Spelling suggestions: "subject:"algèbre""
51 |
Kac-Moody Algebras in M-theory / Kac-Moody algebras in M-theoryDe Buyl, Sophie 16 June 2006 (has links)
Ma thèse s'inscrit dans le cadre de l'unification des interactions fondamentales, dans lequel la théorie quantique de la gravitation devrait trouver une formulation cohérente. La piste la plus prometteuse dans cette voie semble être celle de la théorie M dont le groupe de symétrie a été conjecturé être le groupe de Kac-Moody. Diverses indications reliant cette théorie à des algèbres de Kac-Moody de type g++ proviennent de l’étude des théories de la gravitation couplée à des p-formes et des dilatons. En particulier, la dynamique du champs de gravitation à l’approche d’une singularité de type espace est contrôlée par le groupe de Weyl de ces algèbres (et interprétée comme le mouvement d’une particule libre sans masse sur un billard). <p><p>Nous avons étudié la limite BKL dans le contexte des cosmologies homogènes en terme de billard einsteiniens. Notre analyse confirme la restauration du comportement chaotique du champ gravitationnel lorsque la métrique est non – diagonale, en toutes les dimensions D d’espace-temps telles que 4<D<11. Des sous - algèbres infini - dimensionnelles des algèbres g++ apparaissent naturellement dans ce cadre. <p><p>En utilisant les propriétés des billards, nous avons déterminé la dimension maximale ainsi que le contenu en champs des théories de la gravitation qui, en D=3, se réduisent à la gravité couplée à une réalisation non linéaire du quotient G/K où G est un groupe de Lie simple non maximalement déployé et K son sous-groupe compact maximal. <p><p>Les billards peuvent être de volume fini ou infini. Dans ce dernier cas, la dynamique asymptotique du champ de gravitation (et des dilatons) est chaotique. Si le billard est identifiable à la chambre fondamentale de Weyl d’une algèbre de Kac-Moody, le critère pour que la dynamique asymptotique soit chaotique est que l’algèbre de Kac-Moody soit hyperbolique. Nous avons identifié toutes les algèbres hyperboliques résultant d’une théorie de la gravitation couplée à des p-formes et des dilatons. Pour chacune de ces algèbres, nous avons écrit un Lagrangien en dimension maximale. <p><p>On obtient des actions explicitement invariantes sous les groupes de Kac-Moody G++ (ou G+++) en copiant les modèles sigma décrivant un mouvement géodésique sur une variété homogène de type G++/K(G++) où K(G++) est le sous-groupe compact maximal de G++. Le lien entre cette construction et les théories de la gravitation couplée à des p-formes et dilatons n'est pas encore établi mais certaines connexions ont été mises en évidence. <p><p>- Nous avons inclus les fermions dans les actions invariantes sous G++. De plus, nous nous sommes intéressés à vérifier la compatibilité des fermions avec les symétries cachées en D=3. Nous avons étudié le comportement des fermions la limite BKL dans le langage des billards. <p><p>- Dans le cadre des théories invariantes sous G+++, les réflexions de Weyl peuvent s’interpréter comme des dualités entre théorie des cordes. Ces dualités peuvent changer la signature de l’espace-temps en des signatures exotiques ;nous avons obtenu toutes les signatures provenant ainsi d’une signature Lorentzienne. <p> / Doctorat en sciences, Spécialisation physique / info:eu-repo/semantics/nonPublished
|
52 |
Déploiements de carquois valués de types B et CDouville, Guillaume January 2015 (has links)
Dans ce mémoire, après avoir défini le concept de déploiement, nous obtenons les variables des algèbres amassées et les classes de mutations associées aux carquois valués de types B et C en ramenant l'étude de ces concepts à celle des familles A et D, respectivement.
|
53 |
Analytic structures for the index theory of SL(3,C)Yuncken, Robert 12 May 2006 (has links) (PDF)
Si G est un groupe de Lie connexe, l'anneau de représentations de Kasparov, KK^G(C,C) contient un élément particulièrement important---l'élément gamma---qui établit un lien entre l'anneau de représentations de Kasparov de G et l'anneau de représentations de son sous-groupe compacte maximal K. Dans les preuves de la conjecture de Baum-Connes avec coefficients pour les groupes G=SO(n,1) [Kasparov] et G=SU(n,1) [Julg-Kasparov], une partie fondamentale est la construction explicite de l'élément gamma comme élément de la K-homologie G-équivariante pour l'espace G/B, où B est le sous-groupe de Borel de G. Dans cette thèse, nous décrirons des constructions analytique qui peuvent être utiles pour telle construction de gamma pour le groupe de Lie de rang deux G=SL(3,C). L'inspiration est le complexe de Bernstein-Gel'fand-Gel'fand---un complexe différentiel naturel de fibrés homogènes sur G/B. Les raisons de considérer ce complexe sont expliquées en détails. Pour G=SL(3,C), l'espace G/B admet deux fibrations canoniques, qui réapparaît souvent dans l'analyse suivante. La géométrie locale de G/B se comporte comme la géométrie du groupe de Heisenberg en dimension trois, noté H. Donc, nous étudions l'algèbre d'opérateurs différentiels sur H. Nous définissons une famille à deux paramètres d'espaces de Sobolev H^(m,n)(H), en utilisant les deux fibrations de G/B. Nous introduisons les opérateurs laplaciens longitudinaux $\Delta_X$ et $\Delta_Y$. Nous montrons que ces opérateurs satisfont une condition d'ellipticité longitudinal par rapport aux espaces H^(m,n)(H) pour quelques valeurs (m,n), mais par contre nous donnons un contre-exemple à cette propriété pour un autre choix de (m,n). Ce contre-exemple est un obstacle de taille pour une approche pseudodifférentielle à l'element gamma de SL(3,C). Au lieu de cela, nous considérons l'analyse harmonique du sous-groupe compacte K=SU(3). En utilisant la théorie spectrale des opérateurs laplaciens longitudinaux K-invariants sur G/B, nous construisons une C*-catégorie $\mathcal{A}$ et des idéaux $\mathcal{K}_X$ et $\mathcal{K}_Y$ liés aux fibrations canoniques. Nous expliquons pourquoi celles-là sont les structures prometteuses pour la construction de l'élément gamma.
|
54 |
L'intégrabilité des réseaux de 2-Toda et de Full Kostant-Toda périodique pour toute algèbre de Lie simple.Ben Abdeljelil, Khaoula 19 March 2010 (has links) (PDF)
Cette thèse traite essentiellement de deux systèmes intégrables associés à des algèbres de Lie simples. Les deux résultats principaux sont la construction et l'intégrabilité au sens de Liouville des réseaux de 2-Toda et de Full Kostant-Toda périodique sur toute algèbre de Lie simple. Ces réseaux sont l'un et l'autre décrit par un champ hamiltonien associé à un crochet de Poisson qui provient d'une algèbre de Lie munie d'une R-matrice. Nous construisons dans les deux cas une grande famille de constantes de mouvement que nous utilisons pour démontrer l'intégrabilité au sens de Liouville des deux systèmes. Nos constructions et nos démonstrations font appel à de nombreux résultats sur les algèbres de Lie simples, leurs R-matrices, leurs fonctions Ad-invariantes et leurs systèmes de racines.
|
55 |
Etude géométrique et structures différentielles généralisées sur les algèbres de Lie quasi-filiformes complexes et réellesGarcia Vergnolle, Lucie 09 September 2009 (has links) (PDF)
Le premier problème qui se pose naturellement lors de l'étude des algèbres de Lie nilpotentes est la classification de celles-ci en petite dimension. La classification des algèbres de Lie nilpotentes complexes a été complétée jusqu'en dimension 7. Pour les dimensions inférieures ou égales à 6, il n'existe, sauf isomorphismes, qu'un nombre fini d'algèbres de Lie nilpotentes complexes. Ancochea a classé les algèbres de Lie nilpotentes complexes en dimension 7 selon leur suite caractéristique. On obtient ainsi, une liste plus étendue qui contient des familles d'algèbres de Lie non isomorphes entre elles.On envisage alors d'étudier les algèbres de Lie nilpotentes selon leur nilindice, en commençant par celles qui ont un nilindice maximal, c'est-à-dire , les algèbres de Lie filiformes. Dès 1970. Vergne a initié l'étude des algèbres de Lie filiformes. Elle a montré que sur un corps ayant une infinité d'éléments, il n'existe, sauf isomorphismes, que deux algèbres de Lie filiformes naturellement graduées de dimension paire 2n, nommées L2n et Q2n, et une seule en dimension impaire 2n + 1, appelée L2n+ avec n E N.Plus récemment, Snobl et Winternitz ont déterminé les algèbres de Lie ayant comme nilradical l'algèbre Ln, sur le corps des complexes et des réels. Afin de compléter cette classification à toutes les algèbres de Lie filiformes naturellement graduées, nous avons procéder de même avec les algèbres Q2n,. Nous démontrons ensuite que si une algèbre de Lie indécomposable de dimension finie possède un nilradical filiforme alors elle est forcément résoluble. Les algèbres de Lie filiformes ne présentent donc aucun intérêt dans l'étude des algèbres de Lie non résolubles.Ce résultat n'est plus vrai pour les algèbres de Lie quasi-filiformes dont leur nilradical est abaissé d'une unité par rapport aux filiformes. En effet, en cherchant toutes les algèbres de Lie dont le nilradical est quasi-filiforme naturellement gradué, on a trouvé des algèbres de Lie non résolubles ayant un nilradical quasi-filiforme.Ce même contre-exemple, révèle aussi des différences entre la notion de rigidité dans R et dans C. La classification des algèbres de Lie rigides complexes ayant été déjà faite jusqu'à dimension 8, on est alors amené à trouver cette classification dans le cas réel.Par ailleurs, on a déterminé les algèbres de Lie quasi-filiformes ayant un tore non nul, on obtient une liste beaucoup plus riche que pour le cas filiforme. Cette liste nous permet de prouver la complétude des algèbres de Lie quasi-filiformes. Rappelons que toutes les algèbres de Lie filiformes sont aussi complètes.Finalement, on s'intéresse à l'existence de structures complexes associées aux algèbres de Lie filiformes et quasi-filiformes. Goze et Remm ont démontré que les algèbres filiformes n'admettaient pas ce type de structure. Depuis une approche différente, nous allons redémontrer ce résultat et nous allons voir qu'il existe par contre des algèbres de Lie quasi-filiformes munies d'une structure complexe, mais seulement en dimension 4 et 6.
|
56 |
Systèmes intégrables et superintégrables classiques et quantiques avec champ magnétiqueBérubé, Josée January 2003 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
57 |
Propriété de maintien des facteurs communs dans le cas AnMarceau, Jean-François January 2016 (has links)
L'objectif de ce mémoire est de fournir une nouvelle preuve pour la "Non-leaving face
property" dans le cas An à l'aide de l'approximation dans les catégories amassées. Cette
preuve ouvre la porte pour une généralisation pour d'autres cas.
|
58 |
Groupe et supergroupe conformes de l'espace-temps et contractionsHudon, Valérie January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
59 |
Twisted groupoid KR-theory / KR-théorie tordue des groupoïdesMohamed Moutuou, El-Kaïoum 04 April 2012 (has links)
Dans son article de 1966 intitulé "Ktheory and Reality", Atiyah introduit une variante de la Kthéorie des fibres vectoriels complexes, notée KR, qui, d'une certaine manière, englobe à la fois la Ktheory complexe KU, la Ktheory réelle KO (dite aussi orthogonale), et la Kthéorie autoconjuguée KSc d'Anderson. Dans cette thèse, nous généralisons cette théorie au cadre noncommutatif de la Kthéorie tordue des groupoïdes topologiques. Nous développons ainsi la KRthéorie tordue des groupoïdes en nous servant principalement des outils de la KKthéorie "réelle" de Kasparov. Il s'agit notamment de l'étude de la Kthéorie des C*algèbres graduées associées à des systèmes dynamiques de groupoides munis de certaines involutions. Les classes d'équivalence de tels systèmes composent le groupe de Brauer Réel gradué que nous définissons et calculons en termes de classes de cohomologie de Cech. Nous donnons dans cette nouvelle théorie les analogues des résultats classiques en Kthéorie tels que les suites exactes de MayerVietoris, la périodicité de Bott et le théorème d'isomorphisme de Thom / In his 1966's paper "Ktheory and Reality", Atiyah introduced a variant of Ktheory of complex vector bundles called KRtheory, which, in some sense, is a mixture of complex Ktheory KU, real Ktheory (also called orthogonal Ktheory) KO, and Anderson's selfconjugate Ktheory KSc. The main purpose of this thesis is to generalize that theory to the noncommutative framework of twisted groupoid Ktheory. We then introduce twisted groupoid KRtheory by using the powerful machineries of Kasparov's "real" KKtheory. Specifically, we deal with the Ktheory of graded C*algebras associated with groupoid dynamical systems endowed with involutions. Such dynamical systems are classified by the Real graded Brauer group to be defined and computed in terms of Cech cohomology classes. In this new Ktheory, we give the analogues of the fundamental results in Ktheory such as the MayerVietoris exact sequences, the Bott periodicity and the Thom isomorphism theorem
|
60 |
Controlled K-theory for groupoids and applications / K-théorie contrôlée pour les groupoïdes et applicationsDell'Aiera, Clément 12 July 2017 (has links)
Dans leur article de 2015 intitulé "On quantitative operator K-theory", H. Oyono-Oyono et G. Yu introduisent un raffinement de la K-théorie opératorielle adapté au cadre desC*-algèbres filtrées, appelé K-théorie quantitative ou contrôlée. Dans cette thèse, nous généralisons la notion de filtration de C_-algèbres. Nous montrons ensuite que ce cadre contient celui déjà traité par G. Yu et H. Oyono-Oyono, tout en se révélant assez souple pour traiter les produits croisés de groupoïdes étalés et de groupes quantiques discrets. Nous construisons ensuite des applications d'assemblage _a valeurs dans les groupes de K-théorie contrôlée associés, pour les C*-algèbres de Roe à coefficients et les produits croisés de groupoïdes étalés. Nous montrons que ces applications factorisent les applications d'assemblage usuelles de Baum-Connes. Nous prouvons ensuite ce que nous appelons des énoncés quantitatifs, et nous montrons qu'une version contrôlée de la conjecture de Baum-Connes est vérifiée pour une large classe de groupoïdes étalés. La fin de la thèse est consacrée à plusieurs applications de ces résultats. Nous montrons que l'application d'assemblage contrôlée coarse est équivalente à son analogue à coefficients pour le groupoïde coarse introduit par G. Skandalis, J-L. Tu et G. Yu. Nous donnons ensuite une preuve que les espaces coarses qui admettent un plongement hilbertien fibré vérifient la version maximale de la conjecture de Baum-Connes coarse contrôlée. Enfin nous étudions les groupoïdes étalés dont toutes les actions propres sont localement induites par des sous-groupoïdes compacts ouverts, dont un exemple est donné par les groupoïdes amples introduits par J. Renault. Nous développons un principe de restriction pour cette classe de groupoïdes, et prouvons que, sous des hypothèses raisonnables, leurs produits croisés vérifient la formule de Künneth en K-théorie contrôlée / In their paper entitled "On quantitative operator K-theory", H. Oyono-Oyono and G. Yu introduced a refinement of operator K-theory, called quantitative or controlled K-theory, adapted to the setting of filtered C_-algebras. In this thesis, we generalize filtration of C*-algebras. We show that this setting contains the theory developed by H. Oyono-Oyono and G. Yu, and is general enough to be applied to the setting of crossed products by étale groupoids and discrete quantum groups. We construct controlled assembly maps with values into this controlled K-groups, for Roe C*-algebras and crossed products by étale groupoids. We show that these controlled assembly maps factorize the usual Baum-Connes and coarse Baum-Connes assembly maps. We prove statements called quantitative statements, and we show that a controlled version of the Baum-Connes conjecture is satisfied for a large class of étale groupoids. The end of the thesis is devoted to several applications of these results. We show that the controlled coarse assembly map is equivalent to its analog with coefficients for the coarse groupoid introduced by G. Skandalis, J-L. Tu and G. Yu. We give a proof that coarse spaces which admit a _bred coarse embedding into Hilbert space satisfy the maximal controlled coarse Baum-Connes conjecture. Finally, we study étale groupoids whose proper actions are locally induced by compact open subgroupoids, e.g. ample groupoids introduced by J. Renault. We develop a restriction principle for these groupoids, and prove that under suitable assumptions, their crossed products satisfy the controlled Künneth formula
|
Page generated in 0.0517 seconds