121 |
Untersuchungen zur Oberflächenchemie der Atomlagenabscheidung und deren Einfluss auf die Effizienz von ProzessenRose, Martin 25 November 2010 (has links)
In dieser Arbeit werden verschiedene Prozesse zur Atomlagenabscheidung (ALD) von TiO2 und HfO2 experimentell untersucht. Die Untersuchungen schließen eine experimentelle Charakterisierung des Schichtwachstums sowie eine massenspektrometrische Analyse der Reaktionsprodukte ein. Im Detail wurden der ALD-Prozess mit Cp*Ti(OMe)3 und Ozon zur Abscheidung von TiO2 sowie der ALD-Prozess mit TEMAHf und Ozon zur Abscheidung von HfO2 untersucht.
Der theoretische Teil der Arbeit beginnt mit einer Methode zur Bestimmung des absoluten Haftkoeffizienten. Anschließend werden numerische Modelle entwickelt, welche die Adsorption von Präkursormolekülen durch strukturierte Substrate beschreiben. Diese Modelle enthalten die Substratstruktur und den absoluten Haftkoeffizienten.
Es wird eine statistische numerische Methode entwickelt, mit der der Gastransport in dem ALD-Reaktor statistisch beschrieben wird. Die statistischen Größen, welche die Gasdynamik im Reaktor beschreiben, werden mit der Discrete Simulation Monte Carlo (DSMC) Methode bestimmt. Mit dieser Methode und den Modellen der Adsorption kann der komplette ALD-Prozess simuliert werden.
Die neu entwickelte Methode wird verwendet um die Effizienz verschiedener ALD-Reaktoren in Abhängigkeit des absoluten Haftkoeffizienten, der Substratstruktur sowie der Prozessbedingungen zu untersuchen. Die Geometrie des Reaktors wird variiert und mit der Referenzgeometrie verglichen.:Inhaltsverzeichnis................................................................................ i
Tabellenverzeichnis.............................................................................. iii
Abbildungsverzeichnis ......................................................................... v
Abkürzungsverzeichnis ........................................................................ ix
Formelverzeichnis ................................................................................ xi
1. Einführung ....................................................................................... 1
1.1. Motivation und Zielstellung ........................................................... 1
1.2. Grundlagen der Atomlagenabscheidung ....................................... 3
1.3. Materialien und Anwendungen ..................................................... 6
2. Experimentelle Grundlagen .............................................................. 9
2.1. ALD-Anlage ................................................................................... 9
2.2. Physikalische Probencharakterisierung ........................................ 11
2.2.1. Röntgenmethoden ..................................................................... 11
2.2.2. Elektronenstrahl-Methoden ....................................................... 12
2.2.3. Spektrometrische Methoden ...................................................... 13
2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14
3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21
3.1. Abscheidung von Titandioxid ........................................................ 21
3.1.1. TDMAT als Titanpräkursor .......................................................... 21
3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25
3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30
3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32
3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32
3.3.2. TMA mit Ozon ............................................................................ 36
3.3.3. TEMAHf mit Ozon ....................................................................... 37
3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39
3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41
4. Modellierung der Adsorption ........................................................... 43
4.1. Adsorptionsverhalten planarer Substrate .................................... 43
4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49
4.2.1. Numerische Simulationsmethode .............................................. 52
4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54
4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55
4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59
4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61
4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66
4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74
4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78
4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79
4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81
5. Gekoppelte Prozesssimulation ........................................................ 83
5.1. Statistische Methode zur Simulation der ALD ............................... 83
5.1.1. Statistische Größen der Gasdynamik ......................................... 85
5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90
5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93
5.2.1. Geometrie und Randbedingungen ............................................. 93
5.2.2. Ergebnis der Reaktorsimulation ................................................. 96
5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102
5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110
5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113
5.4. Vergleich zwischen Simulation und Experiment .......................... 114
6. Zusammenfassung und Ausblick .................................................... 117
Literaturverzeichnis ........................................................................... 121
Anhang .............................................................................................. 129
Parameter der modellierten effektiven Haftkoeffizienten ................... 129
Hafnium-Dotierung von Titandioxidschichten ..................................... 131
Eigene Veröffentlichungen ................................................................. 133
Lebenslauf ......................................................................................... 135 / This dissertation is divided into an experimental part and a theoretical part. The experimental part describes the atomic layer deposition (ALD) of TiO2 and HfO2. TDMAT and Cp*Ti(OMe)3 were used as titanium precursors, while TEMAHf was used as the hafnium precursor. Ozone was used as the oxygen source. The self limiting film growth and the temperature window of these ALD processes were investigated. The reaction by-products of the Cp*Ti(OMe)3/O3 process were identified by quadrupol mass spectrometry (QMS). The QMS analysis of the TEMAHf/O3 process revealed that water is formed during the metal precursor pulse.
The theoretical part of this thesis describes the development of models and numerical methods to simulate the ALD as a whole. First of all, a model for the adsorption of precursor molecules by planar substrates was developed. This model was extended to describe the adsorption of precursor molecules inside a cylindrical hole with an aspect ratio of 20, 40 and 80. The adsorption of precursor molecules is dominated by the absolute sticking coefficient (SC), i.e., the reactivity of the precursor molecules. From the numerical model the saturation profiles along the wall of a cylindrical hole can be determined. From the comparison of the simulated profile with an experimentally determined thickness profile the SC can be determined. This method was used to determine the SC of the precursors examined in the experimental part. The SC of TEMAHf increases exponentially with the substrate temperature.
A discrete particle method (DSMC) was used to derive a statistical description of the gas kinetics inside an ALD reactor. Combining the statistical description of the gas transport and the numerical models of the adsorption, it is possible to simulate the ALD for any combination of reactor, substrate and SC. It is possible to distinguish the contribution of the reactor geometry, the process parameters and the process chemistry (SC) to the process efficiency. Therefore, the ALD reactor geometry can be optimized independently of the process chemistry. This method was used to study a shower head ALD reactor. The reactor geometry, the composition of the gas at the inlet and the position of the inlet nozzles was varied in order to find more efficient ALD reactors. The efficiency of the reference geometry is limited by the inlet nozzles close to the exhaust and the decrease of the pressure on the substrate near the exhaust. The efficiency of ALD processes with different SCs was simulated for planar and structured substrates with a diameter of 300 mm and 450 mm.:Inhaltsverzeichnis................................................................................ i
Tabellenverzeichnis.............................................................................. iii
Abbildungsverzeichnis ......................................................................... v
Abkürzungsverzeichnis ........................................................................ ix
Formelverzeichnis ................................................................................ xi
1. Einführung ....................................................................................... 1
1.1. Motivation und Zielstellung ........................................................... 1
1.2. Grundlagen der Atomlagenabscheidung ....................................... 3
1.3. Materialien und Anwendungen ..................................................... 6
2. Experimentelle Grundlagen .............................................................. 9
2.1. ALD-Anlage ................................................................................... 9
2.2. Physikalische Probencharakterisierung ........................................ 11
2.2.1. Röntgenmethoden ..................................................................... 11
2.2.2. Elektronenstrahl-Methoden ....................................................... 12
2.2.3. Spektrometrische Methoden ...................................................... 13
2.3. Experimentelle in-situ Prozesscharakterisierung .......................... 14
3. Atomlagenabscheidung von TiO2 und HfO2 ..................................... 21
3.1. Abscheidung von Titandioxid ........................................................ 21
3.1.1. TDMAT als Titanpräkursor .......................................................... 21
3.1.2. Cp*Ti(OMe)3 als Titanpräkursor ................................................ 25
3.2. Abscheidung von Hafniumdioxid mit TEMAHf und Ozon ................. 30
3.3. Massenspektrometrie an ALD-Prozessen mit Ozon ...................... 32
3.3.1. Cp*Ti(OMe)3 mit Ozon .............................................................. 32
3.3.2. TMA mit Ozon ............................................................................ 36
3.3.3. TEMAHf mit Ozon ....................................................................... 37
3.3.4. Prozessüberwachung mit Massenspektrometrie ....................... 39
3.4. Zusammenfassung zur ALD von TiO2 und HfO2 ........................... 41
4. Modellierung der Adsorption ........................................................... 43
4.1. Adsorptionsverhalten planarer Substrate .................................... 43
4.2. Adsorptionsverhalten strukturierter Substrate ............................ 49
4.2.1. Numerische Simulationsmethode .............................................. 52
4.2.2. Gaskinetik in einem zylindrischen Graben ................................. 54
4.2.3. Effektive Haftkoeffizienten und Sättigungsdosen ..................... 55
4.2.4. Sättigungsprofile entlang der Grabenwand .............................. 59
4.3. Methode zur Bestimmung des absoluten Haftkoeffizienten von ALD-Präkursoren ........................................................................................ 61
4.3.1. Methode am Beispiel von TDMAT mit Ozon ................................ 66
4.3.2. Absoluter Haftkoeffizient von TEMAHf mit Ozon ......................... 74
4.3.3. Absoluter Haftkoeffizient von Cp*Ti(OMe)3 mit Ozon ................ 78
4.3.4. Temperaturabhängigkeit absoluter Haftkoeffizienten ............... 79
4.4. Zusammenfassung zur Modellierung der Adsorption .................... 81
5. Gekoppelte Prozesssimulation ........................................................ 83
5.1. Statistische Methode zur Simulation der ALD ............................... 83
5.1.1. Statistische Größen der Gasdynamik ......................................... 85
5.1.2. Algorithmus der gekoppelten ALD-Simulation ............................ 90
5.2. Anwendung der Methode zur Optimierung einer Gasdusche ........ 93
5.2.1. Geometrie und Randbedingungen ............................................. 93
5.2.2. Ergebnis der Reaktorsimulation ................................................. 96
5.2.3. Gekoppelte ALD-Simulation für planare Substrate ................... 102
5.2.4. Gekoppelte ALD-Simulation für strukturierte Substrate ........... 110
5.3. Einfluss der Randbedingungen auf die geometrische Effizienz ... 113
5.4. Vergleich zwischen Simulation und Experiment .......................... 114
6. Zusammenfassung und Ausblick .................................................... 117
Literaturverzeichnis ........................................................................... 121
Anhang .............................................................................................. 129
Parameter der modellierten effektiven Haftkoeffizienten ................... 129
Hafnium-Dotierung von Titandioxidschichten ..................................... 131
Eigene Veröffentlichungen ................................................................. 133
Lebenslauf ......................................................................................... 135
|
122 |
Electrical investigations of hybrid OLED microcavity structures with novel encapsulation methodsMeister, Stefan, Brückner, Robert, Fröb, Hartmut, Leo, Karl 30 August 2019 (has links)
An electrical driven organic solid state laser is a very challenging goal which is so far well beyond reach. As a step towards realization, we monolithically implemented an Organic Light Emitting Diode (OLED) into a dielectric, high quality microcavity (MC) consisting of two Distributed Bragg Reflectors (DBR). In order to account for an optimal optical operation, the OLED structure has to be adapted. Furthermore, we aim to excite the device not only electrically but optically as well. Different OLED structures with an emission layer consisting of Alq3:DCM (2 wt%) were investigated. The External Quantum Efficiencies (EQE) of this hybrid structures are in the range of 1-2 %, as expected for this material combination. Including metal layers into a MC is complicated and has a huge impact on the device performance. Using Transfer-Matrix-Algorithm (TMA) simulations, the best positions for the metal electrodes are determined. First, the electroluminescence (EL) of the adjusted OLED structure on top of a DBR is measured under nitrogen atmosphere. The modes showed quality factors of Q = 60. After the deposition of the top DBR, the EL is measured again and the quality factors increased up to Q = 600.
Considering the two 25-nm-thick-silver contacts a Q-factor of 600 is very high. The realization of a suitable encapsulation method is important. Two approaches were successfully tested. The first method is based on the substitution of a DBR layer with a layer produced via Atomic Layer Deposition (ALD). The second method uses a 0.15-mm-thick cover glass glued on top of the DBR with a 0.23-µm-thick single-component glue layer. Due to the working encapsulation, it is possible to investigate the sample under ambient conditions.
|
123 |
In-situ XPS Investigation of ALD Cu2O and Cu Thin Films after Successive ReductionDhakal, Dileep, Waechtler, Thomas, E. Schulz, Stefan, Mothes, Robert, Moeckel, Stefan, Lang, Heinrich, Gessner, Thomas 07 July 2014 (has links)
This talk was presented in the 14th International Conference on Atomic Layer Deposition (ALD 2014) in Kyoto, Japan on 18th June 2014.
Abstract
Atomic Layer Deposition (ALD) is emerging as a ubiquitous method for the deposition of conformal and homogeneous ultra-thin films on complex topographies and large substrates in microelectronics. Electrochemical deposition (ECD) is the first choice for the deposition of copper (Cu) into the trenches and vias of the interconnect system for ULSI circuits. The ECD of Cu necessitates an electrically conductive seed layer for filling the interconnect structures. ALD is now considered as a solution for conformal deposition of Cu seed layers on very high aspect ratio (AR) structures also for technology nodes below 20 nm, since physical vapor deposition is not applicable for structures with high AR. Cu seed layer deposition by the reduction of Cu2O, which has been deposited from the Cu(I) β-diketonate [(nBu3P)2Cu(acac)] (1) used as Cu precursor, has been successfully carried out on different substrates like Ta, TaN, SiO2, and Ru [1, 2]. It was found that the subsequent gas-phase reduction of the Cu2O films can be aided by introducing catalytic amounts of a Ru precursor into the Cu precursor, so that metallic copper films could potentially obtained also on non-catalytic substrates [3, 4]. In this work, in situ X-ray photoelectron spectroscopy (XPS) investigation of the surface chemistry during Cu2O ALD from the mixture of 99 mol % of 1 and 1 mol % of [Ru(η5 C5H4SiMe3)(η5-C7H11)] (2) as ruthenium precursor, and the reduction of Cu2O to metallic Cu by formic acid carried out on SiO2 substrate are demonstrated. Oxidation states of the Cu in the film are identified by comparing the Cu Auger parameter (α) [5] with literature data. α calculated after ALD equals 362.2 eV and after reduction equals 363.8 eV, comparable to the Cu2O and metallic Cu in thin-films [6] respectively. In addition, <10 % of Cu(I), Cu(II), and Cu(OH)2 species are identified from the Cu 2p3/2 and Cu L3VV Auger spectrum after reduction. Consequently, the ALD Cu2O is successfully reduced to metallic copper by in-situ thermal reduction using formic acid.
[1] T. Waechtler et al., J. Electrochem. Soc., 156 (6), H453 (2009).
[2] T. Waechtler et al., Microelectron. Eng., 88, 684 (2011).
[3] S. Mueller et al., Conference Proceedings SCD 2011, Semiconductor Conference Dresden, pp. 1-4.
[4] T. Waechtler et al., US Patent Application Publication, US 2013/0062768.
[5] C. D. Wagner, Faraday Discuss. Chem. Soc., 60, 291 (1975).
[6] J. P. Espinós et al., J. Phys. Chem. B, 106, 6921 (2002).
|
124 |
Exploring Surface Silanization and Characterization of Thin Films: From Surface Passivation to Microstructural Characterization of Porous Silicon/Silica, and Exploratory Data Analysis of X-Ray Photoelectron Spectroscopy ImagesMoeini, Behnam 21 June 2023 (has links) (PDF)
Surface chemistry plays a key role in science and technology because materials interact with their environments through their surfaces. Understanding surface chemistry can help alter/improve the properties of materials. However, surface characterization and modification often require multiple characterization and synthesis techniques. Silicon/silica-based materials are technologically important, so studying their surface properties can enable future advancements. In this dissertation, I explore surface modification and characterization of different types of Si/SiO2 thin films, including silicon wafers, fused silica capillary columns, and oblique angle sputtered Si/SiO2 thin films. In Chapters 2-5, I first present a method to rapidly silanize silica surfaces using a gas-phase synthesis that employs a small aminosilane that passivates/deactivates silicon wafers and the inner surfaces of capillary columns. This deposition takes place in a flow-through, atmospheric pressure, gas-phase reactor. This surface modification results in a significant decrease in the number of free surface silanols, which was confirmed by high-sensitivity low energy ion scattering (HS-LEIS), X-ray photoelectron spectroscopy (XPS), and spectroscopic ellipsometry (SE). I then show that this silanization inhibits atomic layer deposition (ALD) of zinc oxide (ZnO), which is an important optical thin film material. Finally, I performed in-depth characterization of thin films of oblique angle deposited porous Si/SiO2. These films have been used as the active coatings in solid phase microextraction (SPME) devices. The characterization and analysis in this study were mainly by scanning transmission electron microscopy (STEM) and various computational microstructural characterization techniques, e.g., two-point statistics. The rest of my dissertation focuses on XPS data analysis and interpretation. I first show box plots as a simple graphical tool for determining overfitting in XPS peak fitting. I next present a series of chemometrics/informatics analyses of an XPS image dataset from a patterned silicon surface with different oxide thicknesses. This dataset was probed via an initial, graphical analysis of the data, summary statistics with a focus on pattern recognition entropy (PRE), principal component analysis (PCA), multivariate curve resolution (MCR), and cluster analysis (CA).
|
125 |
Nonlinear Electromagnetic Radiation from Metal-Insulator-Metal Tunnel JunctionsHussain, Mallik Mohd Raihan 24 May 2017 (has links)
No description available.
|
126 |
Untersuchungen zum Einsatz des ms-Blitzlampentemperns bei der Atomlagenabscheidung von dünnen Schichten und für die Rekristallisation von amorphem SiliziumHenke, Thomas 07 December 2021 (has links)
Die Fertigung zukünftiger integrierter Schaltkreise und von Produkten des Bereichs Konsumerelektronik erfordert die Anwendung von Verfahren mit reduzierter thermischer Belastung, um bereits gefertigte Bauelemente und temperaturempfindliche Materialien nicht durch nachfolgende Prozesse thermisch zu beschädigen. Das ms-Blitzlampentempern (engl. flash lamp annealing, FLA) ist ein Kurzzeittemperverfahren, bei dem nur ein oberflächennaher Bereich des Substrats für die Dauer von wenigen Millisekunden eine sehr starke Temperaturerhöhung erfährt, während das Bulkmaterial nicht bzw. nur in deutlich geringerem Maße erwärmt wird. Dadurch ermöglicht das FLA die Realisierung von thermisch aktivierten Prozessen mit einem vergleichsweise geringen thermischen Budget. In der vorliegenden Arbeit wurde der Einsatz des FLA-Verfahrens für die FLA-induzierte Abscheidung dünner Schichten, die Verbesserung von Schichteigenschaften durch das zyklische Zwischentempern der Schichten während eines Abscheideprozesses und die Rekristallisation von amorphem Silizium (a-Si) zur lokal kontrollierten Herstellung großer Si-Körner untersucht und evaluiert.
Die direkte Abscheidung dünner Schichten mittels FLA wurde am Beispiel von aluminium-basierten Schichten und Rutheniumschichten untersucht. Die Realisierung der Prozesse erfolgte durch zyklisch wiederholte Anwendung des FLA's während die Substrate den jeweiligen Präkursoren ausgesetzt waren. In beiden Fällen wurde das Schichtwachstum durch den Energieeintrag des FLA's ausgelöst. Weiterhin weisen die Prozesse typische Merkmale der Atomlagenabscheidung (engl. atomic layer deposition, ALD) auf, wie zum Beispiel ein Lage-zu-Lage-Wachstum und Wachstumsraten von weniger als einem Angström pro Zyklus. Die Abscheidung der aluminiumbasierten Schichten ist zudem durch das für die ALD charakteristische selbstbegrenzende Schichtwachstum gekennzeichnet. Die erzielten Zusammenhänge zwischen Prozessparametern und Wachstumseigenschaften wie auch der Schichteigenschaften werden stets in Bezug zur Wirkung der FLA-induzierten Temperaturentwicklung auf das Schichtwachstum gesetzt und diskutiert. So werden beispielsweise substratabhängige Wachstumsraten auf die unterschiedlichen optischen Eigenschaften der verwendeten Substrate und die daraus resultierenden unterschiedlichen Temperaturen während des FLA's zurückgeführt. Die FLA-induzierte Abscheidung von Ruthenium wurde ferner als single-source-Prozess mit nur einem Präkursor realisiert. Zudem wird gezeigt, dass sich eine durch substratbegrenztes Schichtwachstum verursachte Aufwachsverzögerung durch die Anwendung derartiger FLA-induzierter Abscheideprozesse signifikant reduzieren lässt.
Die Verbesserung von Schichteigenschaften durch FLA wurde am Beispiel der Aluminium-oxid-ALD (Al2O3), die bei niedrigen Prozesstemperaturen stattfand, untersucht. Das Ziel war, eine Vergrößerung der Dichte der Al2O3-Schichten zu erreichen. Zu diesem Zweck wurde das FLA in den ALD-Prozess integriert und zyklisch während der Spülpulse der ALD-Prozesssequenz ausgeführt. Vorteil dieses Ansatzes gegenüber konventionellen Temperverfahren ist, dass die Schichten bereits direkt während der Schichtwachstumsphase getempert werden können. Als Ergebnis dieser in situ Temperung wurde eine Steigerung der Dichte von Al2O3-Schichten, die bei 75 °C abgeschieden wurden, um ca. 10 % erreicht. Dieser Anstieg ist jedoch nicht auf eine gewöhnliche Verdichtung des Schichtmaterials zurückzuführen. Stattdessen implizieren die Ergebnisse, dass die zyklische FLA-Anwendung das Schichtwachstum fördert und so direkt zum Aufwachsen von Schichten mit größerer Dichte führt. Dieses unterstützte Wachstum wurde auch in Form eines um ca. 25 % größeren Massenzuwachses pro Zyklus beobachtet und es ist am ausgeprägtesten, wenn das FLA nach jedem einzelnen oder nach jedem zweiten ALD-Zyklus ausgeführt wird. Des Weiteren hatte die Anwendung des in situ FLA-Zwischentemperns eine verbesserte Schichtzusammensetzung, eine Vergrößerung des Brechungsindex, größere Dielektrizitätskonstanten sowie eine Reduzierung der Leckströme zur Folge. Die Anwendung von Wasserstoff während der FLA-Teilschritte führte zu einer nochmaligen Steigerung des Massenzuwachses und einer weiteren Verbesserung der Schichteigenschaften. Die mit dem in situ Zwischentempern erreichten Dichten wurden durch ein konventionelles Nachtempern der Al2O3-Schichten mit Temperaturen bis zu 600 °C nicht erreicht.
Bezüglich der FLA-induzierten Rekristallisation von a-Si wurde die Anwendung von strukturierten Metallschichten unter der zu rekristallisierenden a-Si-Schicht untersucht. Die kleinen Metallgebiete wirken als eingebettete Mikrospiegel und führen während des FLA zu einer verstärkten Wärmeentwicklung im darüber befindlichen a-Si. Infolgedessen wird mit diesem Ansatz gezielt ein lateraler Temperaturgradient in der a-Si-Schicht erzeugt. Während der FLA-Rekristallisation in Verbindung mit einem Aufschmelzen des a-Si beginnt das Wachstum von Si-Körnern an Positionen, die durch die niedrigste Temperatur des Gradients gekennzeichnet sind und setzt sich dann durch die epitaktische Anlagerung von weiterem Material fort. Demgemäß findet die Bildung von Si-Gebieten mit großen Kristalliten in kontrollierter Art und Weise statt. Im Vergleich verschiedenster Spiegelrastertypen erwiesen sich Raster aus kreisförmigen und linienförmigen Spiegeln als die vielversprechendsten Varianten. Die entstandenen Si-Gebiete befinden sich ausschließlich in Bereichen zwischen benachbarten Spiegeln und haben ein kissenförmiges Erscheinungsbild, sie weisen Abmessungen von einigen zehn Mikrometern auf und bestehen aus Si-Körnern mit Längen von bis zu ca. 28 µm. Die Bildung einkristalliner Si-Inseln wurde im Fall eines Spiegelraster mit kreisförmigen Spiegeln festgestellt. Im Vergleich dazu führte der Einsatz von Spiegelrastern mit linienförmigen Spiegeln zur Bildung von langgestreckten Si-Kissen mit länglichen und nahezu rechteckigen Körnern. Dies wird mit dem von einer Seite ausgehenden lateralen Erstarren des geschmolzenen Si erklärt. Desweiteren zeichnet sich dieser Ansatz durch das Herausfiltern eines einzelnen Kornes und somit durch grain-filter-Eigenschaften aus. Dies ermöglicht es, Si-Körner in kontrollierter Weise an zuvor festgelegten Positionen herzustellen. Die größten derart erzeugten Si-Körner haben Abmessungen von ca. 26 x 6 µm².:Kurzfassung i
Abstract iii
Inhaltsverzeichnis v
Abkürzungs- und Kurzzeichenverzeichnis ix
Abkürzungsverzeichnis ix
Kurzzeichenverzeichnis xiii
1 Einleitung 1
1.1 Trends bei der Herstellung mikroelektronischer Schaltkreise 1
1.2 Ziele der Arbeit 4
1.3 Aufbau der Arbeit 5
2 Grundlagen des ms-Blitzlampentemperns 7
2.1 Grundprinzip des ms-Blitzlampentemperns 7
2.2. Einordnung und Vergleich mit anderen Temperverfahren 9
2.3 Anwendungsgebiete des ms-Blitzlampentemperns 10
2.4 Erzeugung und Kenngrößen eines Lichtblitzes 12
2.5 Physikalische Teilprozesse 14
2.5.1 Wechselwirkungen der elektromagnetischen Strahlung mit Gasmolekülen 15
2.5.2 Reflexion und Absorption 16
2.5.3 Wärmeentwicklung und Wärmeleitung 20
2.5.4 Wärmestrahlung, Konvektion und Wärmeübergang in den Substratträger 21
2.6 Modellierung und Simulation der Temperaturverteilung 23
2.7 Temperaturentwicklung am Beispiel eines c-Si-Wafers 25
2.8 Einfluss ausgewählter Parameter auf die Temperaturentwicklung 27
2.8.1 Einfluss der Energiedichte 27
2.8.2 Einfluss der Blitzpulsdauer 29
2.8.3 Einfluss dünner Schichten 33
2.8.4 Einfluss des Substrats 35
2.8.5 Einfluss strukturierter Substrate und strukturierter Schichten 38
2.8.6 Einfluss der Substrattemperatur 39
2.8.7 Einfluss der Prozessatmosphäre 40
2.8.8 Einfluss von zyklisch wiederholten Blitzen 41
3 Experimentelle Methoden 43
3.1 Schichtmesstechniken 43
3.1.1 Spektroskopische Ellipsometrie 43
3.1.2 Röntgenphotoelektronenspektroskopie 46
3.1.3 Röntgenreflektometrie 47
3.1.4 Rasterelektronenmikroskopie 49
3.1.5 Weitere Verfahren 50
3.2 Verwendete Substrate und Methoden zur Probenherstellung 53
3.2.1 Substrate und Probenpräparation für ALD-Untersuchungen 53
3.2.2 Probenpräparation für Rekristallisations-Untersuchungen 53
3.3 Weitere experimentelle Verfahren 54
3.3.1 Thermische Nachbehandlung mittels RTA 54
3.3.2 Dekorationsätzen von Silizium mittels Secco-Ätzlösung 54
4 Blitzlampenbasierte Atomlagenabscheidung dünner Schichten 55
4.1 Grundlagen 55
4.1.1 Konventionelle Atomlagenabscheidung 55
4.1.1.1 Grundprinzip der Atomlagenabscheidung 55
4.1.1.2 Wachstumsverhalten und Temperaturfenster 57
4.1.1.3 Vorteile und Anwendungsgebiete 59
4.1.1.4 Herausforderungen und Grenzen der thermischen ALD 59
4.1.2 Energieunterstützte Atomlagenabscheidung 61
4.1.3 Grundlagen der FLA-basierten Atomlagenabscheidung 62
4.1.3.1 Grundprinzip der FLA-basierten ALD 63
4.1.3.2 Neue Möglichkeiten durch FLA-basierte ALD-Prozesse 65
4.1.3.3 Literaturüberblick – Einsatz des FLA für die direkte Abscheidung dünner Schichten 66
4.1.3.4 Literaturüberblick – Anwendung des FLA für das in situ Zwischentempern dünner Schichten während der Abscheidung mittels ALD 70
4.2 Versuchsanlage FHR Cluster DS 100x4 71
4.2.1 Aufbau der Versuchsanlage 72
4.2.2 Blitzlampenmodul und FLA-Parameter 73
4.2.3 Prozesskammer für FLA-induzierte Abscheideprozesse 74
4.3 Untersuchungen zur direkten Abscheidung dünner Schichten durch Einsatz des Blitzlampentemperns 77
4.3.1 FLA-induzierte Atomlagenabscheidung von aluminiumbasierten dünnen Schichten mit dem Präkursor Trimethylaluminium 77
4.3.1.1 Motivation 77
4.3.1.2 Experimentelle Durchführung 77
4.3.1.3 Ergebnisse und Diskussion 78
4.3.2 FLA-induzierte Abscheidung von dünnen Rutheniumschichten mit dem Präkursor CHORUS 89
4.3.2.1 Motivation 89
4.3.2.2 Experimentelle Durchführung 89
4.3.2.3 Ergebnisse und Diskussion 90
4.3.3 Zusammenfassung und Ausblick 97
4.4 Untersuchungen zum Einsatz des Blitzlampentemperns als in situ Zwischentemperung während der Al2O3-ALD bei niedrigen Abscheidetemperaturen zum Erreichen größerer Dichten 99
4.4.1 Motivation 99
4.4.2 Experimentelle Durchführung 101
4.4.2.1 Versuchsanlage, Schichtabscheidung, FLA-Teilschritt und Prozesssequenz 101
4.4.2.2 Schichtcharakterisierungen 103
4.4.3 Ergebnisse und Diskussion 103
4.4.3.1 Auswirkungen infolge der Anwendung des in situ FLA 103
4.4.3.2 Vergleich von in situ FLA und RTA 112
4.4.3.3 Anwendung des in situ FLA auf Foliensubstraten 114
4.4.4 Zusammenfassung und Ausblick 115
5 Blitzlampeninduzierte Rekristallisation von amorphem Silizium 117
5.1 Grundlagen der FLA-Rekristallisation von amorphem Silizium 117
5.1.1 Eigenschaften von amorphem, kristallinem und flüssigem Silizium 118
5.1.2 Rekristallisationsregime 120
5.1.3 Ansätze für ein kontrolliertes Kornwachstum bei der Rekristallisation von a-Si 122
5.2 Experimentelle Durchführung 125
5.2.1 Probenpräparation 125
5.2.2 Blitzlampentemperung 127
5.2.3 Probencharakterisierung 128
5.3 Ergebnisse und Diskussion 128
5.3.1 Wirkung vergrabener Metallschichten und abdeckender SiO2-Schichten bei der FLA-induzierten Rekristallisation von a-Si-Schichten 128
5.3.1.1 FLA-induzierte Rekristallisation mit 20 ms langen Lichtblitzen 128
5.3.1.2 FLA-induzierte Rekristallisation mit 2,7 ms langen Lichtblitzen 131
5.3.1.3 Simulation 132
5.3.2 FLA-induzierte Rekristallisation von a-Si mit der lokal kontrollierten Bildung von Siliziumgebieten mit großen Si-Körnern 134
5.3.2.1 Experimentelle Durchführung 134
5.3.2.2 Ergebnisse bei der Anwendung separierter a-Si-Inseln 134
5.3.2.3 Ergebnisse bei der Anwendung eingebetteter Ti-Mikrospiegel 135
5.4 Zusammenfassung und Ausblick 149
6 Zusammenfassung 151
Literaturverzeichnis 155
Abbildungsverzeichnis 173
Tabellenverzeichnis 183
Anhang 185
Veröffentlichungsverzeichnis 193
Lebenslauf 195
Danksagung 197 / The production of future integrated circuits as well as consumer electronics requires the usage of processes with reduced thermal load in order to prevent thermal damage of electronic components and thermally sensitive materials. The ms flash lamp annealing (FLA) is a short term annealing method, where only a surface near region of the substrate is strongly heated up for a duration of a few milliseconds, while the bulk material experiences no or only little heating. Due to this characteristics, FLA enables the activation of thermal processes at a comparable low thermal budget. In this work, the application of FLA for the FLA-induced deposition of thin films, the improvement of film properties by periodically annealing of films right during the deposition process as well as for the recrystallization of amorphous silicon (a-Si) with the purpose of locally controlled formation of large silicon grains has been investigated.
The direct deposition of thin films by FLA has been studied using both aluminum-based films and ruthenium thin films. The processes were realized by periodically performing the FLA while the substrates were exposed to the respective precursor. In both cases the film growth was induced by the energy input provided by the FLA. Furthermore, the processes exhibited typical features of atomic layer deposition (ALD) such as layer-by-layer growth and growth rates smaller than one Angström per cycle. Moreover, the deposition of the aluminum-based films is characterized by a self-limiting film growth, clearly indicating that film growth proceeds in the ALD mode. The obtained relations between process parameters and both film growth behaviour and film properties are discussed with respect to the impact of the FLA-induced temperature development on the film growth. For example, substrate dependent growth rates are attributed to different optical properties of the different substrate materials causing different temperatures during the FLA. Moreover, the deposition of ruthenium films was realized as a single source process by using only one precursor. In addition it is demonstrated that a growth delay phase, caused by substrate inhibited film growth, can be significantly reduced by the application of such a FLA-induced deposition process.
The improvement of film properties by FLA was investigated by means of low-temperature aluminum oxide ALD (Al2O3) and the aim was to achieve an increase in Al2O3 film density. For that purpose, the FLA was directly integrated into an ALD process and performed perio-dically during the purging steps of the ALD process sequence. Advantage of this approach compared to conventional annealing methods is, that films can not only be annealed subsequently to the deposition, but already right during the stage of film growth as well. As a result of this in situ annealing, a 10 % increase in density of Al2O3 films, that were grown at 75 °C substrate temperature, was achieved. However, this increase is not related to a ordinary densification of the film material. Instead the results imply that the periodical application of FLA promotes the film growth, and hence, results in direct growth of films with improved film density. This enhanced film growth was also observed by means of a 25 % increase in the mass gain per cycle and it is most pronounced when performing FLA after each single ALD cycle or after every second ALD cycle. Furthermore, the application of in situ FLA led to an improved film composition, an increase in refractive index, enhanced dielectric constants as well as reduced leakage currents. The usage of hydrogen gas during the FLA sub-steps results in a further increase of mass gain per cycle and a further improvement of film properties. The film density realized with this in situ annealing approach was not achieved by conventional post deposition annealing with temperatures up to 600 °C.
With respect to the FLA-induced recrystallization of a-Si, the application of patterned metal layers below the a-Si was studied. Those metal spots act like embedded micro mirrors and lead to an enhanced heating of the a-Si above the mirrors. As a result, a lateral temperature gradient is introduced into the a-Si layer. During the FLA-triggered crystallization combined with melting of the a-Si, the growth of silicon grains starts at positions that are characterized by the lowest temperature of the gradient and then proceeds via the epitaxial regrowth from molten silicon. Due to this feature, the formation of Si regions with large Si crystals takes place in a controlled manner. When comparing various mirror patterns with respect to their suitability for this approach, mirror patterns with circular mirrors as well as line-shaped mirrors are the most promising variants. The resulting silicon islands have pillow-like shapes, are located exclusively in regions between neighboring mirrors, exhibit dimensions of a few tens of micrometers and consist of grains with sizes up to 28 µm. The formation of single-grain silicon pillow-like structures was observed for particular mirror patterns having circular mirrors. On the other hand, the application of mirror patterns with line-shaped mirrors resulted in the formation of elongated and almost rectangular silicon grains. This has been explained in terms of lateral solidification starting from one edge. Furthermore, this approach is featured by the selective filtering of a single grain, and hence, exhibits grain filter characteristics. This enables the well controlled formation of large single Si grains at predetermined positions. The largest grains realized with this approach have a size of about 26 x 6 µm².:Kurzfassung i
Abstract iii
Inhaltsverzeichnis v
Abkürzungs- und Kurzzeichenverzeichnis ix
Abkürzungsverzeichnis ix
Kurzzeichenverzeichnis xiii
1 Einleitung 1
1.1 Trends bei der Herstellung mikroelektronischer Schaltkreise 1
1.2 Ziele der Arbeit 4
1.3 Aufbau der Arbeit 5
2 Grundlagen des ms-Blitzlampentemperns 7
2.1 Grundprinzip des ms-Blitzlampentemperns 7
2.2. Einordnung und Vergleich mit anderen Temperverfahren 9
2.3 Anwendungsgebiete des ms-Blitzlampentemperns 10
2.4 Erzeugung und Kenngrößen eines Lichtblitzes 12
2.5 Physikalische Teilprozesse 14
2.5.1 Wechselwirkungen der elektromagnetischen Strahlung mit Gasmolekülen 15
2.5.2 Reflexion und Absorption 16
2.5.3 Wärmeentwicklung und Wärmeleitung 20
2.5.4 Wärmestrahlung, Konvektion und Wärmeübergang in den Substratträger 21
2.6 Modellierung und Simulation der Temperaturverteilung 23
2.7 Temperaturentwicklung am Beispiel eines c-Si-Wafers 25
2.8 Einfluss ausgewählter Parameter auf die Temperaturentwicklung 27
2.8.1 Einfluss der Energiedichte 27
2.8.2 Einfluss der Blitzpulsdauer 29
2.8.3 Einfluss dünner Schichten 33
2.8.4 Einfluss des Substrats 35
2.8.5 Einfluss strukturierter Substrate und strukturierter Schichten 38
2.8.6 Einfluss der Substrattemperatur 39
2.8.7 Einfluss der Prozessatmosphäre 40
2.8.8 Einfluss von zyklisch wiederholten Blitzen 41
3 Experimentelle Methoden 43
3.1 Schichtmesstechniken 43
3.1.1 Spektroskopische Ellipsometrie 43
3.1.2 Röntgenphotoelektronenspektroskopie 46
3.1.3 Röntgenreflektometrie 47
3.1.4 Rasterelektronenmikroskopie 49
3.1.5 Weitere Verfahren 50
3.2 Verwendete Substrate und Methoden zur Probenherstellung 53
3.2.1 Substrate und Probenpräparation für ALD-Untersuchungen 53
3.2.2 Probenpräparation für Rekristallisations-Untersuchungen 53
3.3 Weitere experimentelle Verfahren 54
3.3.1 Thermische Nachbehandlung mittels RTA 54
3.3.2 Dekorationsätzen von Silizium mittels Secco-Ätzlösung 54
4 Blitzlampenbasierte Atomlagenabscheidung dünner Schichten 55
4.1 Grundlagen 55
4.1.1 Konventionelle Atomlagenabscheidung 55
4.1.1.1 Grundprinzip der Atomlagenabscheidung 55
4.1.1.2 Wachstumsverhalten und Temperaturfenster 57
4.1.1.3 Vorteile und Anwendungsgebiete 59
4.1.1.4 Herausforderungen und Grenzen der thermischen ALD 59
4.1.2 Energieunterstützte Atomlagenabscheidung 61
4.1.3 Grundlagen der FLA-basierten Atomlagenabscheidung 62
4.1.3.1 Grundprinzip der FLA-basierten ALD 63
4.1.3.2 Neue Möglichkeiten durch FLA-basierte ALD-Prozesse 65
4.1.3.3 Literaturüberblick – Einsatz des FLA für die direkte Abscheidung dünner Schichten 66
4.1.3.4 Literaturüberblick – Anwendung des FLA für das in situ Zwischentempern dünner Schichten während der Abscheidung mittels ALD 70
4.2 Versuchsanlage FHR Cluster DS 100x4 71
4.2.1 Aufbau der Versuchsanlage 72
4.2.2 Blitzlampenmodul und FLA-Parameter 73
4.2.3 Prozesskammer für FLA-induzierte Abscheideprozesse 74
4.3 Untersuchungen zur direkten Abscheidung dünner Schichten durch Einsatz des Blitzlampentemperns 77
4.3.1 FLA-induzierte Atomlagenabscheidung von aluminiumbasierten dünnen Schichten mit dem Präkursor Trimethylaluminium 77
4.3.1.1 Motivation 77
4.3.1.2 Experimentelle Durchführung 77
4.3.1.3 Ergebnisse und Diskussion 78
4.3.2 FLA-induzierte Abscheidung von dünnen Rutheniumschichten mit dem Präkursor CHORUS 89
4.3.2.1 Motivation 89
4.3.2.2 Experimentelle Durchführung 89
4.3.2.3 Ergebnisse und Diskussion 90
4.3.3 Zusammenfassung und Ausblick 97
4.4 Untersuchungen zum Einsatz des Blitzlampentemperns als in situ Zwischentemperung während der Al2O3-ALD bei niedrigen Abscheidetemperaturen zum Erreichen größerer Dichten 99
4.4.1 Motivation 99
4.4.2 Experimentelle Durchführung 101
4.4.2.1 Versuchsanlage, Schichtabscheidung, FLA-Teilschritt und Prozesssequenz 101
4.4.2.2 Schichtcharakterisierungen 103
4.4.3 Ergebnisse und Diskussion 103
4.4.3.1 Auswirkungen infolge der Anwendung des in situ FLA 103
4.4.3.2 Vergleich von in situ FLA und RTA 112
4.4.3.3 Anwendung des in situ FLA auf Foliensubstraten 114
4.4.4 Zusammenfassung und Ausblick 115
5 Blitzlampeninduzierte Rekristallisation von amorphem Silizium 117
5.1 Grundlagen der FLA-Rekristallisation von amorphem Silizium 117
5.1.1 Eigenschaften von amorphem, kristallinem und flüssigem Silizium 118
5.1.2 Rekristallisationsregime 120
5.1.3 Ansätze für ein kontrolliertes Kornwachstum bei der Rekristallisation von a-Si 122
5.2 Experimentelle Durchführung 125
5.2.1 Probenpräparation 125
5.2.2 Blitzlampentemperung 127
5.2.3 Probencharakterisierung 128
5.3 Ergebnisse und Diskussion 128
5.3.1 Wirkung vergrabener Metallschichten und abdeckender SiO2-Schichten bei der FLA-induzierten Rekristallisation von a-Si-Schichten 128
5.3.1.1 FLA-induzierte Rekristallisation mit 20 ms langen Lichtblitzen 128
5.3.1.2 FLA-induzierte Rekristallisation mit 2,7 ms langen Lichtblitzen 131
5.3.1.3 Simulation 132
5.3.2 FLA-induzierte Rekristallisation von a-Si mit der lokal kontrollierten Bildung von Siliziumgebieten mit großen Si-Körnern 134
5.3.2.1 Experimentelle Durchführung 134
5.3.2.2 Ergebnisse bei der Anwendung separierter a-Si-Inseln 134
5.3.2.3 Ergebnisse bei der Anwendung eingebetteter Ti-Mikrospiegel 135
5.4 Zusammenfassung und Ausblick 149
6 Zusammenfassung 151
Literaturverzeichnis 155
Abbildungsverzeichnis 173
Tabellenverzeichnis 183
Anhang 185
Veröffentlichungsverzeichnis 193
Lebenslauf 195
Danksagung 197
|
127 |
Optical coupling effects between plasmon resonances in disordered metal nanostructures and a nanocavityÖqvist, Elin January 2024 (has links)
Ultra-thin solar cells that incorporate earth-abundant and non-toxic materials are promising candidates in the endeavor toward sustainable energy harvesting. Methods to counteract the inevitable low absorption of thinner semiconductor layers are of high interest and have raised considerable attention in the research society. In an attempt to increase the absorption of these types of assemblies, optical coupling effects between the localized surface plasmon resonances (LSPR) of disordered Au nanostructures and a Fabry-Pérot cavity were studied using a previously established absorber/spacer/reflector stack. The disordered Au array was fabricated by evaporating a thin Au film on a substrate with a 55 nm SiO2 dielectric spacer and a 100 nm Al reflecting film, followed by thermal annealing. Nominal Au film thicknesses in the range of 5-25 Å and annealing temperatures of 200-500 oC were investigated. In situ spectroscopic ellipsometry measurements during the subsequent atomic layer deposition (ALD) of tin monosulfide (SnS) allowed analysis of how the optical properties of the SnS/Au absorber layer changed as a function of the growing SnS layer thickness. By employing the Transfer Matrix Method with the estimated optical properties from the in situ analysis, the absorptance of the absorber/spacer/reflector stacks was simulated as a function of the spacer thickness, revealing any signs of the characteristic anti-crossing behavior. It was discovered that a nominal Au film thickness of 25 Å, annealed at 450 oC, and coated with a SnS film of ∼13 nm primed toward the π-phase, resulted in strong optical coupling between the cavity mode and the LSPR. The energy difference at the avoided crossing in the specular reflectance measurement gave an estimated Rabi-splitting energy of 537 meV. This corresponded to about 40% of the original LSPR energy, placing itself within the ultra-strong coupling regime. To evaluate the relevance of the thin-layered structure in photovoltaic applications, more advanced computational methods are required to estimate the useful absorption that occurs in the SnS layer. Nevertheless, these results elucidate the realization of strong optical coupling effects between disordered Au nanostructures and a Fabry-Pérot cavity, and further the possibility of using scalable fabrication methods for this type of ultra-thin absorber/spacer/reflector stack.
|
128 |
Atomic Layer Deposition of Boron Oxide and Boron Nitride for Ultrashallow Doping and Capping ApplicationsPilli, Aparna 12 1900 (has links)
The deposition of boron oxide (B₂O₃) films on silicon substrates is of significant interest in microelectronics for ultrashallow doping applications. However, thickness control and conformality of such films has been an issue in high aspect ratio 3D structures which have long replaced traditional planar transistor architectures. B₂O₃ films are also unstable in atmosphere, requiring a suitable capping barrier for passivation. The growth of continuous, stoichiometric B₂O₃ and boron nitride (BN) films has been demonstrated in this dissertation using Atomic Layer Deposition (ALD) and enhanced ALD methods for doping and capping applications.
Low temperature ALD of B₂O₃ was achieved using BCl₃/H₂O precursors at 300 K. In situ x-ray photoelectron spectroscopy (XPS) was used to assess the purity and stoichiometry of deposited films with a high reported growth rate of ~2.5 Å/cycle. Free-radical assisted ALD of B₂O₃ was also demonstrated using non-corrosive trimethyl borate (TMB) precursor, in conjunction with mixed O₂/O-radical effluent, at 300 K. The influence of O₂/O flux on TMB-saturated Si surface was investigated using in situ XPS, residual gas analysis mass spectrometer (RGA-MS) and ab initio molecular dynamics simulations (AIMD). Both low and high flux regimes were studied in order to understand the trade-off between ligand removal and B₂O₃ growth rate. Optimization of precursor flux was discovered to be imperative in plasma and radical-assisted ALD processes.
BN was investigated as a novel capping barrier for B₂O₃ and B-Si-oxide films. A BN capping layer, deposited using BCl₃/NH₃ ALD at 600 K, demonstrated excellent stoichiometry and consistent growth rate (1.4 Å/cycle) on both films. Approximately 13 Å of BN was sufficient to protect ~13 Å of B₂O₃ and ~5 Å of B-Si-oxide from atmospheric moisture and prevent volatile boric acid formation. BN/B₂O₃/Si heterostructures are also stable at high temperatures (>1000 K) commonly used for dopant drive-in and activation. BN shows great promise in preventing upward boron diffusion which causes a loss in the dopant dose concentration in Si.
The capping effects of BN were extended to electrochemical battery applications. ALD of BN was achieved on solid Li-garnet electrolytes using halide-free tris(dimethylamino)borane precursor, in conjunction with NH₃ at 723 K. Approximately 3 nm of BN cap successfully inhibited Li₂CO₃ formation, which is detrimental to Li-based electrolytes. BN capped Li-garnets demonstrated ambient stability for at least 2 months of storage in air as determined by XPS. BN also played a crucial role in stabilizing Li anode/electrolyte interface, which drastically reduced interfacial resistance to 18 Ω.cm², improved critical current density and demonstrated excellent capacitance retention of 98% over 100 cycles. This work established that ALD is key to achieving conformal growth of BN as a requirement for Li dendrite suppression, which in turn influences battery life and performance.
|
129 |
Ingénierie de jonctions tunnel pour améliorer les performances du transistor mono-électronique métallique / Tunnel junction engineering to improve metallic single electron transistor performancesEl Hajjam, Khalil January 2016 (has links)
Résumé: Aujourd’hui plusieurs obstacles technologiques et limitations physiques s’opposent à la poursuite de la miniaturisation de la technologie CMOS : courants de fuite, effet de canal court, effet de porteurs chauds et fiabilité des oxydes de grille. Le transistor à un électron (SET) fait partie des composants émergents candidats pour remplacer les transistors CMOS ou pour constituer une technologie complémentaire à celle-ci. Ce travail de thèse traite de l’amélioration des caractéristiques électriques du transistor à un électron en optimisant ses jonctions tunnel. Cette optimisation commence tout d’abord par une étude des modes de conduction à travers la jonction tunnel. Elle se conclut par le développement d’une jonction tunnel optimisée basée sur un empilement de matériaux diélectriques (principalement Al[indice inférieur 2]O[indice inférieur 3], H[florin]O[indice inférieur 2] et TiO[indice inférieur 2]) ayant des propriétés différentes en termes de hauteurs de barrières et de permittivités relatives. Ce manuscrit présente, la formulation des besoins du SET et de ses jonctions tunnel, le développement d’outils de simulation appropriés - basés sur les Matrices de transmission - pour la simulation du courant des jonctions tunnel du SET, l’identification des stratégies d’optimisation de ces dernières, grâce aux simulations et finalement l’étude expérimentale et l’intégration technologique des jonctions tunnel optimisées dans le procédé de fabrication de SET métallique en utilisant la technique de dépôt par couches atomiques (ALD). Ces travaux nous ont permis de prouver l’intérêt majeur de l’ingénierie des jonctions tunnel du SET pour accroitre son courant à l’état passant, réduire son courant de fuite et étendre son fonctionnement à des températures plus élevées. / Abstract: Today, several technological barriers and physical limitations arise against the miniaturization of the CMOS: leakage current, short channel effects, hot carrier effect and the reliability of the gate oxide. The single electron transistor (SET) is one of the emerging components most capable of replacing CMOS technology or provide it with complementary technology. The work of this thesis deals with the improvement of the electrical characteristics of the single electron transistor by optimizing its tunnel junctions. This optimization initially starts with a study of conduction modes through the tunnel junction. It concludes with the development of an optimized tunnel junction based on a stack of dielectric materials (mainly Al[subscript 2]O[subscript 3], H[florin]O[subscript 2] and TiO[subscript 2]), having different properties in terms of barrier heights and relative permittivities. This document, therefore, presents the theoretical formulation of the SET’s requirements and of its tunnel junctions, the development of appropriate simulation tools - based on the transmission matrix model- for the simulation of the SET tunnel junctions current, the identification of tunnel junctions optimization strategies from the simulations results and finally the experimental study and technological integration of the optimized tunnel junctions into the metallic SET fabrication process using the atomic layer deposition (ALD) technique. This work allowed to démonstrate the significance of SET tunnel junctions engineering in order to increase its operating current while reducing leakage and improving its operation at higher temperatures.
|
130 |
Atomistische Modellierung und Simulation des Filmwachstums bei GasphasenabscheidungenLorenz, Erik E. 30 January 2015 (has links) (PDF)
Gasphasenabscheidungen werden zur Produktion dünner Schichten in der Mikro- und Nanoelektronik benutzt, um eine präzise Kontrolle der Schichtdicke im Sub-Nanometer-Bereich zu erreichen. Elektronische Eigenschaften der Schichten werden dabei von strukturellen Eigenschaften determiniert, deren Bestimmung mit hohem experimentellem Aufwand verbunden ist.
Die vorliegende Arbeit erweitert ein hochparalleles Modell zur atomistischen Simulation des Wachstums und der Struktur von Dünnschichten, welches Molekulardynamik (MD) und Kinetic Monte Carlo-Methoden (KMC) kombiniert, um die Beschreibung beliebiger Gasphasenabscheidungen. KMC-Methoden erlauben dabei die effiziente Betrachtung der Größenordnung ganzer Nano-Bauelemente, während MD für atomistische Genauigkeit sorgt.
Erste Ergebnisse zeigen, dass das Parsivald genannte Modell Abscheidungen in Simulationsräumen mit einer Breite von 0.1 µm x 0.1 µm effizient berechnet, aber auch bis zu 1 µm x 1 µm große Räume mit 1 Milliarden Atomen beschreiben kann. Somit lassen sich innerhalb weniger Tage Schichtabscheidungen mit einer Dicke von 100 Å simulieren. Die kristallinen und amorphen Schichten zeigen glatte Oberflächen, wobei auch mehrlagige Systeme auf die jeweilige Lagenrauheit untersucht werden. Die Struktur der Schicht wird hauptsächlich durch die verwendeten molekulardynamischen Kraftfelder bestimmt, wie Untersuchungen der physikalischen Gasphasenabscheidung von Gold, Kupfer, Silizium und einem Kupfer-Nickel-Multilagensystem zeigen. Stark strukturierte Substrate führen hingegen zu Artefakten in Form von Nanoporen und Hohlräumen aufgrund der verwendeten KMC-Methode. Zur Simulation von chemischen Gasphasenabscheidungen werden die Precursor-Reaktionen von Silan mit Sauerstoff sowie die Hydroxylierung von alpha-Al2O3 mit Wasser mit reaktiven Kraftfeldern (ReaxFF) berechnet, allerdings ist weitere Arbeit notwendig, um komplette Abscheidungen auf diese Weise zu simulieren.
Mit Parsivald wird somit die Erweiterung einer Software präsentiert, die Gasphasenabscheidungen auf großen Substraten effizient simulieren kann, dabei aber auf passende molekulardynamische Kraftfelder angewiesen ist.
|
Page generated in 0.0728 seconds