der Norm-Eins-Gruppe von Maximalordnungen in QuaternionenalgebrenKrämer, Norbert 30 September 1980 (has links) (PDF)
Des formules en termes élémentaires de la Théorie des Nombres pour les nombres de classes de conjugaison de sous-groupes finis dans le groupe de norme 1 des ordres maximaux d'algèbres de quaternions sont établies.
|
94 |
Théorie des treillis en vue des applicationsBoulaye, Guy 11 June 1970 (has links) (PDF)
.
|
95 |
Ramification modérée pour des actions de schémas en groupes affines et pour des champs quotientsMarques, Sophie 15 July 2013 (has links) (PDF)
L'objet de cette thèse est de comprendre comment se généralise la théorie de la ramification pour des actions par des schémas en groupes affines avec un intérêt particulier pour la notion de modération. Comme contexte général pour ce résumé, considérons une base affine S := Spec(R) où R est un anneau unitaire, commutatif, X := Spec(B) un schéma affine sur S, G := Spec(A) un schéma en groupes affine, plat et de présentation finie sur S et une action de G sur X que nous noterons (X, G). Enfin, nous notons [X/G] le champ quotient associé à cette action et Y := Spec(BA) où BA est l'anneau des invariants pour l'action (X, G). Supposons de plus que le champ d'inertie soit fini.Comme point de référence, nous prenons la théorie classique de la ramification pour des anneaux munis d'une action par un groupe fini abstrait. Afin de comprendre comment généraliser cette théorie pour des actions par des schémas en groupes, nous considérons les actions par des schémas en groupes constants en se rappelant que la donnée de telles actions est équivalente à celle d'un anneau muni d'une action par un groupe fini abstrait nous ramenant au cas classique. Nous obtenons ainsi dans ce nouveau contexte des notions généralisant l'anneau des invariants en tant que quotient, les groupes d'inertie et toutes leurs propriétés. Le cas non ramifié se généralise naturellement avec les actions libres. En ce qui concerne le cas modéré, qui nous intéresse particulièrement pour cette thèse, deux généralisations sont proposées dans la littérature. Celle d'actions modérées par des schémas en groupes affines introduite par Chinburg, Erez, Pappas et Taylor dans l'article [CEPT96] et celle de champ modéré introduite par Abramovich, Olsson et Vistoli dans [AOV08]. Il a été alors naturel d'essayer de comparer ces deux notions et de comprendre comment se généralisent les propriétés classiques d'objets modérés à des actions par des schémas en groupes affines.Tout d'abord, nous avons traduit algébriquement la propriété de modération sur un champ quotient comme l'exactitude du foncteur des invariants. Ce qui nous a permis d'obtenir aisément à l'aide de [CEPT96] qu'une action modérée définit toujours un champ quotient modéré. Quant à la réciproque, nous avons réussi à l'obtenir seulement lorsque nous supposons de plus que G est fini et localement libre sur S et que X est plat sur Y . Nous pouvons voir que la notion de modération pour l'anneau B muni d'une action par un groupe fini abstrait Γ est équivalente au fait que tous les groupes d'inertie aux points topologiques sont linéairement réductifs si l'on considère l'action par le schéma en groupes constant correspondant à Γ sur X. Il a été donc naturel de se demander si cette propriété est encore vraie en général. Effectivement, l'article [AOV08] caractérise le fait que le champ quotient [X/G] est modéré par le fait que les groupes d'inertie aux points géométriques sont linéairement réductifs.À nouveau, si l'on considère le cas des anneaux munis d'une action par un groupe fini abstrait, il est bien connu que l'action peut être totalement reconstruite à partir de l'action d'un groupe inertie. Lorsque l'on considère le cas des actions par les schémas en groupes constants, cela se traduit comme un théorème de slices, c'est-à-dire une description locale de l'action initiale par une action par un groupe d'inertie. Par exemple, lorsque G est fini, localement libre sur S, nous établissons que le fait qu'une action soit libre est une propriété locale pour la topologie fppf, ce qui peut se traduire comme un théorème de slices. Grâce à [AOV08], nous savons déjà qu'un champ quotient modéré [X/G] est localement isomorphe pour la topologie fppf à un champ quotient [X/H] où H est une extension du groupe d'inertie en un point de Y. Lorsque G est fini sur S, il nous a été possible de montrer que H est aussi un sous-groupe de G.
|
96 |
Intégrale de Kontsevich elliptique et enchevêtrements en genre supérieurHumbert, Philippe 11 December 2012 (has links) (PDF)
Dans cette thèse, on définit un invariant fonctoriel d'enchevêtrements dans le tore épaissi qui généralise l'intégrale de Kontsevich. Cet invariant est tout d'abord construit analytiquement à partir d'une version universelle de la connexion de Knizhnik-Zamolodchikov-Bernard elliptique. On donne ensuite une version combinatoire de sa construction, basée sur la notion d' " associateur elliptique " introduite par Enriquez. L'outil principal de cette dernière construction est un théorème qui caractérise la catégorie des enchevêtrements en genre quelconque par une propriété universelle exprimée dans le langage des catégories tensorielles.
|
97 |
Polynômes de Kazhdan-Lusztig et cohomologie d'intersection des variétés de drapeauxChênevert, Gabriel January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
98 |
Cohomologie des courbes planes algébriques / Cohomology of algebraic plane curvesAbdallah, Nancy 11 June 2014 (has links)
On décrit dans cette thèse les dimensions des groupes quotients gradués associés à la cohomologie du complémentaire d'une courbe plane par rapport à la filtration de Hodge en fonction de certains invariants géométriques. Le cas des courbes à singularités ordinaires est détaillé. En particulier, on trouve le polynôme de Hodge-Deligne d'une courbe C quelconque à singularités isolées et celui de son complémentaire duquel on déduit les nombres de Hodge mixtes ainsi que les nombres de Betti correspondants. Dans le cas des courbes dont les singularités sont des nœuds et des points triples ordinaires, on donne des relations importantes avec l'algèbre de Milnor du polynôme homogène f qui définit C, les syzygies de l'idéal Jacobien de f et la filtration par l'ordre de pôle du groupe cohomologique d'ordre 2 du complémentaire de la courbe. / We describe in this thesis the dimensions of the graded quotients of the cohomology of a plane complement curve with respect to the Hodge filtration in terms of simple geometric invariants. The case of curves with ordinary singularities is discussed in details. In particular, we find the Hodge-Deligne polynomial of any curve C with isolated singularities and that of its complement, from which we can compute the mixed Hodge numbers of the second cohomology group of the complement of the curve, and consequently the correspondant Betti numbers. Furthermore, in the case of curves with ordinary double and triple points, we give relations to the Milnor algebra of the homogeneous polynomial f defining C, to the syzygies of the Jacobian ideal of f and pole order filtration on the second cohomology group of the curve complement.
|
99 |
On the expressiveness of spatial constraint systems / Sur l'expressivité des systèmes de contraintes spatialesGuzmán, Michell 26 September 2017 (has links)
Les comportement épistémiques, mobiles et spatiaux sont omniprésent dans les systèmes distribués aujourd’hui. La nature intrinsèque épistémique de ces types de systèmes provient des interactions des éleménts qui en font parties. La plupart des gens sont familiarisés avec des systèmes numériques où les utilisateurs peuvent partager ses croyances, opinions et même des mensonges intentionnels (des canulars). Aussi, les modèles de ces systèmes doivent tenir compte des interactions avec d’autres de même que leur nature distribués. Ces comportements spatiaux et mobiles font part d’applications où les données se déplacent dans des espaces (peut-être imbriqués) qui sont définis par, par exemple, cercles d’amis, des groupes, ou des dossiers partagés. Nous pensons donc qu’une solide compréhension des notion d’espaces, de mobilité spatial ainsi que le flux d’information épistémique est cruciale dans la plupart des modèles de systèmes distribués de nos jours.Les systèmes de contrainte (sc) fournissent les domaines et les opérations de base pour les fondements sémantiques de la famille de modèles déclaratifs formels de la théorie de la concurrence connu sous le nom de programmation concurrent par contraintes (pcc). Les systèmes des contraintes spatiales (scs) représentent des structures algébriques qui étendent sc pour raisonner sur les comportement spatiaux et épistémiques de base tel que croyance et l’extrusion. Les assertions spatiales et épistémiques peuvent être vues comme des modalités spécifiques. D’autres modalités peuvent être utilisées pour les assertions concernant le temps, les connaissances et même pour l’analyse des groupes entre autres concepts utilisés dans la spécification et la vérification des systèmes concurrents.Dans cette thèse nous étudions l’expressivité des systèmes de contraintes spatiales dans la perspective générale du comportement modal et épistémique. Nous montrerons que les systèmes de contraintes spatiales sont assez robustes pour capturer des modalités inverses et pour obtenir de nouveaux résultats pour les logiques modales. Également, nous montrerons que nous pouvons utiliser les scs pour exprimer un comportement épistémique fondamental comme connaissance. Finalement, nous donnerons une caractérisation algébrique de la notion de l’information distribuée au moyen de constructions sur scs. / Epistemic, mobile and spatial behaviour are common place in today’s distributed systems. The intrinsic epistemic nature of these systems arises from the interactions of the elements taking part of them. Most people are familiar with digital systems where users share their beliefs, opinions and even intentional lies (hoaxes). Models of those systems must take into account the interactions with others as well as the distributed quality these systems present. Spatial and mobile behaviour are exhibited by applications and data moving across (possibly nested) spaces defined by, for example, friend circles, groups, and shared folders. We therefore believe that a solid understanding of the notion of space and spatial mobility as well as the flow of epistemic information is relevant in many models of today’s distributed systems.Constraint systems (cs’s) provide the basic domains and opera- tions for the semantic foundations of the family of formal declarative models from concurrency theory known as concurrent constraint programming (ccp). Spatial constraint systems (scs’s) are algebraic structures that extend cs’s for reasoning about basic spatial and epistemic behaviour such as belief and extrusion. Both spatial and epistemic assertions can be viewed as specific modalities. Other modalities can be used for assertions about time, knowledge and even the analysis of groups among other concepts used in the specification and verification of concurrent systems.In this thesis we study the expressiveness of spatial constraint systems in the broader perspective of modal and epistemic behaviour. We shall show that spatial constraint systems are sufficiently robust to capture inverse modalities and to derive new results for modal logics. We shall show that we can use scs’s to express a fundamental epistemic behaviour such as knowledge. Finally we shall give an algebraic characterization of the notion of distributed information by means of constructors over scs’s.
|
100 |
Affine Hermite-Lorentz manifolds / Variétés affines Hermite-LorentzBarucchieri, Bianca 26 September 2019 (has links)
Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle. / In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.
|
Page generated in 0.0493 seconds