Spelling suggestions: "subject:"asymptotique"" "subject:"asymptotic""
101 |
Equations d'évolution non locales et problèmes de transition de phaseNguyen, Thanh Nam 29 November 2013 (has links) (PDF)
L'objet de cette thèse est d'étudier le comportement en temps long de solutions d'équations d'évolution non locales ainsi que la limite singulière d'équations et de systèmes d'équations aux dérivées partielles, où intervient un petit paramètre epsilon. Au Chapitre 1, nous considérons une équation de réaction-diffusion non locale avec conservation au cours du temps de l'intégrale en espace de la solution; cette équation a été initialement proposée par Rubinstein et Sternberg pour modéliser la séparation de phase dans un mélange binaire. Le problème de Neumann associé possède une fonctionnelle de Lyapunov, c'est-à-dire une fonctionnelle qui décroit selon les orbites. Après avoir prouvé que la solution est confinée dans une région invariante, nous étudions son comportement en temps long. Nous nous appuyons sur une inégalité de Lojasiewicz pour montrer qu'elle converge vers une solution stationnaire quand t tend vers l'infini. Nous évaluons également le taux de la convergence et calculons précisément la solution stationnaire limite en dimension un d'espace. Le Chapitre 2 est consacré à l'étude de l'équation différentielle non locale que l'on obtient en négligeant le terme de diffusion dans l'équation d'Allen-Cahn non locale étudiée au Chapitre 1. Sans le terme de diffusion, la solution ne peut pas être plus régulière que la fonction initiale. C'est la raison pour laquelle on ne peut pas appliquer la méthode du Chapitre 1 pour l'étude du comportement en temps long de la solution. Nous présentons une nouvelle méthode basée sur la théorie des réarrangements et sur l'étude du profil de la solution. Nous montrons que la solution est stable pour les temps grands et présentons une caractérisation détaillée de sa limite asymptotique quand t tend vers l'infini. Plus précisément, la fonction limite est une fonction en escalier, qui prend au plus deux valeurs, qui coïncident avec les points stables d'une équation différentielle associée. Nous montrons aussi par un contre-exemple non trivial que, quand une hypothèse sur la fonction initiale n'est pas satisfaite, la fonction limite peut prendre trois valeurs, qui correspondent aux points instable et stables de l'équation différentielle associée. Nous étudions au Chapitre 3 une équation différentielle ordinaire non locale qui a éte proposée par M. Nagayama. Une difficulté essentielle est que le dénominateur dans le terme de réaction non local peut s'annuler. Nous appliquons un théorème de point fixe lié a une application contractante pour démontrer que le problème à valeur initiale correspondant possède une solution unique qui reste connée dans un ensemble invariant. Ce problème possède une fonctionnelle de Lyapunov, qui est un ingrédient essentiel pour démontrer que la solution converge vers une solution stationnaire constante par morceaux quand t tend vers l'infini. Au Chapitre 4, nous considérons un modèle d'interface diffuse pour la croissance de tumeurs, où intervient une équation d'ordre quatre de type Cahn Hilliard. Après avoir introduit un modèle de champ de phase associé, on étudie formellement la limite singulière de la solution quand le coefficient du terme de réaction tend vers l'infini. Plus précisément, nous montrons que la solution converge vers la solution d'un problème à frontière libre. AMS subject classifications. 35K57, 35K50, 35K20, 35R35, 35R37, 35B40, 35B25.
|
102 |
Etude mathématique et numérique de modèles homogénéisés de métamatériauxCocquet, Pierre-Henri 07 December 2012 (has links) (PDF)
Cette thèse concerne la modélisation mathématique et l'approximation numérique de modèles homogénéisés de métamatériaux. Dans la première partie on étudie des problèmes de propagation d'ondes en présence de métamatériaux homogénéisés tels que les équations de Maxwell, le système de l'acoustique ou de l'élasticité linéaire. Nous établissons des résultats d'existence et d'unicité pour ces systèmes sous des hypothèses phénoménologiques sur le métamatériau en accord avec certains modèles de la littérature. Nous abordons ensuite leurs approximations numériques. Nous présentons des résultats concernant les éléments finis pour l'approximation de l'équation de Helmholtz qui montrent que ce schéma peut ne pas converger en présence de métamatériaux. On propose alors un schéma adapté aux métamatériaux, le schéma EF-AL, qui converge dès que le problème est bien-posé. On termine par l'étude du schéma Galerkin Discontinu dont on montre numériquement sa convergence sur des exemples de métamatériaux. La seconde partie présente l'homogénéisation non-périodique formelle de métamatériaux acoustiques. Les travaux d'A.G. Ramm sur la création de milieux à partir d'assemblages d'obstacles sont repris afin de préciser l'asymptotique fine du comportement du champ diffracté par un nombre fini de petites boules de rayon \delta. On utilise pour cela la méthode des développements asymptotiques raccordés. On établit l'existence et l'unicité de ce dernier et des estimations d'erreurs qui valident l'approche formelle. On suppose ensuite que le nombre de petits objets tend vers l'infini lorsque \delta tend vers 0 et passons à la limite dans le développement. Une approximation de Born permet d'obtenir l'indice du milieu contenant tous les objets qui, dans certains cas, est celui d'un métamatériau.
|
103 |
Etude des délais de survenue des effets indésirables médicamenteux à partir des cas notifiés en pharmacovigilance : Problème de l'estimation d'une distribution en présence de données tronquées à droiteLeroy, Fanny 18 March 2014 (has links) (PDF)
Ce travail de thèse porte sur l'estimation paramétrique du maximum de vraisemblance pour des données de survie tronquées à droite, lorsque les délais de troncature sont considérés déterministes. Il a été motivé par le problème de la modélisation des délais de survenue des effets indésirables médicamenteux à partir des bases de données de pharmacovigilance, constituées des cas notifiés. Les distributions exponentielle, de Weibull et log-logistique ont été explorées.Parfois le caractère tronqué à droite des données est ignoré et un estimateur naïf est utilisé à la place de l'estimateur pertinent. Une première étude de simulations a montré que, bien que ces deux estimateurs - naïf et basé sur la troncature à droite - puissent être positivement biaisés, le biais de l'estimateur basé sur la troncature est bien moindre que celui de l'estimateur naïf et il en va de même pour l'erreur quadratique moyenne. De plus, le biais et l'erreur quadratique moyenne de l'estimateur basé sur la troncature à droite diminuent nettement avec l'augmentation de la taille d'échantillon, ce qui n'est pas le cas de l'estimateur naïf. Les propriétés asymptotiques de l'estimateur paramétrique du maximum de vraisemblance ont été étudiées. Sous certaines conditions, suffisantes, cet estimateur est consistant et asymptotiquement normal. La matrice de covariance asymptotique a été détaillée. Quand le délai de survenue est modélisé par la loi exponentielle, une condition d'existence de l'estimation du maximum de vraisemblance, assurant ces conditions suffisantes, a été obtenue. Pour les deux autres lois, une condition d'existence de l'estimation du maximum de vraisemblance a été conjecturée.A partir des propriétés asymptotiques de cet estimateur paramétrique, les intervalles de confiance de type Wald et de la vraisemblance profilée ont été calculés. Une seconde étude de simulations a montré que la couverture des intervalles de confiance de type Wald pouvait être bien moindre que le niveau attendu en raison du biais de l'estimateur du paramètre de la distribution, d'un écart à la normalité et d'un biais de l'estimateur de la variance asymptotique. Dans ces cas-là, la couverture des intervalles de la vraisemblance profilée est meilleure.Quelques procédures d'adéquation adaptées aux données tronquées à droite ont été présentées. On distingue des procédures graphiques et des tests d'adéquation. Ces procédures permettent de vérifier l'adéquation des données aux différents modèles envisagés.Enfin, un jeu de données réelles constitué de 64 cas de lymphomes consécutifs à un traitement anti TNF-α issus de la base de pharmacovigilance française a été analysé, illustrant ainsi l'intérêt des méthodes développées. Bien que ces travaux aient été menés dans le cadre de la pharmacovigilance, les développements théoriques et les résultats des simulations peuvent être utilisés pour toute analyse rétrospective réalisée à partir d'un registre de cas, où les données sur un délai de survenue sont aussi tronquées à droite.
|
104 |
Transport Optimal Martingale et Problèmes de Maximisation d'UtilitéGuillaume, Royer 17 March 2014 (has links) (PDF)
Cette thèse présente deux principaux sujets de recherche indépendants, le dernier regroupant deux problématiques distinctes. Dans la première partie nous nous intéressons au problème du transport optimal martingale, dont le but premier est de trouver des bornes de non-arbitrage pour des options quelconques. Nous nous intéressons tout d'abord à la question en temps discret de l'existence d'une loi de probabilité sous laquelle le processus canonique est martingale, ayant deux lois marginales fixées. Ce résultat dû à Strassen (1965) est le point de départ pour le problème primal de transport optimal martingale. Nous en donnons une preuve basée sur des techniques financières de maximisation d'utilité, en adaptant une méthode développée par Rogers pour prouver le théorème fondamental d'évaluation d'actif. Ces techniques correspondent à une version en temps discrétisé du transport optimal martingale. Nous considérons ensuite le problème de transport optimal martingale en temps continu introduit dans le cadre des options lookback par Galichon, Henry-Labordère et Touzi. Nous commencons par établir un résultat de dualité partiel concernant la surcouverture robuste d'une option quelconque. Pour cela nous adaptons au transport optimal martingale des travaux récents de Neufeld et Nutz. Nous étudions ensuite le problème de maximisation d'utilité robuste d'une option quelconque avec fonction d'utilité exponentielle dans le cadre du transport optimal martingale, et en déduisons le prix d'indifférence d'utilité robuste, sous une dynamique où le ratio de sharpe est constant et connu. Nous prouvons en particulier que ce prix d'indifférence d'utilité robuste est égal au prix de surcouverture robuste. La deuxième partie de cette thèse traite tout d'abord d'un problème de liquidation optimale d'un actif indivisible. Nous étudions la profitabilité de l'ajout d'une stratégie d'achat et de vente d'un actif orthogonal au premier sur la stratégie de liquidation optimale de l'actif indivisible. Nous fournissons ensuite quelques exemples illustratifs. Le dernier chapitre de cette thèse concerne le problème du prix d'indifférence d'utilité d'une option européenne en présence de petits coûts de transaction. Nous nous inspirons des travaux récents de Soner et Touzi pour obtenir un développement asymptotique des fonctions valeurs des problèmes de Merton avec et sans l'option. Ces développements sont obtenus en utilisant des techniques d'homogénisation. Nous obtenons formellement un système d'équations vérifiées par les composantes du problème et nous vérifions que celles-ci en sont bien solution. Nous en déduisons enfin un développement asymptotique du prix d'indifférence d'utilité souhaité.
|
105 |
Estimation utilisant les polynômes de BernsteinTchouake Tchuiguep, Hervé 03 1900 (has links)
Ce mémoire porte sur la présentation des estimateurs de Bernstein qui sont des alternatives récentes aux différents estimateurs classiques de fonctions de répartition et de densité. Plus précisément, nous étudions leurs différentes propriétés et les comparons à celles de la fonction de répartition empirique et à celles de l'estimateur par la méthode du noyau. Nous déterminons une expression asymptotique des deux premiers moments de l'estimateur de Bernstein pour la fonction de répartition. Comme pour les estimateurs classiques, nous montrons que cet estimateur vérifie la propriété de Chung-Smirnov sous certaines conditions. Nous montrons ensuite que l'estimateur de Bernstein est meilleur que la fonction de répartition empirique en terme d'erreur quadratique moyenne. En s'intéressant au comportement asymptotique des estimateurs de Bernstein, pour un choix convenable du degré du polynôme, nous montrons que ces estimateurs sont asymptotiquement normaux. Des études numériques sur quelques distributions classiques nous permettent de confirmer que les estimateurs de Bernstein peuvent être préférables aux estimateurs classiques. / This thesis focuses on the presentation of the Bernstein estimators which are recent alternatives to conventional estimators of the distribution function and density. More precisely, we study their various properties and compare them with the empirical distribution function and the kernel method estimators. We determine an asymptotic expression of the first two moments of the Bernstein estimator for the distribution function. As the conventional estimators, we show that this estimator satisfies the Chung-Smirnov property under conditions. We then show that the Bernstein estimator is better than the empirical distribution function in terms of mean squared error. We are interested in the asymptotic behavior of Bernstein estimators, for a suitable choice of the degree of the polynomial, we show that the Bernstein estimators are asymptotically normal. Numerical studies on some classical distributions confirm that the Bernstein estimators may be preferable to conventional estimators.
|
106 |
Modèles de fronts pour films mincesRoux, Marthe 06 December 2012 (has links) (PDF)
Dans cette thèse, nous souhaitons décrire la dynamique du front d'avancement d'un film mince s'écoulant sur un plan incliné non rugueux. Nous nous intéressons surtout au problème de point triple situé à l'interface entre la paroi solide, le fluide en mouvement et l'air, par exemple lors de l'écoulement d'une goutte sur une surface inclinée. Dans une première partie, nous expliquons pourquoi on peut se ramener aux équations de Stokes et pourquoi le problème résultant est mal posé. Pour y remédier, la condition de non-glissement à la paroi est remplacée par une condition de glissement lorsqu'on est proche du front. Ainsi on réussit à trouver une solution dans H1. Puis nous développons la dynamique de l'écoulement à l'amont du front : un film mince. Cet écoulement peut se modéliser sous la forme d'équations de type Saint-Venant sur la hauteur et le débit. Nous justifions cette construction à partir des équations de Navier-Stokes en utilisant un développement asymptotique en fonction du paramètre onde longue. Dans la zone du front nous résolvons le système de Stokes stationnaire avec glissement au fond par un développement asymptotique en fonction du nombre capillaire. Le front est divisé en une zone interne près du front et une zone externe loin du front, puis les solutions de chaque zone sont soit raccordées directement (angles dynamique et statique égaux), soit raccordées au moyen d'une zone intermédiaire (angles dynamique et statique différents). Cela nous conduit à deux familles de modèles. En réunissant les modèles type Saint-Venant et les différents modèles de front, nous obtenons un modèle de Saint-Venant tenant compte de la dynamique du front. À partir de ce modèle à deux équations nous pouvons écrire un modèle plus simple à une équation sur la hauteur. Ce modèle permet d'étendre les modèles existants avec adhérence à des modèles avec glissement. On peut alors réaliser des simulations numériques combinant un front d'avancement et un film mince.
|
107 |
Aspects combinatoires des motifs linéaires en géométrie discrète / Combinatorial aspects of the linear patterns in discrete geometryKhoshnoudirad, Daniel 17 June 2016 (has links)
La Géométrie Discrète, comme Science de l'Informatique Théorique, étudie notamment les motifs linéaires tels que les primitives discrètes apparaissant dans les images : les droites discrètes, les segments discrets, les plans discrets, les morceaux de plans discrets par exemple. Dans ce travail, je me concentre tout particulièrement sur les diagrammes de Farey qui apparaissent lors de l'étude des primitives discrètes que sont les (m,n)-cubes, autrement dit les morceaux de plans discrets. J’étudie notamment la Combinatoire des droites formant les diagrammes de Farey, en établissant des formules exactes. Je montre alors que certaines méthodes utilisées auparavant ne permettront pas d'optimiser la Combinatoire des (m,n)-cubes. J'obtiens aussi une estimation asymptotique en utilisant la Théorie des Nombres Combinatoire. Puis, concernant les sommets apparaissant dans les diagrammes de Farey, j'obtiens une borne inférieure. J'analyse alors les stratégies déjà mises en place pour l'étude des $(m,n)$-cubes par les seuls diagrammes de Farey en deux dimensions. Afin d'obtenir de nouvelles bornes plus précises pour les $(m,n)$-cubes, une des seules méthodes actuellement existantes, est de proposer une généralisation de la notion de pré image d'un segment discret, à celle de pré image d'un $(m,n)$-cube, avec pour conséquence une nouvelle inégalité combinatoire sur le cardinal des (m,n)-cubes (inégalité qui pourrait même s'avérer être une égalité). Ainsi, nous introduisons la notion de diagramme de Farey en trois dimensions / Discrete Geometry, as Theoretical Computer Science, studies in particular linear patterns such as discrete primitives in images: the discrete lines, discrete segments, the discrete planes, pieces of discrete planes, for example. In this work, I particularly focused on Farey diagrams that appear in the study of the $ (m, n) $ - cubes, ie the pieces of discrete planes. Among others, I study the Combinatorics of the Farey lines forming diagram Farey, establishing exact formulas. I also get an asymptotic estimate using Combinatorial Number Theory. Then, I get a lower bound for the cardinality of the Farey vertices. After that, we analyze the strategies used in the literature for the study of (m, n)- cubes only by Farey diagrams in two dimensions. In order to get new and more accurate bounds for (m, n)- cubes, one of the few available methods, is to propose a generalization for the concept of preimage of a discrete segment for (m, n) - cube, resulting in a new combinatorial inequality. Thus, we introduce the notion Farey diagram in three dimensions
|
108 |
Analyse semi-classique des opérateurs périodiques perturbés / Semi classical analysis for perturbation of periodic operatorsSbai, Youssef 10 December 2015 (has links)
Cette thèse traite de certaines propriétés spectrales de deux classes spécifiques des opérateurs périodiques. Nous nous intéressons tout d’abord à un modèle périodique perturbée par un opérateur dépendant d’un petit paramètre semi-classique. Nous obtenons alors le comportement asymptotique de la fonction du comptage des valeurs propres dans les gaps spectrales avec une estimation optimale du reste. Le second modèle étudié dans cette thèse est un modèle elliptique périodique d’ordre deux perturbée par un opérateur dépendant d’une grande constante de couplage. Nous donnons également la description de la fonction de compactage des valeurs propres lorsque la constante de couplage tend vers l’infini. La dernière partie de cette thèse discute l’étude du spectre discret de l’opérateur de Schrödinger avec un potentiel très oscillent dépendant d’un petit paramètre semi-classique. / This Ph.D thesis deals with some spectral properties of two specific classes of two periodic operators. We are firstly interested in the model periodic perturbed by operator depending on a small semi-classical constant. We obtain an asymptotic behavior of the eigenvalue counting function in the spectral gaps with scharp remainder estimate. The second model studied in this thesis is a two-dimensional periodic elliptic second order opera-tor perturbed by operator depending on a large coupling constant. We also give the description of the counting function of eigenvalues when the coupling constant tends to infinity. The last part of this thesis highlights the study the spectrum of a Schrödinger operator perturbed by a fast oscillatingdecaying potential depending on a small parameter.
|
109 |
Semiparametric estimation for extreme valuesBouquiaux, Christel 05 September 2005 (has links)
Nous appliquons la théorie asymptotique des expériences statistiques à des problèmes liés aux valeurs extrêmes. Quatre modèles semi-paramétriques sont envisagés. Tout d'abord le modèle d'échantillonnage de fonction de répartition de type Pareto. L'index de Pareto est le paramètre d'intérêt tandis que la fonction à variation lente, qui intervient dans la décomposition de la fonction de survie, joue le rôle de nuisance. Nous considérons ensuite des observations i.i.d. de fonction de répartition de type Weibull. Le troisième modèle étudié est un modèle de régression. On considère des couples d'observations $(Y_i,X_i)$ indépendants, les v.a. $X_i$ sont i.i.d. de loi connue et on suppose que la fonction de répartition de la loi de $Y$ conditionnellement à $X$ est de type Pareto, avec une fonction à variation lente et un index $gamma$ qui dépendent de $X$. On fait l'hypothèse que la fonction $gamma$ a une forme quelconque mais connue, qui dépend d'un paramètre $\ / Doctorat en sciences, Orientation statistique / info:eu-repo/semantics/nonPublished
|
110 |
Molécules froides: formation, piégeage et spectroscopie. -Accumulation de dimères de césium dans un piège quadrupolaire magnétique. -Spectroscopie par frustration de photoassociation.vanhaecke, nicolas 23 October 2003 (has links) (PDF)
Cette thèse traite de l'étude des molécules froides formées via la technique de photoassociation d'atomes froids. Cette étude porte sur la manipulation des degrés de libertés externes de la molécules, et sur l'étude des interactions internes à la molécule Cs2.<br /><br />Un piège quadrupolaire magnétique de 2.10^5 molécules Cs2 froides a été réalisé. Le temps de vie du piège moléculaire est de 600ms, limité par les collisions avec le gaz chaud résiduel. Les molécules piégées ont été caractérisées, ce qui a permis de déterminer la température du nuage de molécules piégé, de l'ordre de 35uK. La mise en place d'un piège dipolaire, réalisé au moyen d'un laser CO2 focalisé est également décrit.<br /><br />D'autre part, une spectroscopie de photoassociation à deux photons a été réalisée. Elle a permis l'étude originale des formes de raies de cette spectroscopie, présentant de typiques profils de Fano. Grâce à la connaissance précise de ces formes de raies, plus d'une centaine d'énergies de niveaux vibrationnellement très excités de la molécules de Cs2 sont mesurés, avec une précision de l'ordre de 10MHz. Lors de l'interprétation théorique, l'énorme structure hyperfine de l'atome de césium implique la résolution d'équation de Schrödinger couplées pour des distances internucléaires supérieures à 15a0. Un modèle théorique asymptotique est donc utilisé pour ajuster les paramètres moléculaires des potentiels fondamentaux de la molécules de Cs2.<br />Les ajustements de ces paramètres se font au moyen d'algorithmes évolutionnaires et déterministes et sont suivis d'une étude statistique approfondie. On détermine ainsi le coefficient de Van der Waals avec une excellente précision, ainsi que pour la première fois l'amplitude de l'interaction d'échange de manière expérimentale.
|
Page generated in 0.0682 seconds