Spelling suggestions: "subject:"algèbre""
61 |
Formal loops spaces and tangent Lie algebras / Espace de lacets formels et algèbres de Lie tangentesHennion, Benjamin 12 June 2015 (has links)
L'espace des lacets lisses C(S^1,M) associé à une variété symplectique M se voit doté d'une structure (quasi-)symplectique induite par celle de M.Nous traiterons dans cette thèse d'un analogue algébrique de cet énoncé.Dans leur article, Kapranov et Vasserot ont introduit l'espace des lacets formels associé à un schéma. Il s'agit d'un analogue algébrique à l'espace des lacets lisses.Nous generalisons ici leur construction à des lacets de dimension supérieure. Nous associons à tout schéma X -- pas forcément lisse -- l'espace L^d(X) de ses lacets formels de dimension d.Nous démontrerons que ce dernier admet une structure de schéma (dérivé) de Tate : son espace tangent est de Tate, c'est-à-dire de dimension infinie mais suffisamment structuré pour se soumettre à la dualité.Nous définirons également l'espace B^d(X) des bulles de X, une variante de l'espace des lacets, et nous montrerons que le cas échéant, il hérite de la structure symplectique de X. Notons que ces résultats sont toujours valides dans des cas plus généraux : X peut être un champs d'Artin dérivé.Pour démontrer nos résultats, nous définirons ce que sont les objets de Tate dans une infinie-catégorie C stable et complète par idempotence.Nous prouverons au passage que le spectre de K-théorie non-connective de Tate(C) est équivalent à la suspension de celui de C, donnant une version infini-catégorique d'un résultat de Saito.Dans le dernier chapitre, nous traiterons d'un problème différent. Nous démontrerons l'existence d'une structure d'algèbre de Lie sur le tangent décalé de n'importe quel champ d'Artin dérivé X. Qui plus est, ce tangent agit sur tout quasi-cohérent E, l'action étant donnée par la classe d'Atiyah de E.Ces résultats sont par exemple valides dans le cas d'un schéma X sans hypothèse de lissité. / If M is a symplectic manifold then the space of smooth loops C(S^1,M) inherits of a quasi-symplectic form. We will focus in this thesis on an algebraic analogue of that result.In their article, Kapranov and Vasserot introduced and studied the formal loop space of a scheme X. It is an algebraic version of the space of smooth loops in a differentiable manifold.We generalize their construction to higher dimensional loops. To any scheme X -- not necessarily smooth -- we associate L^d(X), the space of loops of dimension d. We prove it has a structure of (derived) Tate scheme -- ie its tangent is a Tate module: it is infinite dimensional but behaves nicely enough regarding duality.We also define the bubble space B^d(X), a variation of the loop space.We prove that B^d(X) is endowed with a natural symplectic form as soon as X has one.To prove our results, we develop a theory of Tate objects in a stable infinity category C. We also prove that the non-connective K-theory of Tate(C) is the suspension of that of C, giving an infinity categorical version of a result of Saito.The last chapter is aimed at a different problem: we prove there the existence of a Lie structure on the tangent of a derived Artin stack X. Moreover, any quasi-coherent module E on X is endowed with an action of this tangent Lie algebra through the Atiyah class of E. This in particular applies to not necessarily smooth schemes X.
|
62 |
C*-algèbres associées à certains systèmes dynamiques et leurs états KMS / C*-algebras associated with certain dynamical systems and their KMS states / C*-álgebras associadas a certas dinâmicas e seus estados KMSDe Castro, Gilles 18 December 2009 (has links)
D'abord, on étudie trois façons d'associer une C*-algèbre à une transformation continue. Ensuite, nousdonnons une nouvelle définition de l'entropie. Nous trouvons des relations entre les états KMS des algèbrespréalablement définies et les états d'équilibre, donné par un principe variationnel. Dans la seconde partie,nous étudions les algèbres de Kajiwara-Watatani associées à un système des fonctions itérées. Nouscomparons ces algèbres avec l'algèbre de Cuntz et le produit croisé. Enfin, nous étudions les états KMS desalgèbres de Kajiwara-Watatani pour les actions provenant d'un potentiel et nous trouvouns des relationsentre ces états et les mesures trouvée dans une version de le théorème de Ruelle-Perron-Frobenius pour lessystèmes de fonctions itérées. / First, we study three ways of associating a C*-algebra to a continuous map. Then, we give a new definitionof entropy. We relate the KMS states of the previously defined algebras with the equilibrium states, givenby a variational principle. In the second part, we study the Kajiwara-Watatani algebras associated toiterated function system. We compare these algebras with the Cuntz algebra and the crossed product.Finally, we study the KMS states of the Kajiwara-Watatani algebras for actions coming from a potentialand we relate such states with measures found in a version of the Ruelle-Perron-Frobenius theorem foriterated function systems.
|
63 |
Sur les algèbres de Hecke cyclotomiques des groupes de réflexions complexesChlouveraki, Maria 21 September 2007 (has links) (PDF)
Suivant la définition de Rouquier de « familles de caractères » d'un groupe de Weyl qui permet la généralisation de cette notion au cas des groupes de réflexions complexes, déjà utilisée dans les travaux de Broué–Kim et Malle–Rouquier, nous montrons que ces "familles" dépendent d'une donnée numériques du groupe, ses "hyperplans essentiels". Nous donnons l'algorithme et les resultats de la détermination des blocs de Rouquier des algèbres de Hecke cyclotomiques de tous les groupes de réflexions complexes exceptionnels.
|
64 |
Génération de modèles comportemementaux des applications des applications répartiesBoulifa, Rabea 14 December 2004 (has links) (PDF)
Dans notre travail nous nous sommes intéressés à la vérification<br /> automatique de propriétés comportementales d'applications réparties par des<br /> méthodes fondées sur les<br />modèles. En particulier, nous étudions le problème de<br />génération de modèles <br />à partir de programmes Java répartis et représentés par des systèmes de transitions<br />communiquants.<br /><br />Pour ce faire, nous définissons une sémantique comportementale de programmes ProActive, une<br />librairie Java pour la programmation parallèle, distribuée et<br />concurrente. À partir de cette sémantique nous construisons des modèles<br />comportementaux pour<br />des abstractions finies d'applications écrites dans ce langage. Ces<br />modèles sont basés sur la sémantique des algèbres de<br />processus et peuvent donc être construits de manière compositionnelle et<br />hiérarchique.<br />La construction de modèles finis n'est pas toujours possible. Pour<br />pouvoir traiter des problèmes prenant en compte des données, ainsi que<br />des problèmes concernant des topologies non bornées d'objets<br />répartis, nous définissons une nouvelle notion de modèleles<br />hiérarchiques, à base de systèmes de transitions paramétrés et de<br />réseau de synchronisation paramétrés. Moyennant des abstractions ces modèles permettent de<br />spécifier des applications possiblement infinies par des représentations<br />expressives, finies, et plus proche de la structure du code. <br />Par ailleurs, nous définissons un système de règles sémantiques<br />permettant de générer automatiquement ces modèles (finis ou<br />paramétrés) à partir d'une forme intermédiaire, obtenue par analyse statique,<br />des programmes analysés.<br />Les modèles ainsi générés sont exploitables directement ou après<br />instantiation par des outils de vérification.
|
65 |
Exemples de schémas de Hilbert invariants et de schémas quot invariantsJansou, Sébastien 24 October 2005 (has links) (PDF)
Dans une première partie, on se donne un groupe réductif connexe complexe G, et on classifie les modules simples dont le cône des vecteurs primitifs admet une déformation G-invariante non triviale. On relie cette classification à celle des algèbres de Jordan simples, et aussi à celle (due à Akhiezer) des variétés projectives lisses dont les orbites sous l'action d'un groupe algébrique affine connexe sont un diviseur et son complémentaire. Notre principal outil est le schéma de Hilbert invariant d'Alexeev et Brion; on en détermine les premiers exemples. On détermine aussi les déformations infinitésimales (non nécessairement G-invariantes) des cônes des vecteurs primitifs; elles sont triviales pour presque tous les modules simples. Dans une seconde partie, on construit le ``schéma Quot invariant'' et on en détermine une classe d'exemples dans le cas où l'espace ambiant est un cône des vecteurs primitifs.
|
66 |
Groupes quantiques localement compacts, actions et extensionsVaes, Stefaan 04 November 2004 (has links) (PDF)
Nous étudions les groupes quantiques dans un cadre d'algèbres d'opérateurs : les espaces quantiques sous-jacents sont des C*-algèbres ou des algèbres de von Neumann. Nous donnons des exemples comme extensions de groupes par des duaux de groupes. Ceci fournit les premiers exemples de groupes quantiques non-semi-réguliers. Nous étudions les coactions extérieures sur des facteurs et plus particulièrement sur les facteurs d'Araki-Woods libres. Nous introduisons un invariant T pour les groupes quantiques et l'utilisons pour démontrer que certains groupes quantiques ne peuvent que coagir extérieurement sur des facteurs de type III.
|
67 |
Algèbre de Hecke quasi-ordinaire universelle d'un groupe réductifMauger, David 26 September 2000 (has links) (PDF)
Le point de départ de cette thèse est l'étude d'une conjecture du type $R\simeq\mathbb(T)$ dans le contexte général d'un groupe réductif connexe $G$ sur $\mathbb(Q)$, admettant une variété de Shimura et non nécessairement déployé. L'hypothèse principale est la quasi-ordinarité des représentations automorphes considérées et son reflet galoisien conjectural. On obtient, sous certaines hypothèses, l'égalité des dimensions de Krull d'un anneau de déformation universelle d'une représentation galoisienne quasi-ordinaire et d'une algèbre de Hecke quasi-ordinaire localisée. La théorie des immeubles de Bruhat-Tits est utilisée pour obtenir la structure des algèbres de Hecke paraboliques en $p$. D'un théorème de contrôle général, on déduit dans certains cas que l'algèbre de Hecke quasi-ordinaire universelle est finie et sans torsion sur l'algèbre de Hida-Iwasawa du groupe $G$. Ce résultat permet de construire des familles de systèmes de valeurs propres pour les opérateurs de Hecke, quasi-ordinaires, passant par un système donné.
|
68 |
Vers une classification des décompositions motiviques d'espaces homogènesDe Clercq, Charles 02 November 2011 (has links) (PDF)
Cette thèse porte sur les motifs de Chow des variétés projectives homogènes, et leurs liens avec des invariants classiques et certaines questions de géométrie rationnelle. Le motif (à coefficients finis) d'un espace homogène sous l'action d'un groupe algébrique semisimple et affine G se décompose de manière essentiellement unique en une somme directe de motifs indécomposables. Ce travail prend part au programme de classification de ces motifs, notre principal outil étant la théorie des motifs supérieurs. Nous montrons que cette classification est réduite à celle à coefficients dans F_p si G est de type intérieur, et trouvons un analogue si G est de type extérieur. Nous classifions ensuite complètement les motifs indécomposables des espaces homogènes sous l'action d'un groupe projectif linéaire et en déduisons la dichotomie motivique de PGL_1. Nous proposons ensuite un outil de décomposition motivique utilisé par Garibaldi, Semenov et Petrov pour déterminer toutes les décompositions d'espaces homogènes si G est de type E_6. Enfin nous montrons que la décomposition des variétés de Severi-Brauer généralisées SB(p, A) à coefficients dans F_p ne dépend que de la valuation p-adique de l'indice de A.
|
69 |
Cohomologie cyclique périodique des produits croisés généralisés lissesGabriel, Olivier 27 September 2011 (has links) (PDF)
Cette thèse de doctorat est consacrée à la cohomologie cyclique périodique des produits croisés généralisés. Ces derniers sont des C*-algèbres construites à partir d'un bimodule hilbertien. Notre étude s'organise en deux axes complémentaires : un résultat général valable pour les produits croisés généralisés lisses à croissance modérée et un résultat spécifique aux variétés de Heisenberg quantiques. Dans un premier temps, nous introduisons une classe de " versions lisses " des produits croisés généralisés, que nous appelons " produits croisés généralisés lisses à croissance modérée ". Notre premier résultat est que sur ces algèbres, les foncteurs k-stables, invariants sous difféotopie et semi-exacts (comme la cohomologie cyclique périodique) donnent naissance à un hexagone exact analogue à la suite de Pimsner-Voiculescu. Pour prouver cette propriété, nous nous appuierons sur les travaux de Cuntz et tout particulièrement sur la notion de contexte de Morita. Dans un second temps, nous illustrons cette construction en l'appliquant aux variétés de Heisenberg quantiques (QHM). En tirant profit de l'action du groupe de Heisenberg H3 sur les QHM, nous construisons des représentants explicites de la K-théorie et de la cohomologie cyclique. Nous pouvons alors effectuer des calculs explicites d'appariements de Chern-Connes. En combinant ces calculs avec la suite exacte à 6 termes de la première partie, nous construisons des bases explicites de la cohomologie cyclique périodique des QHM. Notre second résultat est donc une description relativement complète et totalement explicite de la K-théorie et de la cohomologie cyclique périodique des QHM.
|
70 |
Points de Darmon et variétés de ShimuraGartner, Jerome 11 January 2011 (has links) (PDF)
Cette thèse s'intéresse à la recherche de points rationnels sur les courbes elliptiques. Darmon et Logan ont proposé une construction conjecturale de points rationnels sur des courbes elliptiques modulaires définies sur un corps de nombres totalement réel. Cette construction va au delà de la construction classique des points de Heegner. C'est sur la généralisation de ces travaux que porte cette thèse. Après un premier chapitre de rappels concernant essentiellement les variétés de Shimura, on construit, dans le chapitre deux une forme différentielle dont l'ensemble des périodes est, sous une conjecture due à Yoshida, un réseau. On y définit aussi un ensemble de cycles dont la classe d'homologie est de torsion. A l'aide de ces données, on énonce au chapitre suivant une conjecture généralisant celle de Darmon et Logan. On s'interesse aussi aux propriétés de ces nouveaux points, principalement en lien avec les théorèmes "classiques" de Gross-Zagier et Gross-Kohnen-Zagier. Le chapitre 4 tente de rendre holomorphes les opérations du chapitre 2, et le chapitre 5 de les rendre plus explicites. Cette thèse comporte une annexe concernant les vérifications informatiques de la conjecture de Darmon.
|
Page generated in 0.049 seconds