• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 687
  • 599
  • 76
  • 44
  • 43
  • 41
  • 21
  • 17
  • 16
  • 15
  • 13
  • 9
  • 7
  • 5
  • 5
  • Tagged with
  • 1815
  • 654
  • 358
  • 322
  • 254
  • 252
  • 236
  • 222
  • 221
  • 201
  • 200
  • 196
  • 194
  • 188
  • 165
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
681

USING ANAEROBIC CO-DIGESTION WITH ADDITION OF MUNICIPAL ORGANIC WASTES AND PRE-TREATMENT TO ENHANCE BIOGAS PRODUCTION FROM WASTEWATER TREATMENT PLANT SLUDGE

Li, CHENXI 20 September 2012 (has links)
In this project, by adding selected co-substrates and by incorporating optimum pre-treatment strategies, four experimental phases were conducted to assess the enhancement of biogas production from anaerobic co-digestion using wastewater treatment plant sludge as the primary substrate. In the first phase, the feasibility of using municipal organic wastes (synthetic kitchen waste (KW) and fat, oil and grease (FOG)) as co-substrates in anaerobic co-digestion was investigated. KW and FOG positively affected biogas production from anaerobic co-digestion, with ideal estimated substrate/inoculum (S/I) ratio ranges of 0.80-1.26 and 0.25-0.75, respectively. Combined linear and non-linear regression models were employed to represent the entire digestion process and demonstrated that FOG could be suggested as the preferred co-substrate. The effects of ultrasonic and thermo-chemical pre-treatments on the biogas production of anaerobic co-digestion with KW or FOG were investigated in the second phase. Non-linear regressions fitted to the data indicated that thermo-chemical pre-treatment could increase methane production yields from both FOG and KW co-digestion. Thermo-chemical pre-treatments of pH=10, 55°C provided the best conditions to increase methane production from FOG co-digestions. In the third phase, using the results obtained previously, anaerobic co-digestions with FOG were tested in bench-scale semi-continuous flow digesters at Ravensview Water Pollution Control Plant, Kingston, ON. The effects of hydraulic retention time (HRT), organic loading rate (OLR) and digestion temperature (37°C and 55°C) on biogas production were evaluated. The best biogas production rate of 17.4±0.86 L/d and methane content 67.9±1.46% was obtained with thermophilic (55°C) co-digestion at HRT=24 days and OLR=2.43±0.15 g TVS/L•d. In the fourth phase, with the suitable co-substrate, optimum pre-treatment method and operational parameters identified from the previous phases, anaerobic co-digestions with FOG were investigated in a two-stage thermophilic semi-continuous flow co-digestion system modified to incorporate thermo-chemical pre-treatment of pH=10 at 55°C. Overall, the modified two-stage co-digestion system yielded a 25.14±2.14 L/d (with 70.2±1.4% CH4) biogas production, which was higher than that obtained in the two-stage system without pre-treatment. The positive results could provide valuable information and original contribution to justify full-scale investigation in a continuing research program and to the field of research on anaerobic co-digestion of municipal organic wastes. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2012-09-20 09:00:09.719
682

Characterisation of the microbial communities present in an anaerobic baffled reactor utilising molecular techniques

Lalbahadur, Tharnija January 2005 (has links)
Thesis (M.Tech.: Biotechnology)-Dept. of Biotechnology, Durban Institute Of Technology, 2005 xxiii, 172 p. : ill. ; 30 cm / The provision of safe and sanitary water is a constitutional right and above all, a necessity of life. As a result of the rapid urbanisation and the past policies of apartheid, a large population of South Africa dwell in informal settlements, where there is very little hope of development, as the government does not possess the resources that are necessary for a full-scale sanitation programme. Therefore, on-site treatments have been considered to provide sanitation in these dense peri-urban areas. The anaerobic baffled reactor (ABR) is one such sanitation system. This reactor utilises the phenomenon of anaerobic digestion to degrade substrates. One of the major disadvantages of any anaerobic treatment processes is the extreme sensitivity of the bacterial communities, thus inducing slow recovery rates following toxic shocks. Therefore, an understanding of these microbial consortia is essential to effectively control, operate and optimise the anaerobic reactor. Fluorescence in situ hybridization, 4’,6-diamidino-2-phenylindole (DAPI) staining and DNA sequencing techniques were applied to determine the microbial consortium, as well as their reactions to daily operating conditions. With an understanding of these populations and their responses to perturbations within the system, it is possible to construct an anaerobic system that is successful in its treatment of domestic wastewater. In situ hybridizations were conducted for three operating periods, each characterised by specific flow rates. Results showed Eubacterial population dominance over the Archaeal population throughout both of the operating periods investigated. However, these cells cumulatively consisted of 50% of the total biomass fraction, as determined by DAPI staining. Group-probes utilised revealed a high concentration of fermentative acidogenic bacteria, which lead to a decrease in the pH values. It was noted that the ABR did not separate the acidogenic and methanogenic phases, as expected. Therefore, the decrease in pH further inhibited the proliferation of Archaeal acetoclastic methanogens, which were not present in the second operating period. DNA sequencing results revealed the occurrence of the hydrogenotrophic Methanobacterium and Methanococcus genera and confirmed the presence of Methanosarcina. Sequencing of the bacterial DNA confirmed the presence of the low G+ C Gram Positives (Streptococcus), the high G+C Gram Positives (Propionibacterium) and the sulfate reducing bacteria (Desulfovibrio vulgaris). However, justifications were highly subjective due to a lack of supportive analytical data, such as acetate, volatile fatty acids and methane concentrations. Despite this, findings served to add valuable information, providing details on the specific microbial groups associated with ABR treatment processes.
683

Process development for co-digestion of toxic effluents : development of screening procedures

Dlamini, Sithembile January 2009 (has links)
Submitted in partial fulfillment of academic requirements for the degree of Masters of Technology: Department of Chemical Engineering, Durban University of Technology, 2009. / The primary objective of this project was to establish a screening protocol which could be used to access high strength/toxic effluent for toxicity and degradability prior to being disposed in wastewater treatment works. The serum bottle method (materials and method section) is simple, makes use of small glass vials (125 mℓ-volume were used in this research) which do not require any stirring nor feeding device or other engineered tool: a serum bottle is sealed immediately after all components are poured inside and thereafter conducted in a batch mode and occasionally shaken to ensure adequate homogenisation of the components. The only variables which are regularly measured are the volume of biogas produced and gas composition. The two assays, originally developed by Owen et al. (1979) to address the toxicity and the biodegradability have been combined in a single test called AAT, Anaerobic Activity Test, which enables one to assess simultaneously the inhibitory effect on the methanogenic biomass and the biodegradability of the test material as well as the ability of the biomass to adapt to the test material and therefore to overcome the initial inhibition. The screening protocol is illustrated in Annexure A. The protocol consists of a sequence of assays which employ the serum bottle methodology. A first step of the procedure is aimed at rapidly estimating whether the effluent is potentially toxic to the methanogenic biomass and in what concentration. The second step is a more extensive screening, aimed at precisely characterising the toxicity of the effluent, the extent of biodegradation that can be achieved, as well as at establishing whether a potential for adaptation of the biomass exists upon exposure. If the sample passes the screening stage, the same serum bottle method will be used to conduct a series of batch co-digestion experiments aimed at evaluating a convenient volumetric ratio between the test material and the readily biodegradable substrate. Finally, a laboratory-scale codigestion trial could simulate the full-scale process, thus enabling the selection of appropriate operating conditions for the start-up of the full-scale implementation. This the protocol has been used to assess the amenability to be anaerobically (co)digested of four industrial effluents, i.e. size and distillery effluents which are classified as high strength and scour and synthetic dye effluents classified as toxic. From the biodegradability and toxicity assays the following conclusions were drawn. The size and distillery effluent were found to be ii degradable at 32 g COD/ℓ and 16 g COD /ℓ concentrations respectively. Concentrations higher than these stipulated above were found inhibitory. Scour effluent was found to be recalcitrant at all concentration tested and synthetic dye was 100 % degradable at 0.12 g COD/ℓ and lower and highly inhibitory at concentration higher than 1.1 g COD/ℓ. Co-digestion experiment using serum bottle AAT method were undertaken between effluents i.e. size + distillery, size + scour, distillery + synthetic dye in an attempt to verify whether the digestion performance benefits from simultaneous presence of the two substrates. The volumetric ratios between the effluents were 1:1, 1:2, 2:1. The presence of two mixtures in the case of size and distillery had better methane production compared to individual substrate i.e. size or distillery separate. The mixture with volumetric flow rate ratio of 2:1 (size: distillery) was preferable in terms of process performance as it had highest COD removal compared to the other mixtures /ratios and individual substrates. The mixture of size and scour (2:1) had highest degradation percentage compared to other ratios but not high enough to qualify as degradable (less than 50 %). The mixture of distillery and synthetic dye had the same pattern with ratio of 2:1 giving the best COD conversion. The pattern than can be drawn from the degradability of mixtures is: the degradability of mixtures increase with the increasing amount of the most biodegradable compound/effluent in the mixture. Serum bottle results provided the detailed information regarding the safe operating parameters which should be used during the starting point for the larger scale investigation i.e. lab-scale investigations. The lab scale investigations were conducted primarily to validate screening and monitor how the digestion progresses and also to provide data for future project i.e. pilot plant investigation. Other effluents i.e. scour and synthetic dye and their co-digestion mixture were excluded from the lab-scale investigations since they were found to be non- biodegradable i.e. their COD conversion was less the 50 % in the screening protocol. Due to time constrains and other technical difficulties in the laboratory, the co-digestion of size and distillery mixture trials we not conducted on the laboratory scale. Laboratory-scale digestion trials showed that the best organic loading rate for distillery effluent in terms of reactor performance and stability was 1.0g COD/ℓ with efficiency of about 45 %, and for size was 2.0g COD/ℓ with an efficiency of 40 %. The efficiencies obtained in both effluents trials could be greatly improved by acclimation; however these results showed that the digestion of these effluents on the bigger scale is possible.
684

Microbiological investigations into granular sludge from two anaerobic digesters differing in design and industrial effluent purified.

Howgrave-Graham, Alan R. January 1995 (has links)
Due to a combination of selection criteria, sludges from upflow anaerobic digesters treating industrial waste waters consist primarily of well-settling, dense agglomerates called granules. Quantification of the component mixed microbial populations of these granules has been severely restricted by the inability of researchers to disrupt them without concomitantly destroying numerous cells. In situ quantification using light and electron microscopy is complicated by the high cell numbers and bacterial diversity; the small cell size; and the destructive nature of electron microscopy preparative techniques preventing the viewing of more than a small percentage of the population at a time. For these reasons, in this investigation, standardization of qualitative electron microscopic techniques was performed prior to their application to granules. Isolation and electron and light microscopic techniques were applied to granules from a fullscale clarigester treating effluent from a maize-processing factory. In addition, a method using montaged transmission electron micrographs (TEMs) taken along a granule radius, and image analysis, was developed for bacterial quantification within granules. This method, together with antibody probe quantification, was applied to granules from an upflow anaerobic sludge blanket (UASB) digester treating a brewery effluent. The clarigester granules contained a metabolically and morphologically diverse population of which many members were not isolated or identified. By contrast, the UASB digester granules consisted primarily of morphotypes resembling Methanothrix, Methanobacterium and Desulfobulbus, in order of predominance. However, only about one-third of the population reacted with antibody probes specific to strains of bacterial species expected to occur within these granules. According to the antibody probe library used, the Methanobacterium-like cells observed in TEMs were probably Methanobrevibacter arboriphilus. From this study it is apparent that different anaerobic digester designs, operational parameters, and the chemical composition of the waste water purified, are factors which influence the formation and maintenance of granules differing with respect to their microbial populations. Until the difficulties associated with quantification are overcome, the processes governing granule formation and/or population selection will remain obscure. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1995.
685

Mesure de la capacité de travail anaérobie au moyen d'un dynamomètre isocinétique

Gouadec, Kenan January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
686

Modelling anaerobic digesters in three dimensions: integration of biochemistry with computational fluid dynamics

Gaden, David L. F. 23 August 2013 (has links)
Anaerobic digestion is a process that simultaneously treats waste and produces renewable energy in the form of biogas. Applications include swine and cattle waste management, which is still dominated by aerobic digestion, a less environmental alternative. The low adoption rates of anaerobic digestion is partly caused by the lack of modelling basis for the technology. This is due to the complexity of the process, as it involves dozens of interrelated biochemical reactions driven by hundreds of species of micro-organisms, immersed in a three-phase, non-Newtonian fluid. As a consequence, no practical computer models exist, and therefore, unlike most other engineering fields, the design process for anaerobic digesters still relies heavily on traditional methods such as trial and error. The current state-of-the-art model is Anaerobic Digestion Model No. 1 (ADM1), published by the International Water Association in 2001. ADM1 is a bulk model, therefore it does not account for the effects of concentration gradients, stagnation regions, and particle settling. To address this, this thesis works toward the creation of the first three-dimensional spatially resolved anaerobic digestion model, called Anaerobic Digestion Model with Multi-Dimensional Architecture (ADM-MDA), by developing a framework. The framework, called Coupled Reaction-Advection Flow Transient Solver (CRAFTS), is a general reaction solver for single-phase, incompressible fluid flows. It is a novel partial differential and algebraic equation (PDAE) solver that also employs a novel programmable logic controller (PLC) emulator, allowing users to define their own control logic. All aspects of the framework are verified for proper function, but still need validation against experimental results. The biochemistry from ADM1 is input into CRAFTS, resulting in a manifestation of ADM-MDA; however the numerical stiffness of ADM1 is found to conflict with the second order accuracy of CRAFTS, and the resulting model can only operate under restricted conditions. Preliminary results show spatial effects predicted by the CRAFTS model, and non-observable in the bulk model, impact the digester in a non-trivial manner and lead to measurable differences in their respective outputs. A detailed discussion of suggested work to arrive at a practical spatially resolved anaerobic digestion model is also provided.
687

Molecular and physiological characterization of thiosulphate-oxidizing microbial associations prior to use in hydrogen sulphide biofiltration.

Laughlin, Jamie B. A. January 2000 (has links)
Interacting microbial associations capable of utilizing thiosulphate as an energy source were enriched/isolated from activated sludge, landfill site [mal covering soil and soil from an acid mine water drainage site. The isolates were designated Lf-I, Ws-2 and Am-3, respectively. Although hydrogen sulphide was the target molecule for gas biofiltration, thiosulphate, which is a key oxidized intermediate, was used in this study due to the difficulty of working with a toxic gas. Together with thiosulphate oxidation, the microbial associations were assessed for their abilities to oxidize dissolved sulphide to elemental sulphur. Physiological analyses (temperature, pH and substrate concentration optimization) were made with closed and open cultures while morphological characterization and species compositional changes were monitored by light and scanning electron microscopy (SEM). To investigate further functional and structural responses to physiological changes, denaturing-gradient gel electrophoresis (DGGE) separation of PCR-amplified 16S DNA gene fragments and Biolog GN microtitre plates were used. The associations were found to be active metabolically between 0 and 35°C, 15 and 50°C, and 15 and 45°C, with optimum temperatures of 25, 40 and 35°C for Lf-l, Ws-2 and Am-3, respectively. The optimum pH range for microbial association Lf-l was between 3 and 4. The maximum specific growth rates of associations Lf-l , Ws-2 and Am-3 were 0.08, 0.06 and 0.03 h~l , respectively. Components of all three Gram negative rod-dominated associations were motile and displayed anaerobiosis. During open culture cultivation the species complement of Lf-l , as determined by morphological analysis, changed. The same association oxidized sulphide (40 ppm) to sulphur although Ws-2 and Am-3 did not have this capacity. Biolog GN plates detected pH-effected species compositional changes in Lf-l and these were confirmed by DGGE. The same technique showed that enrichment had occurred in the Biolog GN wells. Species composition changes also resulted in response to different pH values (2 to 9), temperatures (5 to 40°C) and dilution rates (0.003 to 0.09 h-1 ), but activity changes were not always accompanied by population profile changes. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2000.
688

Investigation of non-Newtonian flow in anaerobic digesters

Langner, Jeremy M. 12 January 2010 (has links)
This thesis examines how the non-Newtonian characteristics of liquid hog manure affect the flow conditions within a steady-flow anaerobic digester. There are three main parts to this thesis. In the first part of this thesis, the physical properties of liquid hog manure and their variation with temperature and solids concentration are experimentally determined. Naturally¬¬-settled manure sampled from an outdoor storage lagoon is studied, and density, viscosity, and particle size distribution are measured. Hog manure with total solids concentrations of less than 3.6% exhibits Newtonian behaviour; manure between 3.6% and 6.5% total solids is pseudoplastic, and fits the power law; manure with more than 6.5% total solids exhibits non-Newtonian and time-dependent characteristics. The second part of this thesis investigates the flow of Newtonian and non-Newtonian fluids—represented by tap water and xanthan gum solution, respectively—within four lab-scale reactor geometries, using residence time distribution (RTD) experiments. The effect of reactor geometry, flow rate, and fluid viscosity are evaluated. In the third part of this thesis, flow conditions within lab-scale and pilot-scale anaerobic digester reactors are simulated using three-dimensional modeling techniques. The RTDs of lab-scale reactors as predicted by the 3D numerical models compare well to the experimental results. The 3D models are also validated using data from particle image velocimetry (PIV) experiments. Finally, the viscous properties of liquid hog manure at 3% and 8% total solids are incorporated into the models, and the results are evaluated.
689

Intervalinės treniruotės pratybų poveikis bėgikų raumenims bei širdies funkcinei būklei / Impact of interval training on muscles and the cardiac functional state

Liesis, Audrius 10 September 2013 (has links)
Darbo tikslas: Nustatyti intervalinės treniruotės metodu atliktų pratybų įtaką bėgikų raumenims bei širdies funkcinei būklei. Darbo uždaviniai: 1. Nustatyti intervalinio treniruotės metodu atliktų pratybų įtaką raumenų darbingumo rodiklių pasikeitimui, atliekant vertikalių šuolių užduotis. 2. Palyginti raumenų darbingumo kaitos ypatybės, atliekant maksimalaus anaerobinio krūvio mėginį normos ir nuovargio būsenose. 3. Nustatyti intervalinio treniruotės metodu atliktų pratybų įtaką širdies funkcinių rodiklių kaitai atliekant dozuoto aerobinio krūvio mėginį. 4. Nustatyti intervalinio treniruotės metodu atliktų pratybų įtaką širdies funkcinių rodiklių kaitai atliekant dozuoto aerobinio ir maksimalaus anaerobinio krūvio mėginius. Tyrimo objektas: Raumenų ir širdies funkcinių rodiklių reakcija į intervaliniu treniruotės metodu atliktas pratybas. Tyrime dalyvavo dvylika vidutinio meistriškumo vidutinių nuotolių bėgikai (LSU studentai), kurie prieš intervalinio treniruotės metodu atliktu pratybų ir praėjus 15 min. po jų LSU Kineziologijos laboratorijoje dalyvavo fizinės ir funkcinės būklės vertinime. Šių vertinimų metu tiriamieji atliko vertikalius šuolių testus ant Tenzo plokštės: šuolis į aukštį pritūpiant 900 kampu, šuolis į aukštį iš fiksuotos 900 kampu padėties, šuolis į aukštį nuo 10 cm pakylos (Drop jump), taip pat Rufje fizinio krūvio mėginį (dozuoto fizinio krūvio mėginys), 30 s vertikalaus šuoliavimo testą ir po penkių minučių – dar kartą atliko Rufje mėginį. Pagrindiniai... [toliau žr. visą tekstą] / The aim of this study was to establish the impact of interval training session on muscles and cardiac functional state. The following tasks were set: 1- Determine the influence of anaerobic interval training session on the muscular performance during the vertical jump tasks. 2 – Compare the muscle work capacity after and before anaerobic interval training on 30 seconds vertical jump test. 3 – Determine the influence of anaerobic work-load on dynamics of cardiac indices while performing a dosed exercise test. 4 – Determine the influence of interval anaerobic training on cardiac indices while performing a dosed and maximal exercise tests. Methods. The study subjects were healthy and physical active students (men, n = 12). Before and after the anaerobic type training session performed by method of interval training were tested on physical and functional condition tests. To find out physical conditional were used vertical jump tasks. To asses the vertical jump the force plate with the jump height and take-off time measurer was used. Function condition tests were Roufier test and the 30 second vertical jump test, and after 5 minutes Roufier test was repeated. Main parameters of anaerobic interval training were 5x200m (28,0–29,0) [2:00] or some more repetition. The results obtained during the study showed that muscular changes can be described by registered parameters of vertical jumps indicating that the same result of the jump could be achieved by use if compensatory abilities, i... [to full text]
690

Anaerobinės treniruotės ir fizinių ypatybių ryšys su 100 metrų plaukimo varžybų rezultatu / Effect Of Physical Properties And Anaerobic Training On 100 Meters Swimming Results In Competition

Vaitkaitis, Emilis 18 May 2005 (has links)
ABSTRACT Effect Of Physical Properties And Anaerobic Training On 100 Meters Swimming Results In Competition Purpose: The objective was to examine which physical property has the biggest influence on 100 meters swimming result and to find out whether anaerobic training increase swimming performance. Methods: The research was devoted into 3 main stages. The goal of the 1-st stage was to examine connection between FINA points and the results of different physical capacity tests. In this stage of research were examined 20 elite swimmers (males, n=20, age 21 ± 2). In the 2-nd stage of the research were examined 37 elite male swimmers (n =37, age 21.6 ± 2.3). The goal is to investigate connections between FINA points and strength indexes. In the third stage of the research 6 male swimmers (age 20 ±1.8) were assigned to the training group. The specific anaerobic training consisted of approximately 60 % anaerobic intensity of all physical loading, 5 times a week, for 6 weeks. The aim of this stage of research was to find out whether anaerobic training increase swimming performance. Results: There are no significant connections between FINA points and the indexes of physical development, indexes of velocity and endurance. The direct coefficient of correlation was observed in FINA points and strength index (r = 0.86, p <0.05, n = 37). 6 weeks of anaerobic training improved swimming result, in distance of 100 meters, approximately 8 ± 3%, also increased index of strength 12... [to full text]

Page generated in 0.1157 seconds