Spelling suggestions: "subject:"art"" "subject:"arn""
21 |
Multiple roles of single-minded 2 in esophageal squamous cell carcinoma and its clinical implications / 食道扁平上皮癌におけるSIM2の多様な機能と臨床的意義Tamaoki, Masashi 26 November 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21417号 / 医博第4407号 / 京都大学大学院医学研究科医学専攻 / (主査)教授 羽賀 博典, 教授 小川 誠司, 教授 万代 昌紀 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
22 |
Novel inhibitors of the tRNA-dependent amidotransferase of "Helicobacter pylori" : Peptides generated by phage display and dipeptide-like compoundsPham, Van Hau 24 April 2018 (has links)
Cette thèse présente la découverte de nouveaux inhibiteurs de l’amidotranférase ARNt-dépendante (AdT), et résume les connaissances récentes sur la biosynthèse du Gln-ARNtGln et de l’Asn-ARNtAsn par la voie indirecte chez la bactérie Helicobacter pylori. Dans le cytoplasme des eucaryotes, vingt acides aminés sont liés à leur ARNt correspondant par vingt aminoacyl-ARNt synthétases (aaRSs). Ces enzymes sont très spécifiques, et leur fonction est importante pour le décodage correct du code génétique. Cependant, la plupart des bactéries, dont H. pylori, sont dépourvues d’asparaginyl-ARNt synthétase et/ou de glutaminyl-ARNt synthétase. Pour former le Gln-ARNtGln, H. pylori utilise une GluRS noncanonique nommée GluRS2 qui glutamyle spécifiquement l’ARNtGln ; ensuite, une AdT trimérique, la GatCAB corrige le Glu-ARNtGln mésapparié en le transamidant pour former le Gln-ARNtGln, qui lira correctement les codons glutamine pendant la biosynthèse des protéines sur les ribosomes. La formation de l’Asn-ARNtAsn est similaire à celle du Gln-ARNtGln, et utilise la même GatCAB et une AspRS non-discriminatrice. Depuis des années 2000, la GatCAB est considérée comme une cible prometteuse pour le développement de nouveaux antibiotiques, puisqu’elle est absente du cytoplasme de l’être humain, et qu’elle est encodée dans le génome de plusieurs bactéries pathogènes. Dans le chapitre 3, nous présentons la découverte par la technique du « phage display » de peptides cycliques riches en tryptophane et en proline, et qui inhibent l’activité de la GatCAB de H. pylori. Les peptides P10 (CMPVWKPDC) et P9 (CSAHNWPNC) inhibent cette enzyme de façon compétitive par rapport au substrat Glu-ARNtGln. Leur constante d’inhibition (Ki) est 126 μM pour P10, et 392 μM pour P9. Des modèles moléculaires ont montré qu’ils lient le site actif de la réaction de transmidation catalysée par la GatCAB, grâce à la formation d’une interaction π-π entre le résidu Trp de ces peptides et le résidu Tyr81 de la sous-unité GatB, comme fait le A76 3’-terminal de l’ARNt. Dans une autre étude concernant des petits composés contenant un groupe sulfone, et qui mimiquent l’intermédiaire de la réaction de transamidation, nous avons identifié des composés qui inhibent la GatCAB de H. pylori de façon compétitive par rapport au substrat Glu-ARNtGln. Cinq fois plus petits que les peptides cycliques mentionnés plus haut, ces composés inhibent l’activité de la GatCAB avec des Ki de 139 μM pour le composé 7, et de 214 μM pour le composé 4. Ces inhibiteurs de GatCAB pourraient être utiles pour des études mécanistiques, et pourraient être des molécules de base pour le développement de nouvelles classes d’antibiotiques contre des infections causées par H. pylori. / This thesis describes the discovery of inhibitors of a tRNA-dependent amidotransferase (AdT) and summarizes the present state of our knowledge about the two-step biosynthesis of Gln-tRNAGln and Asn-tRNAAsn in Helicobacter pylori. In eukaryotic cytoplasm, twenty amino acids (aa) are generally attached to their cognate tRNAs by twenty corresponding aminoacyl-tRNA synthetases (aaRSs). These enzymes have a high specificity, and their function is important to the proper decoding of mRNA. However, in a number of bacteria including H. pylori, GlnRS and/or AsnRS are absent. To synthesize Gln-tRNAGln, H. pylori first uses a noncanonical GluRS2 which is specific for tRNAGln to form Glu-tRNAGln; then the trimeric AdT (GatCAB) transforms Glu-tRNAGln into Gln-tRNAGln which is proper for protein biosynthesis. In a similar manner, the biosynthesis of Asn-tRNAAsn also takes place in H. pylori by using the same GatCAB and a canonical nondiscriminating AspRS. The widespread use of these indirect pathways among prominent human pathogens, and their absence in the mammalian cytoplasm, identify AdT as a promising target for the development of new and highly specific antimicrobial agents. By using phage display, we discovered several cyclic peptides rich in tryptophan and proline that inhibit H. pylori GatCAB. Peptides P10 (CMPVWKPDC) and P9 (CSAHNWPNC) are competitive inhibitors of GatCAB with respect to its substrate Glu-tRNAGln. The inhibition constants (Ki) of P10 and P9 are 126 and 392 μM, respectively. Their docking models revealed that they bind to the transamidation active site of GatB via π-π stacking interactions with Tyr81, as does the 3’-terminal A76 of tRNA. We also discovered two small dipeptide-like sulfone-containing inhibitors of H. pylori GatCAB by mimicking the intermediate of its transamidation reaction. Although they are much smaller than the cyclic peptides mentioned above, they are competitive inhibitors of GatCAB with respect to GlutRNAGln, with Ki values of 139 μM for compound 7 and 214 μM for compound 4. These inhibitors could be useful not only to study the reaction mechanisms of GatCAB, but also could be lead compounds for the development of a new class of antibiotics to treat infections caused by H. pylori.
|
23 |
Etude comparative de couples ARNt/aminoacyl-ARNt synthétases chez la levure et la mitochondrie humaine.Fender, Aurélie 18 November 2005 (has links) (PDF)
Le travail de cette thèse s'inscrit dans le cadre de l'étude des règles qui régissent la spécificité d'aminoacylation des ARN de transfert (ARNt) par les aminoacyl-ARNt synthétases (aaRS). La précision de cette réaction est cruciale puisqu'elle détermine la fidélité de la traduction de l'information génétique et la synthèse de protéines fonctionnelles. J'ai tiré profit des stratégies de biologie moléculaire, basées sur la transcription in vitro des ARNt, la production d'enzymes clonées, et la mutagénèse, afin d'explorer les relations structure/fonction des systèmes d'aminoacylation de levure et de la mitochondrie humaine.<br />Les aspects fonctionnels et structuraux ont été davantage explorés par des essais de cristallisation et des approches in vivo.<br />Jusqu'à présent, il était admis que les règles de reconnaissance et d'aminoacylation d'ARNt isoaccepteurs pour un système donné devaient être identiques. L'analyse d'une famille d'ARNt isoaccepteurs de l'arginine de levure et de sa relation particulière avec l'ARNtAsp nous ont permis d'établir que : (i) les isoaccepteurs sont arginylés avec des efficacités différentes (un facteur 20 les sépare) et sont protégés de la misaminoacylation par des antidéterminants idiosyncrasiques, (ii) l'isoaccepteur ARNt4<br />Arg possède des propriétés d'aspartylation, vestiges de son histoire évolutive, puisque seulement deux mutations sont<br />suffisantes pour convertir sa spécificité – c'est un exemple de génération de la diversité moléculaire par duplication de gènes. Les systèmes d'aminoacylation mt de mammifères restent peu étudiés, et ce malgré la « bizarrerie » structurale et l'implication dans des<br />pathologies sévères de leurs ARNt, codés par le génome mt. Nos efforts ont permis l'assignement des 10 gènes nucléaires manquants codant pour les aaRS mt humaines. Ceux-ci<br />sont portés par un jeu de gènes différents de celui codant pour les sysnthétases cytoplasmiques. L'analyse détaillée du système d'aspartylation, choisi comme système modèle a révélé (i) une identité de l'ARNt mt moins stringente que celle des ARNt classiques, (ii) une adaptation subtile et ciblée de l'aaRS mt, codée par le génome nucléaire et de type bactérien. Ceci illustre un processus de co-évolution entre les génomes mt et nucléaire<br />humain. De plus, j'ai déterminé les signaux qui protègent l'ARNtAsp mt d'être un substrat des aaRS non mt. De manière surprenante, ce n'est pas la dégénérescence structurale globale de<br />l'ARNt qui empêche le plus cette aminoacylation croisée mais une simple paire de bases du bras D.
|
24 |
Structural Basis of the Biosynthesis of the tRNA N6-threonylcarbamoyladenosine / Les bases structurales de la modification N6-threonylcarbamoyladenosine des ARNtZhang, Wenhua 05 December 2014 (has links)
La plupart de ARN de transfert (tRNA) subissent des modifications post-transcriptionnelle nécessaires à leur fonction. La modification t6A (N6-threonylcarbamoyladenosine) présente en position 37 des ARNt spécifiques des codons ANN, joue un rôle primordial dans la fidélité de la traduction (appariement correct avec le codon AUG initiateur ; prévention des décalages de phase de lecture etc.). La modification t6A est catalysée en deux étapes par les protéines de la famille Sua5 /YrdC (aboutissant à la synthèse d’un intermédiaire TCA : threonylcarbamoyladenylate) puis transfert de l’entité Carbamoylthreonine du TCA sur l’ARNt via les protéines du complexe KEOPS chez les eucaryotes et archae ou des protéines YgjD, YeaZ et YjeE chez les bactéries ou encore de la protéine Qri7 dans les mitochondries de levures. Le complexe KEOPS comprend les 4 sous-unités suivantes : Kae1, Bud32, Cgi121 et Pcc1 auxquelles s’ajoutent une 5ème sous-unité (Gon7) retrouvée uniquement chez la levure. Alors que YgjD est l’homologue bactérien de la protéine Kae1, YeaZ et YjeE n’ont pas d’homologue chez les eucaryotes ni les archées. Jusqu’à présent, les mécanismes catalytiques responsables de la modification t6A restent peu connus.Nous présentons dans cette thèse une série d’études structure-fonction de plusieurs protéines impliquées dans la biosynthèse de la modification t6A : Sua5 de P. Abyssi ; les sous-complexes Bud32-Cgi121 et Gon7-Pcc1 de S. cerevisiae ainsi que le sous-complexe YgjD-YeaZ de E. coli. Les principaux résultats confirment que Sua5/YrdC est l’acteur majeur de la synthèse de l’intermédiaire TCA via son activité pyrophosphatase. Dans la levure, la protéine Gon7, empêche l’homodimérisation de Pcc1 qui ne peut plus induire de dimérisation du complexe entier (alors que c’est le cas chez les archées pour lesquelles Gon7 est absente). La structure du sous-complexe Bud32-Cgi121 de levure fournit des informations essentielles quant à son rôle de Kinase et d’ATPase au sein du complexe KEOPS. Ensemble, ces deux structures Bud32-Cgi121 et Gon7-Pcc1 nous permettent de proposer un modèle pentamérique du complexe KEOPS. Enfin, concernant les protéines bactériennes, nous montrons que l’activité ATPase de YjeE est stimulée par son association au complexe YgjD-YeaZ et que la formation du complexe ternaire YgjD-YeaZ-YjeE a lieu en présence d’ATP. Nous proposons un modèle structural de ce complexe ternaire pouvant expliquer les rôles des protéines YeaZ et YjeE dans la modification t6A.L’ensemble des études structurales abordées dans cette thèse permet donc de mieux comprendre le mécanisme catalytique de la modification t6A essentielle et ubiquitaire dans les 3 royaumes de la vie. / Most tRNAs undergo chemical modifications during their maturation after the transcription. N6-threonylcarbamoyladenosine (t6A) is universally present at position 37 of tRNAs that recognize ANN-codons. tRNA t6A plays an essential role in translational fidelity through enhancing the codon-anticodon interaction. Recently, the tRNA t6A-modifying enzymes have been identified and characterized in bacteria, archaea and yeast. The biosynthesis of tRNA t6A proceeds in two main steps: first, the biosynthesis of an unstable intermediate threonylcarbamoyladenylate (TCA) by Sua5/YrdC family protein, using ATP, L-threonine, bicarbonate as substrates; second, the transfer of threonylcarbamoyl-moiety from TCA onto A37 of cognate tRNAs by a set of other proteins that use Kae1/Qri7/YgjD family proteins as a catalytic component. Though the biosynthesis of tRNA t6A could be accomplished by Sua5 and Qri7 in yeast mitochondria, the t6A biosynthesis in archaea and yeast cytoplasm requires Sua5 and KEOPS protein complex, which consists of Kae1, Bud32, Cgi121, Pcc1 in archaea, and a fifth Gon7 in yeast. In bacteria, it requires YrdC, YgjD, YeaZ and YjeE, of which YeaZ and YjeE are not related to any KEOPS subunits. Presently, the molecular mechanism of Sua5/YrdC in catalyzing the TCA biosynthesis is not well understood; How the KEOPS subunits assembly and cooperatively transfer threonylcarbamoyl-moiety from TCA to tRNA is not known; The contribution of YeaZ and YjeE in t6A biosynthesis in bacteria still remains to be probed.In this study, we report crystal structures of P. abyssi Sua5, S. cerevisiae Gon7/Pcc1 and Bud32/Cgi121 binary complexes, and E. coli YgjD-YeaZ heterodimer. Based on the information revealed by the crystal structures, advanced biochemical characterizations were carried out to validate the hypotheses. We confirm first that Sua5/YrdC is capable of catalyzing the TCA biosynthesis using substrates of ATP, L-threonine, and bicarbonate. The structure of P. abyssi Sua5 in complex with pyrophosphate provides a basis for its ATP-pyrophosphatase activity. Second, the structure of Gon7 reveals that it functions as a structural mimic of Pcc1 and therefore prevents the formation of Pcc1 homodimer, which mediates the formation of a dimer of tetrameric KEOPS from archaea. The structure of Bud32-Cgi121 in complex with ADP provides a basis in support of the dual kinase and ATPase activities of Bud32. We present a structural model of yeast KEOPS that exists as a heteropentamer. Third, we discovered that the weak intrinsic ATPase activity of YjeE is activated by YgjD-YeaZ heterodimer. YgjD, YeaZ and YjeE associate and form a ternary complex that is regulated by both the formation of YgjD-YeaZ heterodimer and the binding of ATP to YjeE. The model of YgjD-YeaZ-YjeE ternary complex provides structural insight into the essential role of YeaZ and YjeE in t6A biosynthesis in bacteria. This work provides structural insights into understanding the biosynthesis of tRNA t6A that is essential and ubiquitous in all three domains of life.
|
25 |
Characterization of protein factors targeting RNA into human mitochondria / Caractérisation de protéines impliquées dans le processus d'adressage d'ARN dans les mitochondries humainesGowher, Ali 17 September 2013 (has links)
L'importation de ARNtLys CUU (tRK1) de levure dans les mitochondries humaines indique que la cellule humaine possède la machinerie pour importation d'ARNt. Dans la présente étude, nous montrons que le précurseur de la lysyl-ARNt synthétase mitochondriale peut interagir avec tRK1 et ses dérivés contenant les déterminants d'import mitochondrial, et facilite leur internalisation par les mitochondries humaines. L'efficacité de l'importation augmentait à l'addition de l'énolase, d'enzyme glycolytique fonctionnant comme ARN chaperon. La translocation de tRK1 et de ses dérivés dans la matrice mitochondriale dépend également d'une autre protéine, la polynucléotide phosphorylase (PNPase). Mutation ponctuelle pathogénique qui prévient la trimérisation de PNPase diminue l'importation des ARNr 5S et ARN MRP dans les mitochondries ceci affectant la traduction mitochondriale. La surexpression de PNPase induit une augmentation des ARN importé et complémente le déficit de traduction mitochondriale. / The import of yeast tRNALys (tRK1) into human mitochondria in the presence of cytosolic extract suggests that human cell possesses machinery for tRK1 import. Here, we show that precursor of mitochondrial lysyl-tRNA synthetase (preKARS2) interact with tRK1 and its derivatives containing tRK1 import determinants, and facilitates their import into isolated mitochondria and in vivo, when preKARS2 was overexpressed or downregulated. tRK1 import efficiency increased upon addition of glycolytic enzyme enolase, previously found as an actor of RNA import in yeast. We found that tRK1 and its derivatives translocate into mitochondrial matrix in polynucleotide phosphorylase (PNPase) dependent manner. Furthermore, a point mutation preventing trimerization of PNPase affect import of 5S rRNA and MRP RNA into mitochondria and subsequently mitochondrial translation. Overexpression of the wild-type PNPase induced an increase of 5S rRNA import into mitochondria and rescued translation.
|
26 |
Découverte et caractérisation d'une nouvelle forme de méthionyl-ARNt synthétase nucléaire chez la levure Saccharomyces cerevisiae / Discovery and characterization of a new methionyl-tRNA synthetase in Saccharomyces cerevisiaeLaporte, Daphné 30 September 2016 (has links)
La methionyl-ARNt synthétase (MetRS) de Saccharomyces cerevisiae aminoacyle les ARNt méthionine initiateur et élongateur (ARNtiMet et ARNteMet), mais possède également des fonctions atypiques. Nous avons montré que la MetRS rejoint le noyau durant la transition diauxique afin de réguler la transcription des gènes nucléaires des complexes III et V de la chaîne respiratoire mitochondriale. Pour ce faire, la MetRS possède au moins deux signaux de localisation nucléaire (NLS) dans sa séquence, l’un se situant dans les 55 premiers acides aminés (aa) et le second, au delà de la partie N-terminale lui permettant de recruter les sous-unités Rpb4 et Rpb7 de l’ARN pol II. Nous avons montré qu’en fermentation, la MetRS est clivée entre le 114ème et le 132ème aa et que cette forme clivée est essentielle à la viabilité des cellules, puisqu’un variant non clivé (MetRSK11A) ne permet pas la croissance. Nous avons surproduit et purifié un mutant de la MetRS clivée (MetRSΔ142) et montré que ce variant est plus efficace pour l’aminoacylation de l’ARNtiMet que la forme entière de MetRS. Ainsi, notre étude suggère que chez S. cerevisiae, la forme longue de MetRS cytoplasmique permet l’aminoacylation de l’ARNteMet, la forme longue de MetRS nucléaire régule la transcription, et la forme clivée de MetRS nucléaire et cytoplasmique permet l’aminoacylation de l’ARNtiMet / Methionyl-tRNA synthetase (MetRS) is the enzyme in charge of aminocylation of tRNA methionine initiator and elongator (tRNAiMet et tRNAeMet), but also displays atypical functions in Saccharomyces cerevisiae. In the present work, we showed that MetRS is imported to the nucleus during the diauxic shift in order to regulate transcription of genes coding for the complexes III and V subunits of the mitochondrial respiratory chain. To do so, MetRS harbors at least two nuclear localization signals (NLS), located within the 55 first aminoacids (NLS1) and beyond the N-terminal part (NLS2). The N- terminal part is responsible for the recruitment of RNA pol II subunits Rpb4 and Rpb7. We also showed that MetRS is cleaved through the 114th and the 132nd aminoacid during fermentation and that the proteolysed form is essential for the viability of the cell, since a mutant of MetRS which is not cleaved (MetRSK11A) did not allows the growth. We showed that an overproduced and purified a mutant representative of the cleaved form (MetRSΔ142) is more efficient for tRNAiMet aminoacylation than the full length MetRS. Thus, our study suggests that in S. cerevisiae, the cytoplasmic full length MetRS aminoacylates tRNAeMet, the nuclear full length MetRS regulates genes transcription, and the cytoplasmic and nuclear cleaved MetRS aminoacylates the tRNAiMet.
|
27 |
Le complexe multisysthématique AME de levure : dynamique de l'édifice et rôles non canoniques de ces composants / The multisynthetasic AME complex in yeast : dynamics of the complex and non canonical roles of its componentsEnkler, Ludovic 12 September 2014 (has links)
Les complexes multisynthétasiques (MSC) sont des complexes multi-protéiques identifiés dans un grand nombre d’organismes pro- et eucaryotes. Ils impliquent des protéines d’assemblages et des aminoacyl-ARNt synthétases (aaRSs), responsables de l’aminoacylation de leurs ARNts homologues au cours de la traduction. La taille et la composition des MSC varient selon les organismes, et le rôle de ces complexes n’est pas encore totalement compris. Il semblerait néanmoins que chez les eucaryotes, l’accrétion en complexe soit une stratégie mise en oeuvre par les cellules pour empêcher les aaRSs d’assurer des fonctions additionnelles. Chez S.cerevisiae,nous montrons que la dynamique du complexe AME, composé de la méthionyl- et de la glutamyl-ARNt synthétase (MRS et ERS) ainsi que de la protéine d’ancrage Arc1p, est dépendante du métabolisme de la levure. En respiration la MRS joue le rôle de facteur de transcription et régule l’expression des gènes nucléaires du complexe III et V de la chaîne respiratoire, tandis que l’ERS active la traduction mitochondriale. Cette étude montre que la relocalisation synchrone est primordiale pour l’adaptation des cellules au métabolisme respiratoire. / Multisynthetase complexes (MSC) are complexes made of several proteins and were identified in a wide variety of organisms from pro- to eukaryotes. They are usually made of assembly factors and aminoacyl-tRNA synthetases (aaRSs), which are responsible for the aminoacylation of their corresponding tRNAs during translation. Depending on the organisms, size and composition of these complexes differ greatly and their role is not fully understood yet. Although it seems that in eukaryotes, accretions of aaRSs into MSC prevent aaRSs to perform their additional functions. In the yeast Saccharomyces cerevisiae, we show that the dynamic of the AME complex, made of the méthionyl- and glutamyl-tRNA synthetases (MRS and ERS) and the assembly protein Arc1p is linkedto yeast metabolism. In respiration, MRS is imported in the nucleus to act as a transcription factor and regulates the expression of nuclear genes belonging to complex III and V of the respiratory chain, while ERS is imported in mitochondria to activate translation. This study shows that synchronous relocation of both aaRSs is crucial for yeast cells to adapt to respiratory metabolism.
|
28 |
Mécanismes et évolution des complexes ribonucléoprotéiques responsables de la biosynthèse ARNt-dépendante des acides aminés / Mechanisms and evolution of the ribonucleoprotein complexes involved in the tRNA-dependent amino acid biosynthesisFischer, Frédéric 28 September 2012 (has links)
La traduction implique l’utilisation d’aminoacyl-ARNt produits par les aminoacyl-ARNt synthétases (aaRS). Il devrait exister 20 aaRS, une spécifique de chaque acide aminé. Or, les données actuelles montrent qu’une grande majorité des organismes ne possèdent pas l’asparaginyl- (AsnRS) et/ou la glutaminyl-ARNt synthétase (GlnRS). Ils ne peuvent synthétiser l’Asn-ARNtAsn et le Gln-ARNtGln que par l’utilisation de voies impliquant la formation préalable d’aspartyl-ARNtAsn et/ou de glutamyl-ARNtGln. Ces précurseurs « mésacylés » sont synthétisés par une aspartyl-ARNt synthétase et/ou une glutamyl-ARNt synthétase non-discriminantes (AspRS-ND ou GluRS-ND). Ils sont ensuite amidés par une amidotransférase (AdT), pour fournir à la cellule l’Asn-ARNtAsn et/ou le Gln-ARNtGln nécessaires à la traduction des codons Asn et Gln.Ce travail de thèse, effectué dans le contexte biologique de deux organismes différents, Thermus thermophilus et Helicobacter pylori, a permis de montrer que les étapes enzymatiques – formation du précurseur, et amidation par l’AdT – sont réalisées au sein de complexes ribonucléoprotéiques, réunissant l’aaRS-ND, l’ARNtAsn ou l’ARNtGln, et l’AdT : l’Asn-transamidosome ou le Gln-transamidosome. Selon leur origine ou la voie à laquelle ils appartiennent (asparaginylation ou glutaminylation), ces complexes possèdent des particularités mécanistiques et structurales très différentes, mais sont tous adaptés pour éviter la libération des intermédiaires mésacylés toxiques par des stratégies spécifiques. Ce travail permet de mieux comprendre les mécanismes évolutifs qui ont conduit à l’incorporation de l’Asn et de la Gln dans le code génétique. / Protein synthesis requires the biosynthesis of aminoacyl-tRNAs by aminoacyl-tRNA synthétases (aaRS). Since 20 amino acids are présent within the genetic code, 20 aaRS should be used by a single organism. However, the vast majority of organisms found today are deprived of asparaginyl- and/or glutaminyl-tRNA synthetases (Asn- or GlnRS). They can only synthesize Asn-tRNAAsn and/or Gln-tRNAGln through biosynthesis pathways involving the preliminary formation of aspartyl-tRNAAsn and /or glutamyl-tRNAGln. Those « misacylated » precursors are synthesized by so called non-discriminating aspartyl- or glutamyl-tRNA synthetases (ND-AspRS or –GluRS). Then, they are transferred to an amidotransferase (AdT) to provide the Asn-tRNAAsn and/or Gln-tRNAGln species (necessary to fuel protein synthesis) through amidation.This work was performed in the context of two organisms – Thermus thermophilus and Helicobacter pylori. It showed that the two enzymatic steps of asparaginylation and glutaminylation – biosynthesis of the misacylated precursor and amidation by AdT – are carried out within a single ribonucleoprotein complex, namely the (Asn- or Gln-) transamidosome, gathering the ND-aaRS necessary for the misacylation, the tRNA substrate (Asn or Gln) and the AdT. According to their origin or the pathway they originate from (asparaginylation or glutaminylation), those complexes display significant mechanistical and structural peculiarities, but they are all adapted to prevent libération of the toxic misacylated species through specific strategies. This work shed new light on the évolutive mechanisms that led to the incorporation of Asn or Gln into the genetic code.
|
29 |
Cartographie structurale et fonctionnelle de la liaison entre la peptidyl-ARNt hydrolase et son substratLaurent, Giorgi 27 November 2010 (has links) (PDF)
La peptidyl-ARNt hydrolase est une enzyme qui hydrolyse les peptidyl-ARNt issus d'une terminaison prématurée de la traduction. Cette protéine est essentielle à la viabilité des bactéries, mais pas à celle des eucaryotes, ce qui fait d'elle une cible potentielle pour l'action d'anti-bactériens. Cela justifie également qu'on cherche à cartographier l'interaction de cette protéine avec son substrat, pour faciliter la conception d'inhibiteur. Les tentatives d'obtention de cristaux de complexes enzyme:analogue de substrat étant restées vaines, nous avons choisi d'étudier de tels complexes en solution, par RMN. Grâce à un double marquage 15N/13C, nous avons tout d'abord attribué les fréquences de résonance des atomes du squelette de la protéine et d'une grande partie des chaînes latérale. Nous avons ensuite étudié l'interaction entre la PTH d'E. coli et un analogue de son substrat synthétisé chimiquement, la diacétyl-Lys-(3'NH)-adénosine. Cette étude nous a permis de caractériser le rôle de nombreux résidus du site actif, notamment celui d'une phénylalanine (F66) interagissant via son cycle aromatique avec l'adénine 3'-terminale du substrat, celui d'une asparagine (N114) stabilisant une molécule d'eau responsable de l'hydrolyse du substrat et celui d'une autre asparagine (N10) permettant à la PTH de discriminer positivement les peptidyl-ARNt par rapport aux aminoacyl-ARNt. Nous avons aussi étudié l'interaction entre la protéine et des mini-ARNt mimant la tige acceptrice et le bras TΨC d'un ARNt. Ce travail a permis de cartographier la surface de la PTH où l'ARN s'ancre à la protéine. Il a confirmé l'importance de deux résidus basiques, la lysine K105 et l'arginine R133, pour la reconnaissance du phosphate en 5' de l'ARNt. Il a également révélé une interaction entre l'hélice C-terminale de la protéine et le bras TΨC de l'ARNt, à 30 Å du site actif. La pertinence fonctionnelle de ce dernier contact a pu être établie par mutagenèse dirigée. L'ensemble de ces résultats permet de proposer un modèle complet de l'interaction entre la PTH et un peptidyl-ARNt.
|
30 |
Évolution structurale et fonctionnelle de la composante ARN de la RNase P mitochondrialeSeif, Elias January 2005 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
Page generated in 0.0378 seconds