• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 53
  • 19
  • 1
  • 1
  • Tagged with
  • 295
  • 132
  • 100
  • 72
  • 41
  • 37
  • 37
  • 33
  • 33
  • 33
  • 31
  • 31
  • 31
  • 30
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Rôle de la microstructure d'un alliage à durcissement structural sur son comportement et sa tenue mécanique sous sollicitations cycliques après un transitoire thermique / Influence of the microstructure of an age hardening alloy on its cyclic mechanical behaviour after transient heat treatments

Bardel, Didier 28 May 2014 (has links)
Pour fabriquer le caisson-coeur du futur réacteur expérimental Jules Horowitz (RJH), un assemblage de viroles est effectué à l'aide d'un procédé haute énergie : le soudage par faisceau d'électrons (FE). L'aluminium 6061-T6 qui a été choisi pour la fabrication de ces viroles est un alliage à durcissement structural, ce qui signifie que ses propriétés mécaniques sont très fortement dépendantes de son état de précipitation. Lors du soudage des viroles, l'état microstructural du matériau est affecté : on assiste notamment à une dégradation de l'état fin de précipitation (T6). Les conséquences de cette dégradation microstructurale sont diverses. Notamment, l'évolution de l'état de précipitation au cours du soudage engendre une variation du comportement mécanique et impactera donc la distribution des contraintes résiduelles. De plus, les propriétés mécaniques en service à proximité du joint soudé seront grandement modifiées, on assiste par exemple à une chute de la limite d'élasticité. Dans ce travail, des essais cycliques ont été effectués après des chargements thermiques représentatifs d'une opération de soudage mais aussi pendant des essais isothermes. L'analyse de ces résultats et la confrontation à des mesures de Diffusion de Neutrons aux Petits Angles (DNPA) et de Microscopie Electronique en Transmission (MET) permettent de comprendre les effets de la précipitation sur la loi de comportement de l'alliage. Afin de prédire les évolutions microstructurales et mécaniques dans l'alliage 6061, un logiciel de précipitation a été implémenté et couplé à un modèle élastoplastique à base physique. Les résultats obtenus permettent de représenter la grande variété de comportement observé lors de la campagne expérimentale. Un couplage entre simulation éléments finis thermique et précipitation a été effectué et permet d'ouvrir des perspectives de simulations plus physiques pour ce type d'alliage. / In order to assemble the pressure vessel of experimental Reactor Jules Horowitz (RJH) of France in the future, the electron beam welding process will be used. Several ferrules in a 6061-T6 age hardening aluminum alloy are used for manufacturing this vessel. The fine precipitation state (T6) is affected significantly by the electron beam welding process. Consequently, this microstructural degradation leads to an evolution of the mechanical behaviour and thus will affect the distribution of residual stresses. Moreover, the mechanical properties of the weld joint at ambiant temperature can be modified, such as the yield stress that may drop from 280 MPa to 55 MPa. In this work, cyclic tensile tests have been performed after anisothermal histories representative of welding and during isothermal treatments. The analysis of these results is compared with Small Angles Neutrons Scattering (SANS) and Transmission Electron Microscopy (TEM) characterizations that allow to understand the effect of the precipitation on the material behaviour. To predict the microstructural evolutions in the 6061 structure, a precipitation model has been developped. The precipitation software "PreciSo" coupled with a Finite Element thermal simulations and elastoplastic models allows to open new prospectives in the physical-based simulations domain.
292

Influence de la liaison chimique sur la structure des surfaces d'alliages métalliques complexes / Influence of chemical bonding on surface structures of complex metallic alloys

Meier, Matthias 09 December 2015 (has links)
Un alliage métallique complexe est un intermétallique dont la maille est constituée d'un nombre important d'atomes et dont la structure peut être souvent décrite comme un empilement de motifs d'atomes reliés par des liaisons de type covalent. Al5Co2 est l'un de ces composés et est un catalyseur potentiel pour la semi-hydrogénation d'acétylène. L'influence de la structure tridimensionnelle sur les surfaces bidimensionnelles et donc la réactivité est étudiée. Pour se faire, le système massif est analysé en utilisant la DFT afin d'éclaircir ses propriétés thermodynamiques, électroniques et vibrationnelles. Les valeurs calculées, expérimentales et celles de la littérature sont en bon accord. La structure des surfaces de bas indice, (001), (100) et (2-10) est étudiée. Une combinaison de techniques d'analyse de surface sous ultra-vide - LEED, STM - et de DFT est utilisée pour les déterminations structurales. Les résultats indiquent que: (i) la structure des surfaces dépend des conditions de préparation, comme la température de recuit, (ii) la structure des surfaces peut être interprétée comme étant constituée de motifs tronqués où certaines liaisons de type covalent sont brisées. Les sites et les énergies d'adsorption des molécules impliquées dans la réaction de semi-hydrogénation sont calculés pour les trois surfaces. Pour les sites favorables, des distances spécifiques entre atomes d'hydrogène adsorbés et atomes de Co de surface et de sous-surface peuvent être observées. Les atomes de Co de sous-surface ont un caractère donneur d'électrons, stabilisant les atomes adsorbés en surface. En se basant sur des calculs NEB, de possibles chemins réactionnels sur la surface (2-10) sont proposés. L'activité calculée est similaire à celle obtenue pour la surface d'Al13Co4, qui est considérée comme un bon catalyseur. La sélectivité - la compétition entre la désorption d'éthylène et son hydrogénation en éthyle - est discutée. / A complex metallic alloy is an intermetallic with a large unit cell and whose structure can often be seen as a stacking of motifs of strongly covalent-like bonded atoms. Al5Co2 is such a compound and is a potential catalyst for the semi-hydrogenation of acetylene. The influence of the 3-dimensional structure on 2-dimensional surfaces is investigated. Therefore, the bulk system is analysed using DFT to gain insight in the thermodynamic, electronic and vibrational properties. Good agreements between calculated results, experimental ones and results found in the literature are obtained. The low index (001), (100) and (2-10) surfaces are investigated. A combination of surface analysis techniques under ultra high vacuum - LEED, STM - and DFT calculations is used for the structural investigations. The results show that: (i) the surface structure depends on the preparation conditions, such as the annealing temperature, (ii) the surface structure can be interpreted as truncated motif parts, where the covalent-like bonds are broken. Adsorption sites and energies of molecules involved in the semi-hydrogenation reaction are calculated for all three surfaces. For favourable adsorption sites, specific distances of adsorbed H atoms with Co surface and subsurface atoms are observed. These Co subsurface atoms have an electron donor character, stabilising the adsorbed atoms at the surface. Based on NEB calculations, possible reaction paths on the (2-10) surface are proposed. The calculated activity is similar to the one obtained for the Al13Co4 surface, which is considered a good catalyst. The selectivity - the competition between desorption of ethylene and its further hydrogenation - is discussed.
293

Modélisation de la formation des décohésions dues à l’hydrogène dans l’acier 18MND5 / Modelling of high pressure hydrogen induced internal cracks in an 18MND5 low alloy steel

Sezgin, Jean-Gabriel 24 February 2017 (has links)
Les viroles en acier microallié 18MND5, destinées aux générateurs de vapeur, présentent une composition hétérogène à plusieurs échelles. Un écart au procédé de fabrication ou une teneur en hydrogène excessive, peuvent conduire à la formation des Décohésions Dues à l’Hydrogène. Ces DDH résultent de la désorption de l’hydrogène interne lors du refroidissement jusqu’à température ambiante. La pression interne n’étant pas mesurables expérimentalement, une modélisation du phénomène est requise. Afin de préciser les mécanismes sous-jacents, il est proposé un scénario de formation de ces défauts s’appuyant conjointement sur une expertise et la modélisation des processus de diffusion-désorption-propagation. Les observations ont révélé une corrélation entre les DDH, les zones ségrégées et les amas de MnS (sites préférentiels d’initiation). Un modèle de diffusion dans un milieu hétérogène a été proposé afin d’évaluer la pression interne associée. La pression maximale excède ainsi 8600 bar en considérant une loi d’Abel-Noble optimisée du gaz réel. Le couplage de ce modèle avec la mécanique de la rupture a permis de quantifier l’évolution des paramètres relatifs à la propagation (pression interne, taille finale, vitesse, …). Un scénario de formation des DDH industriel a ainsi pu être formulé sur la base d’une étude paramétrique. Bien que les simulations préliminaires corroborent le retour d’expérience, le modèle raffiné et la prise en compte du gonflement de la DDH semblent sous-estimer la cinétique. Le caractère multi-fissuré des amas de MnS (homogénéisation des propriétés mécaniques) associé à un critère de rupture à l’échelle locale permettrait d’ajuster ce modèle. / Heat generators are manufactured from ingots of 18MND5 (A508cl3) low alloy steel and present composition heterogeneities at different scales. Under specific conditions (non-respect of guidelines or high initial content of H), Hydrogen Induced Cracks (HIC) may result from diffusion-desorption of internal hydrogen during cooling down to room temperature. Since neither hydrogen redistribution nor its internal pressure within cavities could be measured by experimental techniques, quantitative investigation is based on the modelling of related physical phenomena. A scenario of HIC formation, based on industrial feedback and modelling, has been proposed. A correlation between these defects, segregated areas and clusters of MnS (preferred initiation sites) has been revealed by expertise of HIC. A model of diffusion in heterogeneous alloys has then been proposed to assess the maximal pressure of H2 in such HIC. Simulation has shown that internal pressures above 860MPa are reached by considering an optimized Abel-Noble real gas behavior. The previous model has then been coupled to a failure mechanics procedure to characterize and quantify the crack growth parameters. Based on a parametric study, a scenario of HIC formation during the cooling has been proposed regarding process. Although results from preliminary simulations matched with feedback, the refined model based on the pressure induced elastic deformation of HIC has been developed but provided an underestimated kinetic of crack growth. Consequently, the multi-cracked nature of MnS clusters (homogenization of mechanical properties) and the updated local failure criterion appear to be a viable path to adjust predictions.
294

Evaluate the contribution of the fuel cladding oxidation process on the hydrogen production from the reflooding during a potential severe accident in a nuclear reactor / Évaluer la contribution du processus d’oxydation du gainage combustible sur la production d’hydrogène issue du renoyage lors d’un éventuel accident grave dans un réacteur nucléaire

Haurais, Florian 14 November 2016 (has links)
En centrales nucléaires, un accident grave est une séquence très peu probable d’événements durant laquelle des composants du réacteur sont significativement endommagés, par interactions chimiques et/ou fusion, à cause de très hautes températures. Cela peut mener à des rejets radiotoxiques dans l’enceinte et à une entrée d’air dans le réacteur. Dans ce contexte, ce travail de thèse mené chez EDF R&D visait à modéliser la détérioration du gainage combustible, en alliages de zirconium, en conditions accidentelles : haute température et soit vapeur soit mélange air-vapeur. L’objectif final était d’améliorer la simulation par le code MAAP de l’oxydation du gainage et de la production d’hydrogène, en particulier pendant un renoyage avec de l’eau. Dû à l’épaississement progressif d’une couche de ZrO2 dense et protectrice, la cinétique d’oxydation du Zr en vapeur à hautes températures est généralement (sous-)parabolique. Cependant, à certaines températures, cette couche d’oxyde peut se fissurer, devenant poreuse et non protectrice. Par ce processus de « breakaway », la cinétique d’oxydation devient plus linéaire. De plus, l’augmentation de température peut mener les matériaux du réacteur à fondre et à se relocaliser dans le fond de cuve dont la rupture peut induire une entrée d’air dans le réacteur. Dans ce cas, l’oxygène et l’azote réagissent avec les gaines pré-oxydées, successivement par oxydation du Zr (épaississant la couche de ZrO2), nitruration du Zr (formant des particules de ZrN) et oxydation du ZrN (créant de l’oxyde et relâchant de l’azote). Ces réactions auto-entretenues relancent la fissuration du gainage et de sa couche de ZrO2, induisant une hausse de sa porosité ouverte. Afin de quantifier cette porosité du gainage, un protocole expérimental innovant en deux étapes a été défini et appliqué : il consistait à soumettre des échantillons de gainage en ZIRLO® à diverses conditions accidentelles pendant plusieurs durées puis à des mesures de la porosité ouverte par porosimétrie par intrusion de mercure. Les conditions de corrosion comprenaient plusieurs températures allant de 1100 à 1500 K ainsi que de la vapeur et un mélange air-vapeur 50-50 mol%. Pour les échantillons de ZIRLO® oxydés en vapeur, sauf à 1200 et 1250 K, les transitions de cinétique n’ont pas lieu et la porosité ouverte reste négligeable au cours de l’oxydation. Cependant, pour les autres échantillons, corrodés en air-vapeur ou oxydés en vapeur à 1200 ou 1250 K, des transitions « breakaway » sont observées et les résultats de porosimétrie montrent que la porosité ouverte augmente au cours de la corrosion, proportionnellement au gain en masse. De plus, il a été mis en évidence que la distribution de tailles de pores des échantillons de ZIRLO® s’étend significativement pendant la corrosion, en particulier après « breakaway ». En effet, ces tailles vont de 60 μm à environ : 2 μm avant la transition, 50 nm juste après et 2 nm plus longtemps après. Enfin, un modèle numérique en deux étapes a été développé dans le code MAAP pour améliorer sa simulation de l’oxydation du gainage. D’abord, grâce à la proportionnalité entre porosité ouverte et gain en masse des échantillons, des corrélations de porosité ont été implémentées pour chaque condition de corrosion. Ensuite, les valeurs de porosité calculées sont utilisées pour augmenter proportionnellement la vitesse d’oxydation du gainage. Ce modèle amélioré simule ainsi non seulement les réactions chimiques des gaines en Zr (oxydation et nitruration) mais aussi leur dégradation mécanique et son impact sur leur vitesse d’oxydation. Ceci a été validé en simulant des essais QUENCH (-06, -08, -10 et -16), conduits au KIT pour étudier le comportement de gaines dans des conditions accidentelles avec un renoyage final. Ces simulations montrent un meilleur comportement thermique du gainage et une production d’hydrogène significativement plus haute et donc plus proche des valeurs expérimentales, en particulier pendant le renoyage. / In nuclear power plants, a severe accident is a very unlikely sequence of events during which components of the reactor core get significantly damaged, through chemical interactions and/or melting, because of very high temperatures. This may potentially lead to radiotoxic releases in the containment building and to air ingress in the reactor core. In that context, this thesis work led at EDF R&D aimed at modeling the deterioration of the nuclear fuel cladding, made of zirconium alloys, in accidental conditions: high temperature and either pure steam or air-steam mixture. The final objective was to improve the simulation by the MAAP code of the cladding oxidation and of the hydrogen production, in particular during a core reflooding with water. Due to the progressive thickening of a dense and protective ZrO2 layer, the oxidation kinetics of Zr in steam at high temperatures is generally (sub-)parabolic. However, at certain temperatures, this oxide layer may crack, becoming porous and not protective anymore. By this “breakaway” process, the oxidation kinetics becomes rather linear. Additionally, the temperature increase can lead core materials to melt and to relocate down to the vessel lower head whose failure may induce air ingress into the reactor core. In this event, oxygen and nitrogen both react with the pre-oxidized claddings, successively through oxidation of Zr (thickening the ZrO2 layer), nitriding of Zr (forming ZrN particles) and oxidation of ZrN (creating oxide and releasing nitrogen). These self-sustained reactions enhance the cracking of the cladding and of its ZrO2 layer, inducing a rise of its open porosity.In order to quantify this cladding porosity, an innovative two-step experimental protocol was defined and applied: it consisted in submitting ZIRLO® cladding samples first to various accidental conditions during several time periods and then to measurements of the open porosity through porosimetry by mercury intrusion. The tested corrosion conditions included numerous temperatures ranging from 1100 up to 1500 K as well as both pure steam and a 50-50 mol% air-steam mixture. For the ZIRLO® samples oxidized in pure steam, except at 1200 and 1250 K, the “breakaway” kinetic transitions do not occur and the open porosity remains negligible along the oxidation process. However, for all other samples, corroded in air-steam or oxidized in pure steam at 1200 or 1250 K, “breakaway” transitions are observed and the porosimetry results show that the open porosity increases along the corrosion process, proportionally to the mass gain. Moreover, it was evidenced that the pore size distribution of ZIRLO® samples significantly extends during corrosion, especially after “breakaway” transitions. Indeed, the detected pore sizes ranged from 60 μm down to around: 2 μm before the transition, 50 nm just after and 2 nm longer after. Finally, a two-step numerical model was developed in the MAAP code to improve its simulation of the cladding oxidation. First, thanks to the proportionality between open porosity and mass gain of cladding samples, porosity correlations were implemented for each tested corrosion condition. Second, the calculated porosity values are used to proportionally enhance the cladding oxidation rate. This improved model thus simulates not only chemical reactions of Zr-based claddings (oxidation and nitriding) but also their mechanical degradation and its impact on their oxidation rate. It was validated by simulating QUENCH tests (-06, -08, -10 and -16), conducted at KIT to study the behavior of claddings in accidental conditions with a final reflooding. These simulations show a better cladding thermal behavior and a hydrogen production significantly higher and so closer to experimental values, in particular during the reflooding.
295

Courant supraconducteur au travers d'un métal ferromagnétique : étude de la jonction pi

Sellier, Hermann 03 December 2002 (has links) (PDF)
Cette thèse étudie quelques aspects de l'effet de proximité entre un supraconducteur (S) et un métal ferromagnétique (F). Dans un métal normal confiné entre deux électrodes supraconductrices, il se forme des états liés qui permettent le passage cohérent de paires d'électrons (de spins opposés). Le supercourant transporté par ces états dépend de la différence de phase $\phi$ entre les deux supraconducteurs. Dans le cas d'une jonction S/F/S, l'énergie d'échange ferromagnétique modifie le spectre des états liés et peut inverser la direction du supercourant (par rapport au cas S/N/S). En l'absence de courant, l'état fondamental a alors une différence de phase $\phi=\pi$ (au lieu de $\phi=0$) et l'on parle de {\it jonction $\pi$}. La transition 0-$\pi$ peut s'observer en fonction de l'épaisseur ferromagnétique, mais également en fonction de la température si l'énergie d'échange n'est pas beaucoup plus grande que le gap supraconducteur. Cette transition se caractérise par une dépendance non-monotone du courant critique avec la température, comportement que nous avons observé dans des jonctions Nb/Cu$_{52}$Ni$_{48}$/Nb. Dans ces jonctions la couche de cuivre-nickel est très faiblement ferromagnétique, voire super-paramagnétique. Le courant critique s'annule en fonction de la température à une valeur $T^*$ (inférieure à $T_c$): en-dessous de $T^*$ la jonction est dans l'état~$\pi$, au-dessus de $T^*$ elle est dans l'état~0. L'annulation est indépendante du champ magnétique qui produit une figure de diffraction toujours centrée en champ nul. L'effet Josephson alternatif étudié de part et d'autre de la transition 0-$\pi$ ne montre pas de différence entre les deux états. L'évolution du courant critique avec l'épaisseur ferromagnétique et la température peut être modélisée à partir des équations d'Usadel. Cette analyse suggère la présence d'un processus de diffusion spin-flip qui réduit fortement l'amplitude du courant critique. Les bicouches S/F présentent également des états liés dont le spectre est fonction de l'énergie d'échange et de l'épaisseur ferromagnétique. La température de transition supraconductrice présente des oscillations en fonction de ces deux paramètres, car elle est sensible à la position de ces états via l'effet de proximité inverse. Nous avons pu mesurer une faible signature de cet effet dans des bicouches Nb/CuNi. Dans les tricouches F$_1$/S/F$_2$, de type vanne de spin, la température de transition doit en théorie dépendre de l'orientation relative des aimantations ferromagnétiques. Cependant nous n'avons mesuré aucune différence dans des multicouches NiO/Co/Nb/Co, puis NiO/CuNi/Nb/CuNi, car l'épaisseur de niobium en-dessous de laquelle la supraconductivité disparaît reste plusieurs fois supérieure à la longueur de cohérence. Cette saturation de l'épaisseur critique est attribuée à un fort processus de diffusion spin-flip dans cet alliage très dilué.

Page generated in 0.0317 seconds