• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 236
  • 65
  • 35
  • 25
  • 24
  • 12
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 498
  • 94
  • 83
  • 80
  • 65
  • 62
  • 60
  • 48
  • 44
  • 43
  • 42
  • 40
  • 39
  • 39
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
491

Tyrphostin AG126 modulates Toll-like receptor (TLR) activation-induced functions in microglia by protein tyrosine kinase (PTK) -dependent and -independent mechanisms / Tyrphostin AG126 moduliert Toll-like-Rezeptor (TLR) aktivierungsinduzierte Funktionen in Mikroglia mittels Proteintyrosinkinase (PTK)-abhängiger und unabhängiger Mechanismen

Menzfeld, Christiane 24 August 2010 (has links)
Tyrphostine stellen eine Klasse synthetischer Protein-Tyrosin-Kinase (PTK)-Hemmer, die sich strukturell vom Tyrosin ableiten und dazu dienen, spezifisch Substratphosphorylierungen zu verhindern. Tyrphostin AG126 zeigte entzündungshemmende Eigenschaften in zahlreichen Tiermodellen von Erkrankungen. Dies schließt den septischen Schock ein, der durch Lipopolysaccharid (LPS) Gram-negativer Bakterien induziert werden kann, sowie die durch Zellwandstrukturen Gram-positiver Bakterien ausgelöste bakterielle Meningitis. Wir zeigen nun positive AG126-Effekte in einer weiteren ZNS-Komplikation, der experimentellen autoimmunen Enzephalomyelitis (EAE) als einem Modell der Multiplen Sklerose, wo AG126-Behandlung die klinischen Symptome und Myelinschäden mildert. Auf zellulärer Ebene beeinflusst AG126 eine Vielzahl von Funktionen der Mikroglia, der ZNS-Makrophagen, die durch Aktivierung von Toll-like-Rezeptoren (TLR s) ausgelöst werden. Diese Rezeptoren der angeborenen Immunität erkennen mikrobielle Strukturen sowie Faktoren, die durch Gewebeverletzungen generiert werden. Mit dem Fokus auf Mikroglia untersuchte die vorliegende Arbeit erstmals molekulare Zielstrukturen und Mechanismen des AG126. AG126 beeinflusst besonders Geninduktionen, die vom Adaptorprotein MyD88, einem der zwei TLR-Signalwege, abhängen. Bruton s Tyrosin-Kinase (BTK), eine MyD88-assoziierte PTK, kann von AG126 in molekularen und zellbasierten Assays gehemmt werden. Diese Hemmung kann allerdings nicht das gesamte Spektrum der AG126-Effekte erklären. Daher müssen alternative, sogar PTK-unabhängige Mechanismen, in Betracht gezogen werden, basierend auf strukturellen und funktionellen Ähnlichkeiten zu Tyrosin-abgeleiteten und/oder mikrogliaaktiven Molekülen. Diese alternativen Mechanismen umfassen Prinzipien, die für Antioxidantien, adrenerge Agonisten, Glukokortikoide oder Entkoppler der oxidativen Phosphorylierung bekannt sind. Tatsächlich zeigen Analysen auf der Grundlage von Kernspinresonanzspektroskopie, dass AG126 in die Hauptprodukte 3-Hydroxy-4-Nitroben zaldehyd (BZ) und Malononitril (MN) zerfallen kann, von denen MN, aber nicht BZ, die AG126-Effekte in Mikroglia imitiert. Ein ähnliches Verhalten zeigen weitere Tyrphostine, die ebenfalls das kritische MN-Strukturmotiv aufweisen. Tierexperimente zeigen schließlich, dass nur AG126 als Ausgangstruktur, nicht aber MN oder BZ, das Gesamtspektrum protektiver Effekte in der EAE vermittelt. Die Identifizierung des eigentlichen von AG126 bzw. von MN beeinflussten Targets könnte somit einen wesentlichen Mechanismus für die Entwicklung von entzündungshemmenden Verbindungen offenlegen.
492

Modulation neuro-glial associée à la sensibilisation croisée des organes pelviens : Effet sur la nociception viscérale. / Neuro-glial modulation associated with cross sensitization of pelvic organs : Effect on visceral nociception.

Atmani, Karim 04 July 2018 (has links)
Le syndrome de l’intestin irritable (SII) et le syndrome de la vessiedouloureuse (SVD) sont tous deux caractérisés par une hypersensibilité viscérale àla distension. Sur le plan épidémiologique, ces deux syndromes sont étroitementassociés puisque les patients SII ont une prévalence du syndrome de la vessiedouloureuse 7 fois plus élevée que la population générale. Cependant, le mécanismeresponsable de la sensibilisation du tube digestif et de l’appareil urinaire n’a jamaisété étudié. Compte tenu de l’innervation commune de ces deux organes, il estprobable que ce mécanisme mette en jeu sur le long terme des phénomènes de laplasticité neuro-gliale aux niveaux communs d’intégration de la sensibilité pelvienne.L’objectif général de ce travail était d’établir et de caractériser un modèleanimal de sensibilisation croisée vessie/colon, aigu et chronique, afin de mieuxcomprendre les mécanismes impliqués dans l’hypersensibilité viscérale croisée. / Irritable bowel syndrome (IBS) and Bladder pain syndrome (BPS) are bothcharacterized by visceral hypersensitivity to distension. Epidemiology showed thatthese two syndromes are closely associated since IBS patients have a prevalence ofbladder pain syndrome that is 7 times higher than the general population. However,the mechanism responsible for sensitization of the gastrointestinal tract and theurinary tract has never been studied. Given the common innervation of these twoorgans, it is likely that this mechanism involves long-term phenomena of neuro-glialplasticity at the common levels of integration of pelvic sensitivity.The overall objective of this work was to establish and characterize an animalmodel of bladder / colon cross-sensitization, acute and chronic, to better understandthe mechanisms involved in cross-visceral hypersensitivity.
493

Characterizing Microglial Response to Amyloid: From New Tools to New Molecules

Priya Prakash (10725291) 29 April 2021 (has links)
<p>Microglia are a population of specialized, tissue-resident immune cells that make up around 10% of total cells in our brain. They actively prune neuronal synapses, engulf cellular debris, and misfolded protein aggregates such as the Alzheimer’s Disease (AD)-associated amyloid-beta (Aβ) by the process of phagocytosis. During AD, microglia are unable to phagocytose Aβ, perhaps due to the several disease-associated changes affecting their normal function. Functional molecules such as lipids and metabolites also influence microglial behavior but have primarily remained uncharacterized to date. The overarching question of this work is, <i>How do microglia become dysfunctional in chronic inflammation</i>? To this end, we developed new chemical tools to better understand and investigate the microglial response to Aβ <i>in vitro</i> and <i>in vivo</i>. Specifically, we introduce three new tools. (1) Recombinant human Aβ was developed via a rapid, refined, and robust method for expressing, purifying, and characterizing the protein. (2) A pH-sensitive fluorophore conjugate of Aβ (called Aβ<sup>pH</sup>) was developed to identify and separate Aβ-specific phagocytic and non-phagocytic glial cells <i>ex vivo</i> and <i>in vivo</i>. (3) New lysosomal, mitochondrial, and nuclei-targeting pH-activable fluorescent probes (called LysoShine, MitoShine, and NucShine, respectively) to visualize subcellular organelles in live microglia. Next, we asked, <i>What changes occur to the global lipid and metabolite profiles of microglia in the presence of Aβ in vitro and in vivo</i>? We screened 1500 lipids comprising 10 lipid classes and 700 metabolites in microglia exposed to Aβ. We found significant changes in specific lipid classes with acute and prolonged Aβ exposure. We also identified a lipid-related protein that was differentially regulated due to Aβ <i>in vivo</i>. This new lipid reprogramming mechanism “turned on” in the presence of cellular stress was also present in microglia in the brains of the 5xFAD mouse model, suggesting a generic response to inflammation and toxicity. It is well known that activated microglia induce reactive astrocytes during inflammation. Therefore, we asked, <i>What changes in proteins, lipids, and metabolites occur in astrocytes due to their reactive state? </i>We provide a comprehensive characterization of reactive astrocytes comprising 3660 proteins, 1500 lipids, and 700 metabolites. These microglia and astrocytes datasets will be available to the scientific community as a web application. We propose a final model wherein the molecules secreted by reactive astrocytes may also induce lipid-related changes to the microglial cell state in inflammation. In conclusion, this thesis highlights chemical neuroimmunology as the new frontier of neuroscience propelled by the development of new chemical tools and techniques to characterize glial cell states and function in neurodegeneration.</p>
494

The combined role of amyloid precursor protein intracellular domain and amyloid-beta on synaptic transmission

Prozorov, Arsenii 08 1900 (has links)
Ces dernières années, de nombreuses études ont prouvé que la protéine précurseur de l'amyloïde (APP) joue un rôle clé dans le processus de formation de la mémoire, le développement des connexions synaptiques et la régulation de la force synaptique. L’importance d’APP naît du fait que son clivage protéolytique produit le peptide bêta-amyloïde (Aβ), considéré comme l'un des facteurs cruciaux dans le développement de la maladie d'Alzheimer. Les recherches se sont donc concentrées sur Aβ plutôt que sur le domaine intracellulaire APP (APP-ICD). Récemment, il a été démontré qu’APP-ICD affecte l'induction de la plasticité synaptique, et Aβ à haute concentration est connu pour induire une dépression synaptique. Ici, nous montrons qu’APP-ICD et Aβ fonctionnent ensemble et induisent une dépression synaptique en modifiant la transmission synaptique par effet additif. L’activation de la caspase-3 clivant APP-ICD est nécessaire pour la dépression à long terme. Nous constatons que l’activation de la caspase-3 et son site de clivage d’APP-ICD, ainsi que le clivage d’APP par la gamma-sécrétase sont nécessaires à la dépression synaptique dépendante d’Aβ. La microglie assure la clairance d’Aβ et certains effets de plasticité. Nous démontrons qu’elle médie partiellement la dépression synaptique dépendante d’Aβ. Les mécanismes par lesquels APP-ICD et Aβ médient la dépression synaptique ne sont pas connus. Ici, nous discutons de pistes possibles pour la recherche future, notamment des changements dans l'homéostasie du calcium en tant que cible thérapeutique potentielle. Comprendre comment APP-ICD et Aβ travaillent ensemble pour induire une dépression synaptique aiderait à développer de meilleurs traitements pour la maladie d'Alzheimer. / In recent years, more and more evidence has proven that the amyloid precursor protein (APP) plays a key role in the process of memory formation, the development of synaptic connections, and the regulation of synaptic strength. APP rose to prominence since its proteolytic cleavage produces the amyloid-beta (Aβ) peptide, which is believed to be one of the crucial factors in the development of Alzheimer disease. Therefore, most of the research focused on Aβ, while APP intracellular domain (APP-ICD) received much less attention. In a recent study, APP-ICD was shown to affect the induction of synaptic plasticity, and Aβ at high concentration is known to induce synaptic depression. Here we show that APP-ICD works together with Aβ to induce synaptic depression, meaning they have an additive effect that changes synaptic transmission. Caspase-3 cleaves APP-ICD, and its activation is required for long-term depression. We found that the caspase-3 cleavage site of APP-ICD and caspase-3 activation are needed for Aβ-dependent synaptic depression. We also show that cleavage of APP by gamma-secretase is needed for the effect. Microglia mediate clearance of Aβ as well as some plasticity effects. We demonstrate that microglia partially mediate Aβ-dependent synaptic depression. The mechanisms of how APP-ICD and Aβ mediate synaptic depression are not known, here, we discuss possible avenues for future research, specifically changes in calcium homeostasis as a potential therapeutic target. Hence, understanding how APP-ICD and Aβ work together to induce synaptic depression would aid in developing better treatments for Alzheimer disease.
495

Morphological and transcriptional heterogeneity of microglia in the normal adult mouse brain

Bakina, Olga 26 February 2024 (has links)
Ziel dieser Doktorarbeit ist eine umfassende Untersuchung der Heterogenität von Mikroglia aus morphologischer, elektrophysiologischer und transkriptioneller Perspektive mit dem Schwerpunkt auf Unterschiede zwischen weißer und grauer Substanz. Im ersten Kapitel diskutiere ich die morphologische Heterogenität von Mikroglia mit dem Fokus auf Satelliten- und Parenchymale-Mikroglia. Wir führten eine eingehende Analyse mehrerer Hirnareale durch und quantifizierten die Anzahl der Satellitenmikroglia, die mit verschiedenen neuronalen Subtypen in Kontakt stehen. Wir fanden heraus, dass die Anzahl der Satellitenmikroglia stark mit der neuronalen Dichte eines bestimmten Bereichs korreliert. Im zweiten Kapitel dieser Arbeit untersuche ich die transkriptionelle Heterogenität von Mikroglia aus weißer und grauer Substanz, wobei ich die in Gliazellen neu etablierte Patch-seq-Methode anwende. Diese Methode ermöglicht es eine Kombination aus morphologischen, lektrophysiologischen und transkriptionellen Profilen einzelner Zellen zu erhalten, die es erlauben, zelluläre Unterschiede zu charakterisieren. Wir identifizieren einen zellulären Subtyp, wenn wir den Patch-seq-Datensatz mit FACS-basierter Einzelzell-RNA-seq-Datensätzen vergleichen. Dieser Subtyp gehört eindeutig zu dissoziierten Gewebeproben und ist durch die Expression von Stress-assoziierten Genen charakterisiert. Im dritten Kapitel wende ich mich der Frage zu, wie Transkripte mittels SLAM-seq nachverfolgt werden können, die während der Dissoziation des Gewebes entstehen. Das Verfahren ermöglicht es mRNA, die während der Dissoziation der Probe entsteht, metabolisch zu markieren, rechnerisch zu identifizieren und zu entfernen. Indem wir die markierten Transkripte aus dem Mikroglia “entfernen”, beobachten wir, dass ein „aktivierter Mikroglia“-Subtyp zur allgemeinen Mikroglia-Population gehört. / The aim of this doctoral work is to provide a comprehensive study and overview on the topic of the heterogeneity of microglia in the normal adult mouse brain from the morphological, electrophysiological and transcriptional perspective with the focus on differences between white and grey matters. In the first Chapter, I discuss the morphological heterogeneity of microglia in the brain with the focus on two morphologically distinct classes: satellite and parenchymal microglia. We performed an in-depth analysis of multiple brain areas and quantified the number of satellite microglia which is in contact with different neuronal subtypes. We found that satellite microglia numbers are highly correlated with neuronal densities of a certain area, while showing no preferences for any of the neuronal types. In Chapter two of this work, I study transcriptional heterogeneity of microglia from white and grey matters. For this I am employing Patch-seq, which we newly established in glial cells. This method allows a combination of morphological, electrophysiological and transcriptional profiles of single cells to assess their differences. When comparing Patch-seq dataset to the previously published FACS isolated single cell RNA-seq microglia datasets, we find a subtype of cells which uniquely belongs to FACS sample and is characterized by expression of stress-associated genes. This finding points out to the fact of dissociation-related artifacts in the single cell RNA-seq data which are not present in situ. In the third chapter, I identified transcripts which are induced during the dissociation of the tissue by employing the SLAM-seq method. This procedure allows to metabolically label newly transcribed mRNA and computationally remove transcripts from the sample. By removing the labeled transcripts from the dataset of cells isolated from the hippocampus via enzymatic dissociation, we observe that an “activated microglia” subtype merges with the general microglia population.
496

Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis

Gray, E., Thomas, T. L., Betmouni, S., Scolding, N., Love, S. January 2008 (has links)
No / Recent studies have revealed extensive cortical demyelination in patients with progressive multiple sclerosis (MS). Demyelination in gray matter lesions is associated with activation of microglia. Macrophages and microglia are known to express myeloperoxidase (MPO) and generate reactive oxygen species during myelin phagocytosis in the white matter. In the present study we examined the extent of microglial activation in the cerebral cortex and the relationship of microglial activation and MPO activity to cortical demyelination. Twenty-one cases of neuropathologically confirmed multiple sclerosis, with 34 cortical lesions, were used to assess microglial activation. HLA-DR immunolabeling of activated microglia was significantly higher in demyelinated MS cortex than control cortex and, within the MS cohort, was significantly greater within cortical lesions than in matched non-demyelinated areas of cortex. In homogenates of MS cortex, cortical demyelination was associated with significantly elevated MPO activity. Immunohistochemistry revealed MPO in CD68-positive microglia within cortical plaques, particularly toward the edge of the plaques, but not in microglia in adjacent non-demyelinated cortex. Cortical demyelination in MS is associated with increased activity of MPO, which is expressed by a CD68-positive subset of activated microglia, suggesting that microglial production of reactive oxygen species is likely to be involved in cortical demyelination.
497

Etude de l'implication des cellules microgliales et de l'α-synucleine dans la maladie neurodégénérative de Parkinson / Microglia and α-synuclein implication in Parkinson's disease

Moussaud, Simon 25 February 2011 (has links)
Les maladies neurodégénératives liées à l’âge, telle celle de Parkinson, sont un problème majeur de santé publique. Cependant, la maladie de Parkinson reste incurable et les traitements sont très limités. En effet, les causes de la maladie restent encore mal comprises et la recherche se concentre sur ses mécanismes moléculaires. Dans cette étude, nous nous sommes intéressés à deux phénomènes anormaux se produisant dans la maladie de Parkinson : l’agrégation de l’α-synucléine et l’activation des cellules microgliales. Pour étudier la polymérisation de l’α-synucléine, nous avons établi de nouvelles méthodes permettant la production in vitro de différents types d’oligomères d’α-synucléine. Grâce à des méthodes biophysiques de pointe, nous avons caractérisé ces différents oligomères à l’échelle moléculaire. Puis nous avons étudié leurs effets toxiques sur les neurones. Ensuite, nous nous sommes intéressés à l’activation des microglies et en particulier à leurs canaux potassiques et aux changements liés au vieillissement. Nous avons identifié les canaux Kv1.3 et Kir2.1 et montré qu’ils étaient impliqués dans l’activation des microglies. En parallèle, nous avons établi une méthode originale qui permet l’isolation et la culture de microglies primaires issues de cerveaux adultes. En comparaison à celles de nouveaux-nés, les microglies adultes montrent des différences subtiles mais cruciales qui soutiennent l’hypothèse de changements liés au vieillissement. Globalement, nos résultats suggèrent qu’il est possible de développer de nouvelles approches thérapeutiques contre la maladie de Parkinson en modulant l’action des microglies ou en bloquant l’oligomérisation de l’ α-synucléine. / Age-related neurodegenerative disorders like Parkinson’s disease take an enormous toll on individuals and on society. Despite extensive efforts, Parkinson’s disease remains incurable and only very limited treatments exist. Indeed, Parkinson’s pathogenesis is still not clear and research on its molecular mechanisms is ongoing. In this study, we focused our interest on two abnormal events occurring in Parkinson’s patients, namely α-synuclein aggregation and microglial activation. We first investigated α-synuclein and its abnormal polymerisation. For this purpose, we developed novel methods, which allowed the in vitro production of different types of α-synuclein oligomers. Using highly sensitive biophysical methods, we characterised these different oligomers at a single-particle level. Then, we tested their biological effects on neurons. Afterwards, we studied microglial activation. We concentrated our efforts on two axes, namely age-related changes in microglial function and K+ channels in microglia. We showed that Kv1.3 and Kir2.1 K+ channels are involved in microglial activation. In parallel, we developed a new approach, which allows the effective isolation and culture of primary microglia from adult mouse brains. Adult primary microglia presented subtle but crucial differences in comparison to microglia from neo-natal mice, confirming the hypothesis of age-related changes of microglia. Taken together, our results support the hypotheses that microglial modulation or inhibition of α-synuclein oligomerisation are possible therapeutic strategies against Parkinson's disease.
498

Study of the interaction between 3,4 methylenedioximethamphetamine and the endocannabinoid system

Touriño Raposo, Clara 17 February 2009 (has links)
La 3,4-metilendioximetamfetamina (MDMA, èxtasi) i el cannabis són dues drogues les quals es consumeixen conjuntament de manera habitual. Malgrat que tots dos compostos presenten propietats reforçant i potencial addictiu, també tenen propietats farmacològiques oposades. La MDMA es una droga psicoestimulant, la qual causa hiperlocomoció, hipertèrmia, resposted de tipus asiogènic i neurotoxicitat. Per altra banda el &#916;9-tetrahydrocannabinol (THC), principal compost psicoactiu del cannabis, posseeix efectes relaxants, hipolocomotors, hipotèrmics i neuroprotectors. Els efectes de la MDMA i el THC al sistema nerviós central es troben mediats per dos mecanismes notablement diferents. La MDMA augmenta els nivells extracel·lulars de dopamina i serotonina, mentre que el THC produeix l'activació del receptor cannabinoide CB1. Cal destacar a més que les interaccions entre els sistemes monoaminèrgic i endocannabinoide s'observa de manera freqüent en l'organisme.En el present estudi hem explorat la implicació del sistema endocannabinoide i la MDMA en diversos aspectes. Per una banda el receptor cannabinoide CB1 juga un important paper en els efectes hiperlocomotors i hipertèrmics, i en les respostes de tipus ansiogènic produïdes per la MDMA. Curiosament, encara que el receptor CB1 no participa en els efectes recompensants primaris de la MDMA, és imprescindible per que tinguin lloc els seus efectes reforçants. Així mateix, l'alliberació de serotonina per part de la MDMA redueix de manera dosi-depenent la simptomatologia física causada pel síndrome d'abstinència a cannabinoides precipitada per un antagonista del receptor CB1. Finalment, el tractament amb THC era capaç de prevenir la hipertèrmia, activació glial, estrès oxidatiu i pèrdua de terminals causada per la MDMA. Com a conseqüència el THC exerceix un efecte neuroprotector contra la neurotoxicitat induïda per la MDMA. / 3,4-methylenedioximethamphetamine (MDMA, ecstasy) and cannabis are two drugs frequently consumed in combination. Despite both compounds have rewarding properties and abuse liability, they show opposite pharmacological properties. On the one hand, MDMA is a psychostimulant drug with hyperlocomotor, hyperthermic, anxiogenic-like and neurotoxic effects. On the other hand, &#916;9-tetrahydrocannabinol (THC), the main psychoactive compound of cannabis, has relaxant, hypolocomotor, hypothermic and neuroprotective properties. The effects of MDMA and THC in the central nervous system are mediated by two different mechanisms. MDMA enhances the extracellular levels of dopamine and serotonin, whereas THC activates the CB1 cannabinoid receptor. Likewise, interactions between the monoaminergic and the endogenous cannabinoid system have been frequently observed.In the current study, we explored the involvement of CB1 cannabinoid receptor on the hyperlocomotor, hyperthermic, anxiogenic-like, rewarding and reinforcing effects of MDMA. We also studied the effect of acute and chronic administration of MDMA on rimonabant-precipitated THC withdrawal syndrome. Furthermore, we explored the neuroprotective effects of THC on MDMA-induced neurotoxicity.As a result of this study we may conclude that endocannabinoid system and MDMA interact in a wide variety of aspects. CB1 receptor plays an important role on the hyperlocomotor, hyperthermic, and anxiogenic-like effects of MDMA. Interestingly, CB1 receptor is essential for the reinforcing but not the primary rewarding properties of MDMA. In addition, the release of serotonin by MDMA dose-dependently reduced the severity of THC withdrawal syndrome triggered by a CB1 antagonist. Finally, pretreatment with THC prevented the hyperthermia, glial activation, oxidative stress and terminal loss caused by MDMA. Consequently, THC exerts a neuroprotective effect against MDMA-induced neurotoxicity.

Page generated in 0.0747 seconds