Spelling suggestions: "subject:"algèbre""
31 |
Extensions des modules de dimension finie pour les algèbres de courants torduesAuger, Jean 23 April 2018 (has links)
Ce mémoire traite de la théorie des représentations d’une certaine classe d’algèbres de Lie de dimension infinie, les algèbres de courants tordues. L’objet du travail est d’obtenir une classification des blocs d’extensions d’une catégorie de modules de dimension finie pour une algèbre de courants tordue donnée. Les principales sources de cette étude sont les récentes classifications des modules simples de dimension finie pour ces algèbres et des blocs d’extensions pour les modules de dimension finie dans le cas des algèbres d’applications équivariantes. Ces algèbres de courants tordues comprennent entre autres les familles d’algèbres de Lie des formes tordues et des algèbres d’applications équivariantes, donc aussi les incontournables généralisations multilacets, tordues ou non, de la théorie de Kac-Moody affine. / This master’s thesis is about the representation theory of a certain class of infinite dimensional Lie algebras, the twisted current algebras. The object of this work is to obtain a classification of the extension blocks of the category of finite dimensional modules for a given twisted current algebra. The principal motivations for this study are the recent classifications of simple finite dimensional modules for these algebras and of the extension blocks of the category of finite dimensional modules in the case of equivariant map algebras. The class of twisted current algebras includes, amongst others, the families of Lie algebras of twisted forms and equivariant map algebras, therefore the key multiloop generalisations, twisted or not, of the affine Kac-Moody setting.
|
32 |
AmenabilitéFarhat, Yasser 13 April 2018 (has links)
Dans ce mémoire, on étudie l'amenabilite et les notions analogues introduites plus récemment. On consacre le chapitre deux à rappeler des définitions et à donner des exemples. Dans le chapitre trois, on étudie l'article [1]. On montre que le produit interne dans une algèbre A admet deux prolongement sur A**. On étudie ces deux prolongements et on donne des conditions nécessaires et suffisantes pour que le prolongement sur A** soit unique. Le chapitre quatre porte essentiellement sur l'amenabilite des algèbres de Banach. On étudie la relation entre une algèbre amenable et l'existence d'une unité approchée, ainsi que le lien entre A et A** du point de vue de l'amenabilite. Dans cette partie, on se base sur [2] et [4]. Dans le chapitre cinq, on étudie l'amenabilite approximative, qui est une notion plus faible que l'amenabilite. On fait ressortir les analogues avec les résultats du chapitre quatre. Ce chapitre porte essentiellement sur les articles [7] et [9].
|
33 |
Nonlinear preserversStepanyan, Anush 24 April 2018 (has links)
Dans cette thèse, nous sommes intéressés par des problèmes de préservation des applications non-linéaires entre deux algèbres de Banach complexes unitaires A et B. En général, ces problèmes demandent la caractérisation des applications φ : A → B non nécessairement linéaires, qui laissent invariant une propriété, une relation ou un sous-ensemble. Dans le Chapitre 3, la description des applications surjectives φ de B(X) sur B(Y), qui satisfont c(φ(S)±φ(T)) = c(S ± T), (S, T ∈ B(X)), est donnée, où c(·) représente soit le module minimal, ou le module de surjectivité ou le module maximal et B(X) (resp. B(Y)) dénote l’algèbre de tous les opérateurs linéaires et bornés sur X (resp. sur Y). Dans le Chapitre 4, une question similaire pour la conorme des opérateurs, est considérée. La caractérisation des applications bicontinues et bijectives φ deB(X) surB(Y), qui satisfont γ(φ(S ± φ(T)) = γ(S ± T), (S, T ∈ B(X)), est obtenue. Le Chapitre 5 est consacré à la description des applications surjectives φ1, φ2 d’une algèbre de Banach semisimple A sur une algèbre de Banach B avec un socle essentiel, qui satisfont σ(φ1(a)φ2(b)) = σ(ab), (a, b ∈ A). Aussi, la caractérisation des applications φ de A sur B, sous les mêmes hypothèses sur A et B, qui satisfont σ(φ(a)φ(b)φ(a)) = σ(aba), (a, b ∈ A), est donnée. Comme conséquences, nous incluons les résultats obtenus au cas des algèbres B(X) et B(Y). / In this thesis, we are interested in nonlinear preserver problems. In a general formulation, these demand the characterization of a map φ : A → B, which is not supposed to be linear and leaves a certain property, particular relation, or even a subset invariant, where A and B are complex Banach algebras with unit. In Chapter 3, the description of maps φ from B(X) onto B(Y) satisfying c(φ(S)±φ(T)) = c(S ± T), (S, T ∈ B(X)), is given, where c(·) stands either for the minimum modulus, or the surjectivity modulus, or the maximum modulus and B(X) (resp. B(Y)) denotes the algebra of all bounded linear operators on a Banach space X (resp. on Y). In Chapter 4, a similar question for the reduced minimum modulus of operators, is considered. The characterization of bijective bicontinuous maps φ from B(X) to B(Y) satisfying γ(φ(S ± φ(T)) = γ(S ± T), (S, T ∈ B(X)), is obtained. Chapter 5 is devoted to description of maps φ1, φ2 from a semisimple Banach algebra A onto a Banach algebra B with an essential socle, that satisfy σ(φ1(a)φ2(b)) = σ(ab), (a, b ∈ A). Also, the characterization of maps φ from A onto B, under the same assumptions on A and B, satisfying σ(φ(a)φ(b)φ(a)) = σ(aba), (a, b ∈ A), is given. The corollaries for algebras B(X) and B(Y), that follow immediately from the results, are included.
|
34 |
Algèbres Amassées AffinesDupont, Grégoire 06 November 2008 (has links) (PDF)
Nous introduisons les variables génériques dans une algèbre amassée acyclique $\mathcal A(Q)$. Nous explicitons ces variables en termes de théorie AR de l'algèbre des chemins $kQ$ et montrons qu'elles forment une $\mathbb Z$-base pour une certaine classe d'algèbres amassées comprenant les algèbres amassées affines de type $\tilde A$. <br /><br />Nous introduisons des polynômes de Chebyshev généralisés grâce auxquels nous pouvons montrer des formules de multiplications de type Caldero-Keller pour les variables associées aux $kQ$-modules réguliers.<br /><br />Nous donnons une démonstration simplifiée d'un résultat de Buan, Marsh et Reiten interprétant les dénominateurs des variables d'amas en termes de théorie de basculement dans la catégorie amassée. Nous étudions aussi la compatibilité entre application Caldero-Chapoton et foncteurs BGP étendus.<br /><br />Enfin, nous réalisons les algèbres amassées non simplement lacées comme sous-algèbres de quotients d'algèbres simplement lacées munies d'un groupe d'automorphismes.
|
35 |
Homologies d'algèbres Artin-Schelter régulières cubiquesMarconnet, Nicolas 09 December 2004 (has links) (PDF)
Les algèbres Artin-Schelter régulières sont des analogues non-commutatifs d'algèbres de polynomes. En dimension globale 3, ces algèbres graduées sont homogènes et ont des relations de degré 2 ou 3. Dans cette thèse, nous nous intéressons à certaines algèbres Artin-Schelter régulières de dimension globale 3, à relations cubiques. Nous commencons par calculer l'homologie de Hochschild des algèbres Artin-Schelter régulières de dimension globale 3, cubiques de type A à coefficients génériques. Soit $A$ une telle algèbre. Nous suivons la méthode employée par M. Van den Bergh (K-Theory 8 (1994) 213-230) dans le cas quadratique, en considérant cette algèbre comme déformation d'une algèbre de polynomes, avec crochet de Poisson remarquable. Nous calculons alors l'homologie de Poisson et nous montrons que la suite spectrale de Brylinski associée dégénère. Pour cela, nous utilisons le fait que cette algèbre est de Koszul au sens généralisé défini par R. Berger (J. Algebra 239 (2001) 705-734) et nous donnons un nouveau quasi-isomorphisme entre la résolution de Koszul de $A$ par des $A$-$A$-bimodules et la bar-résolution de $A$. Nous déduisons la cohomologie de de Rham, l'homologie cyclique et l'homologie cyclique périodique de l'homologie de Hochschild de $A$, en utilisant des résultats classiques. La propriété de Koszul généralisée nous permet d'écrire un quasi-isomorphisme explicite entre le complexe qui calcule la cohomologie de Hochschild de $A$ et le complexe qui calcule l'homologie de Hochschild de $A$, obtenant ainsi une dualité de Poincaré. Nous déduisons alors la cohomologie de Hochschild de $A$ de l'homologie de Hochschild de $A$. Nous déterminons le centre de $A$, ce qui n'était pas connu. Nous terminons par divers compléments. En particulier, nous explicitons une injection de la résolution de Koszul par des $A$-$A$-bimodules vers la bar-résolution de $A$, valable pour toute algèbre de Koszul généralisée $A$.
|
36 |
Déformation et quantification par groupoïde des variétés toriquesCadet, Frédéric 30 November 2001 (has links) (PDF)
Cette thèse propose une notion de quantification par déformation des variétés de Poisson au sens des C*-algèbres, en lien notamment avec l'emploi de groupoïdes. Cette théorie s'appuie sur des exemples, notamment celui des variétés toriques. La première partie est un rappel de connaissances développées depuis quelques dizaines d'années sur les groupoïdes et leurs C*-algèbres. La deuxième partie présente les définitions de déformation et de quantification utilisées ensuite, et leur traduction, pour les groupoïdes, dans la notion importante de groupoïde de déformation. Une large classe de sous-groupoïdes des groupoïdes de Lie est de ce type. Enfin le résultat principal de cette thèse est une condition suffisante sur les variétés M munies de l'action d'un tore Tn pour construire un groupoïde de déformation associé, au moyen du choix d'une action de Rn sur une variété contenant le quotient M/Tn ; ce groupoïde se présente comme un sous-groupoïde du groupoïde de l'action d'un groupe discret. On retrouve alors des résultats de quantification connus pour Cn, les tores et les sphères de dimension 4 non commutatifs. La troisième partie applique ce résultat à l'exemple des variétés toriques, dont la géométrie étonnante, en terme de moment notamment, fut découverte dans les années 80. Cette construction fournit le premier exemple de quantification des variétés toriques dans un cadre C*-algebrique, même dans les cas les plus simples (sphère de dimension 2, espaces projectifs complexes).
|
37 |
Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaireGomez Aparicio, Maria Paula 14 December 2007 (has links) (PDF)
Ma thèse concerne des variantes de la propriété (T) de Kazhdan et de la conjecture de Baum-Connes tordues par des représentations de dimension finie qui ne sont pas nécessairement unitaires.<br />Soit G un groupe localement compact et (rho,V) une représentation de dimension finie non nécessairement unitaire de G.<br />Dans le Chapitre 1, nous avons défini un renforcement de la propriété (T) en considérant des produits tensoriels par rho de représentations unitaires de G. Nous avons alors défini deux algèbres de Banach de groupe tordues, Amax(rho) et A(rho), analogues aux C*-algèbres de groupe, C*(G) et C*r(G), et nous avons défini la propriété (T) tordue par rho en termes de Amax(rho). Nous avons ensuite montrer que la plupart des groupes de Lie semi-simples réels ayant la propriété (T) ont la propriété (T) tordue par n'importe quelle représentation irréductible de dimension finie.<br />Les Chapitres 2 et 3 sont consacrés au calcul de la K-théorie des algèbres tordues. Pour ceci, Nous avons défini deux applications d'assemblage tordues du membre de gauche du morphisme de Baum-Connes, noté Ktop(G), dans la K-théorie des algèbres tordues. Nous avons ensuite montrer, dans le Chapitre 3, que ce morphisme de Baum-Connes tordu est bijectif pour une large classe de groupes vérifiant la conjecture de Baum-Connes.<br />Dans le Chapitre 4, nous avons montré que le domaine de définition naturel d'un analogue en K-théorie du produit tensoriel par une représentation de dimension finie est la K-théorie des algèbres tordues et non pas la K-théorie des C*-algèbres de groupe.
|
38 |
Antiautomorphismes d'algèbres et objets reliés.Cortella, Anne 04 June 2010 (has links) (PDF)
Ce mémoire porte sur l'étude des antiautomorphismes d'algèbres et en particulier sur les antiautomorphismes linéaires d'algèbres centrales simples (sur un corps commutatif). Si l'algèbre est une algèbre de matrices, alors un tel antiautomorphisme est l'adjonction pour une forme bilinéaire. Ainsi la classification des antiautomorphismes linéaires (resp. de type II) à isomorphisme près est une généralisation de celle des formes bilinéaires (resp. sesquilinéaires) à similitude près. Dans la première partie, on définit la notion d'asymétrie d'une forme sesquilinéaire, et on étudie les éléments d'une algèbre d'endomorphismes qui sont une asymétrie. La notion de produit de formes sesquilinéaires conduit à une théorie de Morita pour les algèbres à antiautomorphismes, qui permet de généraliser la notion de somme orthogonale connue pour les involutions d'algèbres centrales simples aux algèbres à antiautomorphisme Morita équivalentes avec asymétrie. Dans la deuxième partie, après avoir rappelé comment l'asymétrie permet d'obtenir une classification des formes bilinéaires, on généralise au cas non déployé linéaire la notion d'asymétrie et on explique comment on peut espérer obtenir de bons résultats en étudiant l'involution induite sur le centralisateur de l'asymétrie et la pseudo-involution linéaire associée à cette asymètrie. L'étude du principe de Hasse pour les similitudes de formes bilinéaires conduit natu- rellement au calcul de certains groupes de Tate-Schafarevich de tores algébriques de type normique. Ceci permet, dans une troisième partie, de donner des contre-exemples à ce principe sur des corps de nombres, ainsi qu'une interprétation de type corps de classe à l'obstruction à ce principe. Ce type de calculs pour d'autres tores normiques permet de démontrer qu'ils ne sont pas stablement rationnels. Ce résultat permet alors de déterminer les groupes algébriques simples dont le tore générique est rationnel, et délimite donc les cas pour lesquels l'étude du tore générique donne la rationalité du groupe. La quatrième partie est dédiée à la définition et à l'étude d'invariants des algèbres centrales simples à antiautomorphismes qui généralisent ceux donnant de bons résultats de classification pour les involutions : le discriminant, l'algèbre de Clifford et la forme trace. On y développe alors les résultats espérés en petite dimension cohomologique ou en petit degré.
|
39 |
Propriétés d'approximation pour les groupes quantiques discretsFreslon, Amaury 21 November 2013 (has links) (PDF)
Cette thèse porte sur les propriétés d'approximation pour les groupes quantiques discrets et particulièrement sur la moyennabilité faible. Notre but est d'appliquer des techniques de théorie géométrique des groupes à l'étude des groupes quantiques. Nous définissons d'abord la moyennabilité faible dans le cadre des groupes quantiques discrets et nous développons une théorie générale en nous inspirant du cas classique. Nous nous attachons particulièrement à la notion de constante de Cowling-Haagerup. Nous définissons aussi une notion de moyennabilité relative qui nous permet de démontrer un résultat de stabilité supplémentaire. Un travail similaire est effectué pour la propriété de Haagerup. Enfin, nous abordons la question des produits libres de groupes quantiques faiblement moyennables. En nous inspirant des travaux de E. Ricard et X. Qu sur les inégalités de Kintchine, nous démontrons que si deux groupes quantiques discrets ont une constante de Cowling-Haagerup égale à 1, leur produit libre amalgamé sur un sous-groupe quantique fini a également une constante de Cowling-Haagerup égale à 1. Ensuite, nous donnons des exemples de groupes quantiques discrets faiblement moyennables. Nous utilisons les travaux de M. Brannan sur la propriété de Haagerup ainsi que des idées liées aux inégalités de Haagerup. Nous donnons une borne polynomiale pour la norme complètement bornée de certains projecteurs qui nous permet ensuite de "découper" les fonctions de M. Brannan pour prouver la moyennabilité faible. Enfin, nous appliquons des techniques d'équivalence monoïdale pour étendre ces résultats à d'autres classes de groupes quantiques, dont certains ne sont pas unimodulaires.
|
40 |
Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifsLiboz, Emilie 03 December 2012 (has links) (PDF)
Cette thèse présente quelques résultats de la théorie des représentations des algèbres de Cherednikrationnelles en t=0 et traite en particulier des différents ordres construits sur la partition de Calogero-Moserdes groupes imprimitifs.On commence par généraliser au cas abélien certains résultats obtenus par M. Chlouveraki concernant lesblocs d'algèbres en système de Clifford pour un groupe cyclique, puis on construit un ordre sur les C*-pointsfixes d'une variété complexe quasi-projective normale, en utilisant la décomposition de Bialynicki-Birula.Dans la deuxième partie, on s'intéresse à la description des partitions de Calogero-Moser de deux groupesde réflexions complexes K et W quand K est un sous-groupe distingué de W et on généralise au cas abélienles résultats obtenus par G. Bellamy dans le cas d'un quotient W/K cyclique.Dans la troisième partie, on présente les différents ordres, construits par I. Gordon, sur la partition deCalogero-Moser des groupes G(l,1,n) pour certains paramètres : les ordres des a et c-fonctions, un ordrecombinatoire et l'ordre géométrique, qui est défini grâce aux C*-points fixes de certaines variétés decarquois, ces points fixes paramétrant les blocs de la partition de Calogero-Moser de G(l,1,n). On donneensuite les relations entre ces ordres, puis on étend ces constructions ainsi que ces liens à l'ensemble desparamètres.Enfin, dans la dernière partie, on tente de généraliser ces propriétés aux groupes G(l,e,n). On cherche alors,pour construire l'ordre géométrique sur la partition de Calogero-Moser de G(l,e,n), une variété dont les C*-points fixes décrivent les blocs de la partition de G(l,e,n). Dans le cas où e ne divise pas n, on construit lavariété qui nous permet de définir l'ordre géométrique et de le relier aux autres ordres. Pour le cas e divise n,on propose une variété qui pourrait décrire par ses points fixes les blocs de Calogero-Moser de G(l,e,n) etnous permettre de construire l'ordre géométrique.
|
Page generated in 0.3009 seconds