• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 3
  • Tagged with
  • 23
  • 17
  • 17
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die völkerrechtliche Zulässigkeit der Aufrüstung mit Kernwaffen

Beynio, Jens January 2009 (has links)
Zugl.: Köln, Univ., Diss., 2009
2

Atomistic dynamics of crack propagation in complex metallic alloys

Rösch, Frohmut, January 2008 (has links)
Stuttgart, Univ., Diss., 2008.
3

Elite perception and biased strategic policy making the case of India's nuclear build-up /

Frey, Karsten. Unknown Date (has links) (PDF)
University, Diss., 2004--Heidelberg.
4

Structure-reactivity relation, optical properties and real-time study of ultrafast processes in atomic clusters

Mitric, Roland 19 December 2003 (has links)
Die Untersuchungen der nichtskalierbaren Eigenschaften von Clustern in dem Größenregime, in dem jedes Atom zählt, zeigten, daß hier neuartige Phänomene und Funktionalität entstehen können. Dadurch motiviert wurden in dieser Arbeit: i) strukturelle und elektronische Eigenschaften sowie die Reaktivität von Metall Clustern, ii) stationäre optische Eigenschaften und iii) zeitabhängige Eigenschaften und optimale Kontrolle von ultraschnellen Prozessen in Edelmetallcluster und in nonstoichiometrischen Natrium-Fluorid Cluster, untersucht. / The study of the nonscalable properties of clusters in the size regime in which each atom counts have shown that fully new phenomena and striking new unexpected properties of small clusters can emerge. In this work three aspects have been addressed: i) the structural and electronic properties and reactivity of metal clusters, ii) stationary optical propertis and iii) real time investigation and control of ultrafast processes in noble metal and in nonstoichiometric sodium fluoride clusters.
5

Ein Mikro-Makro-Übergang für die nichtlineare atomare Kette mit Temperatur

Herrmann, Michael 19 October 2005 (has links)
Diese Arbeit betrachtet einen Mikro-Makro-Übergang für die atomare Kette mit Wechselwirkungen zwischen nächsten Nachbarn, deren Dynamik durch ein nichtlineares aber konvexes Wechselwirkungspotential und durch die Newtonschen Bewegungsgleichungen bestimmt ist. Um einen Mikro-Makro-Übergang zu etablieren, wählen wir eine geeignete Skalierung und lassen die Zahl der Teilchen gegen Unendlich laufen. Dabei steht der Fall mit Temperatur im Vordergrund, so dass auf der makroskopischen Skala mikroskopische Oszillationen beschrieben werden müssen. Nach einer Einführung werden im zweiten Kapitel die Grundlagen der atomaren Kette zusammengefasst, und die wesentlichen Probleme beim Mikro-Makro-Übergang mit Temperatur diskutiert. Dabei wird besonders auf die Skalierung, die mikroskopischen Anfangsdaten und die Beschreibung der mikroskopischen Oszillationen eingegangen. Im dritten Kapitel werden so genannte Traveling-Waves betrachtet: Das sind exakte, hochgradig symmetrische Lösungen der atomaren Kette, die generisch von vier Parametern abhängen, und die als Lösungen von Differenzen-Differentialgleichungen bestimmt werden. Im Einzelnen werden die Existenz von Traveling-Waves, ihre thermodynamischen Eigenschaften und ihre Approximierbarkeit untersucht. Im vierten Kapitel werden modulierte Traveling-Waves betrachtet, mit deren Hilfe dann makroskopische Modulationsgleichungen abgeleitet werden. Diese lassen sich als die Erhaltungssätze für Masse, Impuls, Wellenzahl und Entropie interpretieren. Anschließend wird das Rechtfertigungsproblem diskutiert und für einen Spezialfall auch gelöst. Im fünften Kapitel werden numerische Simulationen von Anfangswertproblemen, unter anderem Riemann--Probleme, ausführlich untersucht, wobei die Strukturuntersuchung der auftretenden mikroskopischen Oszillationen im Vordergrund steht. Es zeigt sich, dass die mikroskopischen Oszillationen in vielen Fällen durch modulierte Traveling-Waves beschrieben werden können. / The subject matter of this thesis is a micro-macro transition for the atomic chain with nearest neighbor interaction. The interaction potential is assumed to be nonlinear but convex, and the dynamics of the chain is governed by Newton''s law of motion. To establish the micro-macro transition we choose an appropriate scaling, and let the number of particles tend to infinity. We mainly concentrate on the case with temperature, and therefore we have to describe microscopic oscillations on the macroscopic scale. We start with an introduction in the first chapter. Afterwards in the second chapter we summarize the basics of the atomic chain, and discuss the most important problems concerning a micro-macro transition with temperature. In particular we emphasize the scaling, the microscopic initial data, and the description of the microscopic oscillations. In the third chapter we consider traveling waves: These are highly symmetric solutions of the atomic chain depending on four parameters, and they result as solutions of difference-differential equations. We study the existence of traveling waves, their thermodynamic properties, and we derive schemes for their approximation. The fourth chapter is devoted to modulated traveling waves, because they allow to derive macroscopic modulation equations. These modulation equations can be interpreted as the macroscopic conservations laws for mass, momentum, wave number and entropy. Afterwards we discuss the justification problem, which is moreover solved for a special example. Within the fifth chapter we investigate several numerical simulations of initial value problems for the atomic chain including some Riemann problems. We mainly focus on the structure of the resulting microscopic oscillations, and we will identify many situations in which the microscopic oscillations can be described in terms of modulated traveling waves.
6

STM studies of ABP molecules - towards molecular latching for dangling-bond wire circuits

Nickel, Anja 14 December 2015 (has links) (PDF)
Das Ziel der vorliegenden Arbeit ist es ein Molekül zu finden und mittels hochauflösender Techniken zu untersuchen, das auf passivierten Halbleiteroberflächen als Schalter in atomaren Schaltkreisen wirken kann. Für diesen Zweck stehen Moleküle zur Verfügung, die aus mindestens einem aromatischen Ring und einer Ankergruppe bestehen, die kovalent auf Silizium bindet. Um einzelne Moleküle auf leitenden Substraten zu untersuchen, hat sich die Nutzung eines Tieftemperatur-Rastertunnelmikroskops (low-temperature scanning tunneling microscope, LT-STM) als geeignetes Werkzeug erwiesen. Zum Einen ist damit die topographische und spektroskopische Charakterisierung von leitenden Proben auf atomarer Ebene möglich, zum Anderen können einzelne Moleküle und Nanostrukturen hochpräzise bewegt oder elektrisch angesprochen werden. Atomare Schaltkreise können besonders präzise auf passivierten Halbleiteroberflächen hergestellt werden. So ist es zum Beispiel möglich, eine Reihe Wasserstoffatome gezielt mit Hilfe einer STM-Spitze von der Oberfläche zu desorbieren. Durch die Überlappung der dann freien Orbitale entstehen, je nach Richtung auf der Oberfläche, atomare Drähte mit unterschiedlichen elektrischen Eigenschaften. Da die Drähte empfindlich hinsichtlich ihrer chemischen Umgebung sind, können diese auch als logische Schaltelemente verwendet werden. Dafür werden die Drähte mit einzelnen Molekülen angesteuert. Geeignete Schaltmoleküle wurden zunächst auf der Au(111)-Oberfläche getestet. Dabei konnten grundlegende und interessante Eigenschaften von selbst-assemblierten Strukturen untersucht werden. Am Modellsystem von nicht-kovalent gebundenen 4-Acetylbiphenyl-Nanostrukturen auf Gold (111) wurde eine neue Methode entwickelt diese Molekülgruppen behutsam zu bewegen. Durch Anlegen eines Spannungspulses auf den Nanostrukturen konnten diese auf der Oberfläche über weite Strecken gezielt und ohne Beeinflussung der internen Struktur positioniert werden. Um Moleküle für zukünftige elektronische Anwendungen zu untersuchen wurde zunächst das Verfahren zur Präparation von sauberen Siliziumoberflächen in die hier verwendeten Anlage implementiert. Es konnten reproduzierbar saubere, (2×1) rekonstruierte Si(100)- Oberflächen präpariert und charakterisiert werden. Nach der erfolgreichen Präparation von Silizium-Oberflächen und der Entwicklung geeigneter Präparationsrezepte für das Schalter-Molekül 4-Acetylbiphenyl (ABP) wurden beide Systeme vereint. Das Molekül konnte erfolgreich auf die Silizium(100)-Oberfläche aufgebracht und die native Adsorptionskonfiguration durch das Anlegen von Spannungspulsen geändert werden. Das Schalten zwischen zwei Konfigurationen ist reproduzierbar und umkehrbar. ABP ist somit der erste umkehrbare molekulare Schalter, der jemals auf Silizium realisiert werden konnte. Bei der Untersuchung technomimetischer Moleküle in Radachsen-Form konnte bisher die Rollbewegung nur anhand der Analyse der Manipulationskurven nachvollzogen und belegt werden. In dieser Arbeit wurde das Rollen eines Nano-Radmoleküls bewiesen. Dazu wurde bei der Synthese in einem Teil der Subphthalocyanin-Räder eine Markierung in Form eines Stickstoffatoms gesetzt. Bei der lateralen Manipulation der Räder auf Gold(111) konnte dann durch Vergleich der STM-Bilder die Markierung verfolgt und darauf geschlossen werden, ob das Rad gerollt oder verschoben wurde. / The aim of this thesis is the investigation of switching properties of single organic molecules, which can be used as molecular latches on a passivated silicon surface. Suitable molecules should be composed of an anchor group that can bind covalently to the silicon surface as well as an aromatic ring for the latching effect. For the imaging as well as the manipulation of single molecules on conductive substrates, a low-temperature scanning tunneling microscope, LT-STM, is a versatile and powerful tool. On the one hand, STM provides topographical and spectroscopic characterization of single molecules on conductive surfaces at the atomic level. On the other hand, under the tip of a STM single molecules and nanostructures can be moved with atomic precision or can be addressed by voltage pulses. Moreover, by STM it is possible to build atomic-scale circuits on passivated semiconducting surfaces as silicon (100). The STM tip is used to extract single hydrogen atoms from the surface to built atomic wires. As the orbitals of the depassivated dangling bonds of the silicon surface overlap differently depending on the direction of the wire in reference to the surface reconstruction, the electrical properties of the wires differ. Moreover, the properties of the wires vary depending on the chemical environment. Taking advantage of these characteristics, the atomic wires can be used as atomic-scale logic elements. However, to bring the input signal to a single logic element, latches are required to controllably passivate and depassivate single dangling-bond pairs. During preliminary studies on possible molecular latches, interesting experiments could be performed on 4-acetylbiphenyl (ABP) on Au(111). The molecules self assemble in non-covalently bond groups of three or four molecules. These groups can be moved controllably by applying voltage pulses on top of the supramolecular structure. The manipulation is possible over long ranges and without losing the internal structure of the assemblies. For the investigation of promising candidates for future molecular electronics on silicon, a preparation procedure tailored to the used UHV machine was developed. During this process, clean (2×1) reconstructed Si(100) surfaces could be prepared reproducibly and were characterized by means of STM imaging and spectroscopy. Switches are essential for electronic circuitry, on macroscopic as well as microscopic level. For the implementation of molecular devices on silicon, ABP is a promising candidate for a latch. In this thesis, ABP was successfully deposited on Si(100) and was switched by applying voltage pulses on top of the molecule. Two stable conformations were found and switching was realized reproducibly and reversibly. In the last part of this work, the rolling of a double-wheel technomimetic molecule was demonstrated. This thesis shows the rolling of a nanowheel on Au(111) as opposed to pushing, pulling or sliding. For this, the subphthalocyanine wheels were tagged by nitrogen during their synthesis. As this tag has different electronic properties than the rest of the wheel, it can be monitored in the STM images. By comparing the images before and after the manipulation the position of the tag proves the actual rolling.
7

Studies on the Crystallographic Phasing of Proteins: Substructure Validation and MAD-phased Electron Density Maps at Atomic Resolution / Studien zur kristallographischen Phasierung von Proteinen: Substruktur-Validierung und MAD-phasierte Elektronendichtekarten bei atomarer Auflösung

Dall'Antonia, Fabio 06 November 2003 (has links)
No description available.
8

Über die Entwicklung der Realraumindikatoren Cp mit besonderem Hinblick auf C0.6

Finzel, Kati 19 October 2011 (has links) (PDF)
Es besteht der Wunsch nach Indikatoren, deren Signaturen dem chemischen Verständnis entsprechen. Die Suche nach chemischen Signaturen im Realraum ist unter anderem deshalb ein so fruchtbares Arbeitsfeld, weil trotz der Fülle von Indikatoren (die alle einen unterschiedlichen Aspekt der Bindung beleuchten) die Frage nach dem Abbild der chemischen Bindung im Realraum immer noch auf Antwort wartet. Ein Teil von Indikatoren zerlegt den Raum in Bereiche, in denen sich Elektronenpopulationen berechnen lassen. Die Güte dieser Realrauminidkatoren wird daher in der Regel danach beurteilt, ob sie den Gesamtraum in genau solche Teile zerlegen, in denen sich die nach dem Aufbauprinzip erwartete Elektronenpopulation findet: das heißt bei Atomen in sphärische Schalen; bei Molekülen und Festkörpern in Rümpfe, Bindungen und freie Elektronenpaare mit jeweils ganzen, dem Aufbauprinzip entsprechenden Elektronenzahlen. Neben dem Wunsch nach chemischen Signaturen kann man bei der Arbeit mit Realraumindikatoren auch andere Ergebnisse erzielen, wenn man die Indikatoren auf derselben Basis entwickelt, das heißt, wenn man sie vergleichbar macht. Ein Satz vergleichbarer Indikatoren ermöglicht die Suche nach Gemeinsamkeiten und Unterschieden zwischen den einzelnen Indikatoren. Die gewonnenen Ergebnisse können dann auf die den Indikatoren zugrunde liegenden Eigenschaften übertragen werden und in anderen Bereichen der Theorie genutzt werden. Eine solche gemeinsame Basis bietet das Konzept der w-bestimmten Populationen. In der vorliegenden Arbeit wird am Beispiel der Realraumindikatoren Cp gezeigt, wie man anhand dieses Konzeptes eine ganze Schar von Funktionalen kreieren und deren Eigenschaften systematisch testen kann. Das Konzept der w-bestimmten Populationen besteht im Wesentlichen aus zwei Teilschritten. Im ersten Schritt, der w-bestimmten Partitionierung des Raumes (w-RSP), wird der Gesamtraum in kompakte, raumfüllende, nicht überlappende Zellen, sogenannte Mikrozellen, zerlegt, wobei die Summe der Volumina der Mikrozellen stets das Volumen des Gesamtraums ergibt. Die Forderung, dass die Mikrozellen kompakt sein müssen, gewährleistet eine lokale Beschreibung. Aus den möglichen Partitionierungen wählt man nun eine derjenigen aus, für die die Mikrozellen alle dieselbe Menge w einer bestimmten Kontrollgröße haben, das heißt, das Integral über die Kontrollfunktion soll in jeder Mikrozelle denselben Wert w haben. Dadurch erhält man Probenräume, die bezüglich der Kontrolleigenschaft gleich sind. Im zweiten Schritt wird dann in den so erhaltenen Mikrozellen der Wert einer zweiten Größe, der Probengröße, bestimmt. Die resultierende Verteilung der Pobengröße ist natürlich vom expliziten Wert der Kontrolleigenschaft abhängig. Um diese Abhängigkeit zu umgehen, wird die diskrete Verteilung der Probengröße durch eine geeignete Potenz von w geteilt. Nach diesem Reskalierungsprozess liegt eine quasi-kontinuierliche Verteilung vor. Sie ist diskret per Definition, kann jedoch an jedem beliebigen (endlichen) Set von Aufpunkten (und eventuell weiterer Aufpunkte) berechnet werden. Der Limes nach Reskalieren ergibt eine kontinuierliche Funktion. Je nach Wahl der Kontroll- und Probenfunktion können mit diesem Konzept ganze Klassen von Funktionalen erzeugt werden. Die Funktionale sind besonders dann leicht miteinander vergleichbar, wenn sie entweder die Kontroll- oder Probenfunktion gemeinsam haben. Dieser Weg wurde in der vorliegenden Doktorarbeit beschritten. Anhand des eben dargestellten Konzeptes wurden die Realraumindikatoren Cp hergeleitet. Wie auch bei ELI-D ist die Probenfunktion bei den Cp-Indikatoren die Elektronendichte, das heißt die in den Mikrozellen geprobte Größe ist die Elektronenpopulation. Während für ELI-D die Raumpartitionierung durch die Anzahl der Paare in den Mikrozellen bestimmt wird, wird bei den Cp-Indikatoren die Inhomogenität der Elektronendichte als Kontrollgröße gewählt. Die Inhomogenität der Elektronendichte wird anhand des Abstandes der Elektronendichte zu ihrem Mittelwert in der jeweiligen Mikrozelle definiert: Ip(i) = pvuutZmi |r (~r)−r¯i|p dV . (1) Die Inhomogenität ist für jeden positiven Parameter p definiert. Je nach Wahl des Inhomogenitätsparameters p kommen kleinen beziehungsweise großen Abständen mehr Bedeutung zu. Die anhand des Konzeptes der w-bestimmten Populierung hergeleitete Funktionalschar Cp berechnet sich näherungsweise aus der Dichte und dem Dichtegradienten an den Aufpunkten ~ai der Mikrozellen: Cp(~ai) r (~ai) \"[2p(p+1)] |~Ñr (~ai)|p #3/(p+3) r (~ai) VIp , (2) wobei die Volumenfunktion VIp proportional zum Volumen einer festen Größe an Elektronendichteinhomogenität ist. Cp beruht ausschließlich auf Einelektroneneigenschaften, die sich aus der Elektronendichte ableiten lassen. Daher ist es prinzipiell möglich, Cp direkt aus dem Experiment zu bestimmen. ELI-D hingegen beruht sowohl auf der Elektronendichte, als auch auf der Paardichte, einer Zweiteilcheneigenschaft: ¡D(~ai) r (~ai) 12 g(~ai)| 3/8 r (~ai) VD . (3) Zur Berechnung der Paarvolumenfunktion VD ist die Kenntnis der Krümmung des Fermiloches g an der Elektronenkoaleszenz von Nöten. Die freie Wahl des Inhomogenitätsparameters p erlaubt es, die Volumenfunktion VIp zu justieren. Gelänge es, für ein bestimmtes Inhomogenitätsmaß die Proportionalität von VD und VIp zu erzeugen, so hätte man mit der entsprechenden Inhomogenität den Raumanspruch eines Paares abgebildet. Letztlich hätte dies zu einem Ausdruck für die Fermilochkrümmung als Funktion der Dichte geführt. (Dieser Ausdruck wiederum wäre in vielen Bereichen der Theorie von großem Nutzen.) Im Rahmen dieser Doktorarabeit konnte gezeigt werden, dass eine direkte Anpassung der Volumenfunktionen jedoch nicht in befriedigendem Maße gelingt. Daher wurde die Forderung der Proportionalität beider Indikatoren ein wenig abgeschwächt und lediglich verlangt, dass die Kurvenverläufe von Cp und ELI-D ähnlich sind. Besonderer Fokus wurde hier auf die Lage der Extrema gelegt. Die Forderung der ähnlichen Verläufe kann man durch die Anpassung der logarithmischen Gradienten der Volumenfunktionen gewährleisten. Die Anpassung erfolgte durch die Methode der kleinsten Fehlerquadrate und wurde für die Atome Li bis Xe durchgeführt. Die nach diesen Gesichtspunkten idealen Inhomgenitätsparameter konzentrieren sich alle unabhängig vom berechneten System bei Werten um p = 0.6. Das erhaltene Funktional C0.6 ist somit unabhängig vom Atomtyp und kann daher auch bei Molekülen und Festkörpern angewandt werden. C0.6 zeigt bei Atomen eine ähnliche Schalenstruktur wie ELI-D. Insbesondere die Elektronenpopulationen in den inneren Schalen spiegeln recht gut das Aufbauprinzip wieder. Bei den Übergangselementen und den direkt nachfolgenden Elementen fehlt allerdings der erwartete Separator zwischen der Valenz- und der letzten Rumpfschale. Bei Molekülen verlaufen die Bassingrenzen der Rumpfregionen sehr ähnlich, sodass die Elektronenpopulationen bis auf eine Differenz von 0.1 Elektron gleich sind. Im Bereich der freien Elektronenpaare zeigen beide Indikatoren dieselbe Anzahl von Attraktoren, wobei die C0.6-Attraktoren im Vergleich zu denen der ELI-D etwas näher am Kernort liegen. In den Regionen der freien Elektronenpaare können die Bassinpopulationen beider Indikatoren durchaus voneinander abweichen. Hierbei liegen die Elektronenpopulation von C0.6 im Mittel näher an den nach dem Lewisbild erwarteten Elektronenzahlen. Im Bereich der Bindung können große Unterschiede zwischen den Indikatoren auftreten, da C0.6 hier hauptsächlich durch den Gradiententerm dominiert ist und an jedem bindungskritischen Punkt einen Attraktor aufweisen muss. Atomare Verbindunglinien werden durch C0.6 entweder einfach zweifach oder dreifach markiert, wobei einfach markierte Linien bei unpolaren Bindungen und zweifach markierte bei polaren Bindungen zu finden sind. Dreifach markierte Linien entsprechen ungebundenen Zuständen. ELI-D hingegen zeigt keine Mehrfachmarkierung bei Einfachbindungen. Die an Molekülen abgeleiteten Aussagen über die Bindungsmarkierung lassen sich bei Festkörpern auf die nächsten Nachbarn übertragen. Durch die Zweifachmarkierung bei polaren Bindungen kann man auf einfache Weise die Gesamtelektronenpopulation eines Elementes im Verbund bestimmen (es gibt in der Regel keine geteilten Bassins). Dadurch lassen sich Ladungen berechnen und eine Skala der topologischen Kenngröße (vergleichbar mit einer Elektronegativitätsskala) aufstellen. Letzlich ist zu konstatieren, dass C0.6 nicht in der Lage ist, ELI-D hinreichend gut abzubilden. In Molekülen und Festkörpern erreicht der Gradient der Elektronendichte den Wert Null. An diesen Stellen ist C0.6 nicht an ELI-D anpassbar, da C0.6 hier einen Attraktor ausbilden muss. Dennoch hat diese Arbeit gezeigt, wie man anhand des Konzeptes der w-bestimmten Populationen Funktionale generieren und systematisch vergleichen, sowie gegebenenfalls aneinander anpassen kann. Die so gewonnenen Ergebnisse lassen sich auch in anderen Bereichen der Theorie anwenden. So mag C0.6 nicht nur in der Bindungsanalyse - wo es im Gegensatz zu ELI-D direkt aus dem Experiment bestimmt werden kann - Verwendung finden, sondern kann möglicherweise auch hilfreich bei der Entwicklung von Funktionalen in der Dichtefunktionaltheorie sein, da hier Funktionaltypen Anwendung finden, deren ortsabhängige Mischung der Austauschanteile durch Funktionen des Typs ˜Cp geregelt werden.
9

Off-axis Holografie im aberrationskorrigierten Transmissionselektronenmikroskop / Off-axis electron holography in an aberration-corrected transmission electron microscope

Linck, Martin 15 July 2010 (has links) (PDF)
Die off-axis Elektronenholografie im Transmissionselektronenmikroskop (TEM) erlaubt die quantitative Rekonstruktion der komplexen Objektaustrittswelle mit atomarer Auflösung. Die Auswertung der Phase dieser Welle ermöglicht die Unterscheidung der Atomsorten bzw. das Zählen der Atome in Projektionsrichtung sowie die Bestimmung von Atompositionen. Damit ist ein TEM über die einfache Abbildung hinaus ein sehr leistungsstarkes Messgerät zur quantitativen Analyse kleinster Strukturen bis hin zur atomaren Skala. Die Prozedur von der Aufnahme eines hochaufgelösten Elektronenhologramms über die Rekonstruktion bis zur bildfehlerkorrigierten Objektwelle ist jedoch sehr umfangreich und teils sehr anfällig für Artefakte. Diese Arbeit zeigt unter kritischer Betrachtung der einzelnen Einflüsse, wie dieser Weg zu beschreiten ist, um schlussendlich zu einer artefaktfreien, interpretierbaren Objektwelle zu gelangen. Im letzten Jahrzehnt haben Bildfehler-Korrektoren die höchstauflösende Transmissions-elektronenmikroskopie auf instrumenteller Seite revolutioniert. Auch die off-axis Holografie kann eine ganze Reihe von Vorteilen aus diesem elektronenoptischen Zusatzsystem ziehen. Neben der Analyse dieser einzelnen Verbesserungen, insbesondere der Phasensignalauflösung, wird gezeigt, wie es das Cs-korrigierte TEM zu optimieren gilt, um schließlich bestmögliche Ergebnisse für quantitative Objektanalyse zu erzielen. Zwei Anwendungsbeispiele zeigen experimentelle Ergebnisse der Elektronenholografie mit Cs-korrigierten Mikroskopen. Bei der Analyse ferroelektrischer Nanoschichten erweisen sich die einzigartigen Möglichkeiten der holografischen Auswertung im Zusammenspiel mit der nunmehr hervorragenden Signalauflösung als äußerst nützlich, um die ferroelektrische Polarisation zu ermitteln. Die Objektwellenrekonstruktion der Korngrenze in einer Goldfolie demonstriert weitere Verbesserungen für die Holografie, wenn zusätzlich eine neuartige Elektronenquelle mit höherem Richtstrahlwert zum Einsatz kommt. Einzelne Goldatome werden mit einem Signal-Rausch-Verhältnis von ca. 10 in Amplitude und Phase messbar. / Off-axis electron holography in a transmission electron microscope (TEM) allows reconstructing the complex object exit-wave quantitatively with atomic resolution. Analyzing the phase shift of this wave gives access to the atomic species and enables counting the number of atoms in projection direction as well as determining atom positions. Therefore, a TEM is a very powerful measuring device for quantitative analysis of smallest structures down to the atomic scale beyond simple microscopic imaging. The procedure of the recording of a high-resolution electron hologram, its reconstruction, and after numerical aberration correction finally ending up with the object-exit wave, is quite comprehensive and partially susceptible to artifacts. This work shows how to manage this procedure in order to obtain an interpretable object exit-wave, which is free of artifacts. In instrumentation within the last decade aberration correctors have revolutionized high-resolution electron microscopy. Also off-axis holography can benefit from this electron optical add-on module. Besides the exploration of each improvement, in particular the phase detection limit, this work demonstrates, how to optimize the Cs-corrected TEM in order to get best possible results for quantitative object analysis. Two application examples show experimental results of electron holography with Cs-corrected microscopes. For the investigation of ferroelectric nanolayers, the unique possibilities of the holographic evaluation together with the strongly improved signal resolution turn out to be very useful when determining the ferroelectric polarization. The object wave reconstruction of the grain boundary in a gold film demonstrates further improvements for holography, when additionally using a new electron gun with improved brightness. Single gold atoms become measurable with a signal-noise-ratio of about 10 in amplitude and phase.
10

Off-axis Holografie im aberrationskorrigierten Transmissionselektronenmikroskop

Linck, Martin 01 July 2010 (has links)
Die off-axis Elektronenholografie im Transmissionselektronenmikroskop (TEM) erlaubt die quantitative Rekonstruktion der komplexen Objektaustrittswelle mit atomarer Auflösung. Die Auswertung der Phase dieser Welle ermöglicht die Unterscheidung der Atomsorten bzw. das Zählen der Atome in Projektionsrichtung sowie die Bestimmung von Atompositionen. Damit ist ein TEM über die einfache Abbildung hinaus ein sehr leistungsstarkes Messgerät zur quantitativen Analyse kleinster Strukturen bis hin zur atomaren Skala. Die Prozedur von der Aufnahme eines hochaufgelösten Elektronenhologramms über die Rekonstruktion bis zur bildfehlerkorrigierten Objektwelle ist jedoch sehr umfangreich und teils sehr anfällig für Artefakte. Diese Arbeit zeigt unter kritischer Betrachtung der einzelnen Einflüsse, wie dieser Weg zu beschreiten ist, um schlussendlich zu einer artefaktfreien, interpretierbaren Objektwelle zu gelangen. Im letzten Jahrzehnt haben Bildfehler-Korrektoren die höchstauflösende Transmissions-elektronenmikroskopie auf instrumenteller Seite revolutioniert. Auch die off-axis Holografie kann eine ganze Reihe von Vorteilen aus diesem elektronenoptischen Zusatzsystem ziehen. Neben der Analyse dieser einzelnen Verbesserungen, insbesondere der Phasensignalauflösung, wird gezeigt, wie es das Cs-korrigierte TEM zu optimieren gilt, um schließlich bestmögliche Ergebnisse für quantitative Objektanalyse zu erzielen. Zwei Anwendungsbeispiele zeigen experimentelle Ergebnisse der Elektronenholografie mit Cs-korrigierten Mikroskopen. Bei der Analyse ferroelektrischer Nanoschichten erweisen sich die einzigartigen Möglichkeiten der holografischen Auswertung im Zusammenspiel mit der nunmehr hervorragenden Signalauflösung als äußerst nützlich, um die ferroelektrische Polarisation zu ermitteln. Die Objektwellenrekonstruktion der Korngrenze in einer Goldfolie demonstriert weitere Verbesserungen für die Holografie, wenn zusätzlich eine neuartige Elektronenquelle mit höherem Richtstrahlwert zum Einsatz kommt. Einzelne Goldatome werden mit einem Signal-Rausch-Verhältnis von ca. 10 in Amplitude und Phase messbar. / Off-axis electron holography in a transmission electron microscope (TEM) allows reconstructing the complex object exit-wave quantitatively with atomic resolution. Analyzing the phase shift of this wave gives access to the atomic species and enables counting the number of atoms in projection direction as well as determining atom positions. Therefore, a TEM is a very powerful measuring device for quantitative analysis of smallest structures down to the atomic scale beyond simple microscopic imaging. The procedure of the recording of a high-resolution electron hologram, its reconstruction, and after numerical aberration correction finally ending up with the object-exit wave, is quite comprehensive and partially susceptible to artifacts. This work shows how to manage this procedure in order to obtain an interpretable object exit-wave, which is free of artifacts. In instrumentation within the last decade aberration correctors have revolutionized high-resolution electron microscopy. Also off-axis holography can benefit from this electron optical add-on module. Besides the exploration of each improvement, in particular the phase detection limit, this work demonstrates, how to optimize the Cs-corrected TEM in order to get best possible results for quantitative object analysis. Two application examples show experimental results of electron holography with Cs-corrected microscopes. For the investigation of ferroelectric nanolayers, the unique possibilities of the holographic evaluation together with the strongly improved signal resolution turn out to be very useful when determining the ferroelectric polarization. The object wave reconstruction of the grain boundary in a gold film demonstrates further improvements for holography, when additionally using a new electron gun with improved brightness. Single gold atoms become measurable with a signal-noise-ratio of about 10 in amplitude and phase.

Page generated in 0.0394 seconds