• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 19
  • 4
  • Tagged with
  • 41
  • 27
  • 8
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Contrôle de l'auxine dans les modifications du développement racinaire du peuplier en réponse au champignon ectomycorhizien Laccaria bicolor / Auxin control in poplar root development in response to the ectomycorrhizal fungus Laccaria bicolor

Vayssières, Alice 13 January 2014 (has links)
Le système racinaire des arbres peut établir des symbioses ectomycorhiziennes (ECM) avec des champignons rhizosphériques. La mise en place de la symbiose est accompagnée d'une stimulation de la formation des racines latérales (RLs), et d'une modification de la croissance racinaire. Ces processus développementaux conduisent à la formation de racines courtes typiques des ECMs. Il a été montré que l'auxine est une phytohormone clef dans la formation des RLs ainsi que dans la croissance racinaire. Notre projet s'est focalisé sur l'étude de la régulation des voies de l'auxine dans la racine de peuplier en réponse à L. bicolor. Dans cette étude, nous avons mis en évidence un arrêt de croissance des RLs et des racines adventives du peuplier Populus tremula x P. alba, après deux semaines de co-culture avec L. bicolor. De plus, nous avons aussi montré que cet arrêt n'est pas conditionné par la présence du réseau de Hartig. Une analyse de l'expression globale des gènes de peuplier dans la mycorhize a été réalisée au cours de la formation de la mycorhize. Cette analyse, couplée à des observations du gradient auxinique via le patron d'expression du promoteur DR5, montre que la signalisation auxinique est affectée dans l'organe symbiotique. La quantification de l'auxine (acide indole 3-acétique, AIA) et des métabolites associés a permis de mettre en évidence un environnement symbiotique riche en auxine dans la mycorhize, qui pourrait expliquer les modifications de la signalisation auxinique. De plus, un changement de la conjugaison et de la dégradation de l'AIA est détecté dans la racine, ainsi qu'une dégradation de l'AIA dans les hyphes de L. bicolor. En parallèle, une analyse fonctionnelle de PtaPIN9, un orthologue de AtPIN2, responsable du transport basipète de l'auxine à l'apex racinaire chez Arabidopsis thaliana, a été réalisée au cours de la mycorhization avec L. bicolor. L'immunolocalisation de PtPIN9 dans les racines de peuplier a montré une localisation similaire à AtPIN2, dans les cellules épidermiques. Les lignées transgéniques ayant une modification de l'expression de ce gène ne répondent pas à L. bicolor en terme de stimulation de RLs. Dans les racines mycorhizées, PtaPIN9 n'est plus observée, mais les modifications de l'expression de PtaPIN9 ne modifient ni l'arrêt de croissance racinaire, ni la formation du réseau de Hartig. Ces résultats montrent des modifications majeures des voies de l'auxine du peuplier par le champignon symbiotique L. bicolor. Cette étude ouvre des perspectives sur la compréhension du rôle de l'auxine dans le développement racinaire ainsi que dans le contexte des interactions plantes-microorganismes / Root systems of host trees are known to establish the ectomycorrhizal (ECM) symbiosis with rhizospheric fungi. This mutualistic association leads to modifications of root development that including a stimulation of lateral host roots, and a modification in root growth. The phytohormone auxin (Indole-3-acetic acid, IAA) is known to regulate LRs formation and root growth. Our research focussed on auxin pathways in poplar root in response to L. bicolor. In this study, our data showed that the poplar-Laccaria bicolor interaction leads to the arrest of LRs and adventitious root growth after two weeks of interaction. We also showed that this arrest is not regulated by the Hartig net. Differential auxin responses were analyzed by using an auxin-responsive DR5::GUS marker line and revealed a loss of auxin response in ECM roots. An oligoarray-based transcript profiling of poplar roots in contact with L. bicolor highlights a differential expression of auxin asociated genes in ECM. Measurement of auxin metabolite in ECM and in the free living partners revealed an IAA accumulation, an activation of the IPyA (Indol-3-Pyruvic Acid) dependant IAA biosynthesis pathway in both partners, as well as changes in IAA conjugation pathways in poplar and in IAA degradation pathways in L. bicolor. Our findings illustrate the impact of L. bicolor colonization on root auxin metabolism and response, and also suggest a role of auxin as a signal in the formation of ECM and in the regulation of ECM function. In parallel, PtaPIN9 function analysis in response to L. bicolor has been performed. PtaPIN9 immunolocalization in poplar roots showed similar localization to AtPIN2 in epidermis cells. Transgenic lines having a modification in PtaPIN9 expression, did not formed new LRs in respond to L. bicolor. In ECM roots, the loss of PtaPIN9 signal is observed but modifications of PtaPIN9 expression did not modify the root growth arrest and the Hartig net formation. These results show major changes in auxin associate pathways in poplar root by the symbiotic fungus L. bicolor, during the formation of the mycorrhiza root. Our results offer perspectives on the role of auxin in root development and in the context plants-microbes interactions
32

Mise en évidence d’éléments de signalisation en aval du récepteur d’auxine ABP1 / Discovering of new signalling components downstream the auxin receptor ABP1

Paque, Sébastien 07 June 2013 (has links)
L’auxine est une hormone fondamentale dans le développement et la physiologie de la plante. L’obtention des plantes conditionnelles pour ABP1 a permis la mise en évidence de son importance dans la signalisation de l’auxine. Ainsi ABP1 agirait d’une part sur l’endocytose de vésicules à clathrine au niveau de la membrane plasmique et d’autre part sur la stabilité des Aux/IAAs. Ce dernier résultat suggère qu’une voie de signalisation en aval d’ABP1 permet de modifier l’homéostasie de la voie de régulation transcriptionnelle de l’auxine, la voie SCFTIR/AFBs.Mon travail de thèse a consisté à caractériser les plantes inactivées pour ABP1 lors de la croissance à l’obscurité dans la plante modèle Arabidopsis thaliana. Mon étude montre qu’ABP1 contrôle l’expansion cellulaire en jouant sur la plasticité pariétale. J’ai ainsi pu mettre en évidence une modification de la proportion de formes fucosylées des chaînes latérales des xyloglucanes, le principal hémicellulose de la paroi primaire chez Arabidopsis. Cette modification de la fucosylation des xyloglucanes requiert des changements d’expressions géniques médiés ce qui conforte l’existence d’une voie de signalisation reliant ABP1 à la voie SCFTIR/AFBs.En parallèle, j’ai mené une approche génétique de recherche de suppresseurs du phénotype lié à l’inactivation d’ABP1 à l’obscurité. Parmi les dix lignées validées, j’ai d’ores et déjà identifié le gène DCL3 comme étant impliqué dans la suppression du phénotype ss12k et mis en évidence l’implication de la voie d’extinction de gènes par l’intermédiaire de petits ARNs non codant (voie RdDM) dans le contrôle de l’expansion cellulaire. / Auxin is a key hormone concerning the control of plant physiology and the impact on plant development. Conditional plants for ABP1 allowed the post embryonic studies and have contributed to demonstrate the involvement of ABP1 in a broad range of cellular and developmental responses including the clathrin-dependent endocytosis and the regulation of Aux/IAAs homeostasis. These datas revealed that an ABP1-dependent pathway is acting on transcriptional regulation by modulating the SCFTIR/AFBs signaling pathway. I took advantage of the phenotype of dark grown seedlings to study cell expansion in ABP1 loss of function background. ABP1 knockdown induced modifications of fucosylated form of xyloglucan side chains that are the main hemicellulose in Arabidopsis primary cell wall. All data converge to show that this effect results from alterations of expression of cell wall related genes via the modulation of the SCFTIR/AFBs pathway. In parallel, I used a suppressor approach to discover new signaling components downstream of ABP1. Characterisation of one of the suppressor leads to the identification of a loss of function allele of DCL3. This data demonstrates the involvement of the RNA directed DNA methylation pathway downstream of ABP1.
33

Etude du rôle de AHP6 dans le contrôle de la phyllotaxie chez la plante modèle Arabidopsis thaliana : robustesse et coordination spatio-temporelle au cours du développement de structures auto-organisées

Besnard, Fabrice 21 October 2011 (has links) (PDF)
En se développant, les plantes produisent des organes le long des tiges suivant des organisations stéréotypées, appelées phyllotaxies. Ces structures se forment dans les méristèmes, qui abritent une niche de cellules souches : les organes y sont produits successivement et leur positionnement dépendrait d'interactions dynamiques avec les organes pré-existants. Ces interactions seraient notamment dues à des champs inhibiteurs générés par le transport polaire de l'hormone végétale auxine. Afin de rechercher si d'autres facteurs que l'auxine contrôlent la phyllotaxie chez Arabidopsis thaliana, nous nous sommes intéressés au rôle possible des cytokinines, une autre hormone végétale. Nous avons développé des nouvelles méthodes statistiques pour analyser la structure de la phyllotaxie. Cette approche nous a permis d'identifier des anomalies de phyllotaxie chez des plantes mutantes pour le gène AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER protein 6), un inhibiteur de la signalisation des cytokinines. Notre analyse suggérait des possibles perturbations du plastochrone, la période de temps séparant l'initiation de deux organes, ce que nous avons alors confirmé par imagerie confocale en temps réel. Nos données montrent que AHP6 contrôle la régularité du plastochrone, et suggèrent que les perturbations de phyllotaxies sont dues à l'initiation simultanée de deux à trois organes dans le méristème. De plus, AHP6 est exprimé dans les organes et sa protéine établit des champs qui inhibent la signalisation des cytokinines au delà des organes. Pour mieux comprendre les rôles possibles de ces champs, nous avons généré un modèle numérique théorique de la phyllotaxie. Notre étude suggère que le plastochrone pourrait être déstabilisé par du bruit affectant le seuil d'activation nécessaire aux cellules méristématiques pour se différencier en organe. Des champs inhibiteurs pourraient filtrer les effets de ce bruit en influant sur la cinétique d'émergence des organes. Les propriétés observées des champs de AHP6 sont en accord avec ce modèle et nos données expérimentales suggèrent en effet que AHP6 et les cytokinines peuvent moduler la signalisation auxine lors de l'émergence des organes. Nous proposons comme modèle que le transport et la signalisation de l'auxine positionnent de manière robuste les organes mais génèrent un plastochrone irrégulier en présence de bruit. Des champs inhibiteurs de cytokinines stabiliseraient le plastochrone, assurant un couplage plus robuste entre le temps et l'espace lors de l'établissement de la phyllotaxie.
34

Localisation et fonction des lipides anioniques dans l'organisation cellulaire et le développement des plantes / Localization and function of anionic lipids in cell organization and plant development

Platre, Matthieu 01 December 2017 (has links)
Les cellules eucaryotes possèdent un territoire membranaire dit « électrostatique » qui est définit par la présence de phospholipides négativement chargés sur la face cytosolique des membranes. Cette propriété permet le recrutement de protéine cytosolique contenant des motifs/domaines positivement chargés au niveau des membranes via des interactions électrostatiques. Nous nous sommes demandés si le territoire électrostatique est présent chez les cellules végétales et quel est son organisation ? Quels sont le(s) lipide(s) anionique(s) impliqués dans son maintien ? Et quel est son (ces) rôle(s) dans la signalisation et le développement des plantes ? Premièrement, nous avons mis en avant que la membrane plasmique est le compartiment intracellulaire le plus électronégativement chargé (Simon, Platre et al., 2016 Nature Plants). Ce champ électrostatique est gouverné par trois lipides anioniques différents, l’acide phosphatidique, la phosphatidylserine et le phosphatidylinositol-4-phosphate. Nous avons montré que cette propriété unique de la membrane plasmique permet de réguler des voies de signalisation hormonale, tel que celle de l’auxine et des brassinostéroïdes. Notamment, la phosphatidylserine régule la dynamique spatiotemporelle des petites GTPases de la famille Rho. En réponse à l’auxine, ce lipide permet de regrouper les protéines Rho dans des domaines membranaires. La formation de ces domaines est requise pour l’activité de ces protéines permettant de contrôler l’endocytose, la dynamique du cytosquelette mais également régule la morphogenèse cellulaire ainsi que la réponse gravitropique de la racine. / The « electrostatic territory» is part of the eukaryotic membrane organization and is defined by the enrichment of negatively charged phospholipids at the membrane cytosolic face. This feature is involved in the membrane recruitment of cytosolic proteins, which contain positively charged motifs and/or domains. In this work, we used Arabidopsis thaliana as a model and explored the existence of an electrostatic territory in plant cells. We found that the plasma membrane is the most anionic intracellular membrane (Simon, Platre et al., 2016 Nature Plants). This electrostatic field is maintained by lipid cooperation between, phosphatidic acid, phosphatidylserine and phosphatidylinositol-4-phosphate. The cell surface unique feature is involved in the regulation of hormonal signalling such as auxin and brassinosteroids pathways. We found that phosphatidylserine tunes the spatiotemporal dynamics of small GTPases from the Rho family. During auxin response, PS is required to cluster Rho into specialized membrane domains. We show that nanocluster formation is required for Rho-mediated auxin signaling including the regulation of endocytosis, cytoskeleton organization, morphogenesis and the root gravitropic response.
35

Characterization of auxin-ethylene interactions during the tomato fruit development : role of Sl-IAA17 gene / Caractérisation des interactions auxine-éthylène pendant le développement du fruit de tomate : rôle du gène Sl-IAA17

Su, Liyan 10 October 2014 (has links)
Les interactions entre l’auxine et l’éthylène sont complexes et contrôlent divers processus de développement des plantes tels que l’élongation racinaire ou la différentiation des racines secondaires. Mais, il existe peu d’études montrant le rôle des interactions entre ces deux hormones au cours du développement et de la maturation des fruits. Le changement de couleur des fruits chez la tomate est une caractéristique de la maturation qui est associée à la fois à la dégradation des chlorophylles et à l’accumulation des caroténoïdes. Dans ce travail, l’application exogène d’auxine et d’éthylène a montré l’impact de ces deux hormones sur la maturation de la tomate et en particulier sur le changement de couleur des fruits. Nous avons montré que l’acide indol-acétique (IAA) retarde la transition du vert à l’orange/rouge, alors que l’éthylène, apporté sous la forme d’acide 1-aminocyclopropane-1-carboxylique (ACC), son précurseur, accélère la coloration des fruits. Par contre, l’inhibition de l’auxine par le PCIB, un antagoniste de l’auxine, provoque les mêmes effets que l’éthylène. L’analyse des caroténoïdes montre que l’ACC comme le PCIB augmente la teneur en lycopène et diminue la teneur en carotène alors que l’IAA provoque l’effet inverse. L’étude de l’accumulation des ARNs messagers de plusieurs gènes clés de la voie de biosynthèse des caroténoïdes a montré que le gène β-lcy codant pour la lycopène cyclase joue un rôle clé dans le contrôle de la biosynthèse et de l’accumulation des pigments et que son expression est fortement dépendante de l’équilibre auxine-éthylène. D’autre part, nos résultats ont montré que le gène rin joue un rôle important dans le contrôle de l’expression des gènes clés de la voie de biosynthèse des caroténoïdes. Pour avoir une meilleure vision des gènes différentiellement exprimés par l’auxine et l’éthylène au cours de la maturation, l’analyse du transcriptome des fruits traités par de l’ACC et de l’IAA a été réalisée par RNA-Seq au laboratoire. Parmi les facteurs de transcriptions étudiés, le gène Sl-IAA17, un membre de la famille des AUX/IAA, est fortement affecté par l’auxine et l’éthylène. La caractérisation fonctionnelle du gène Sl-IAA17 pendant le développement du fruit a été réalisée en créant des lignées transgéniques sous exprimant ce gène en mettant en œuvre la stratégie des ARNs interférents. Ces lignées présentent un phénotype caractéristique produisant des fruits de plus gros calibre que celui des fruits sauvages. Les analyses histologiques des tissus des fruits ont montré que ce phénotype est associé à un péricarpe plus épais. En microscopie, nous avons constaté que l’augmentation de l’épaisseur du péricarpe dans les lignées transgéniques n’était pas due à un plus grand nombre de cellules mais à l’augmentation de la taille des cellules. Enfin, nous avons observé que l’expansion des cellules dans les fruits transgéniques est étroitement couplée avec des niveaux de ploïdie plus élevés que dans les fruits sauvages, ce qui suggère une stimulation du processus endoréduplication. Ces résultats démontrent très clairement l’existence d’une étroite relation entre la signalisation de l’auxine, le contrôle de la taille du volume cellulaire et le processus d’endoréduplication. En conclusion, les résultats présentés fournissent des connaissances nouvelles sur les interactions entre l’auxine et l’éthylène au cours du développement du fruit et en particulier au cours de la transition fruit immature - fruit mature. De plus, ils apportent des éléments nouveaux sur la connaissance du rôle de la voie de signalisation de l’auxine dans le contrôle du développement des fruits charnus et en particulier sur la fonction de certains membres des AUX/IAA sur la détermination du volume et du poids des fruits. / The interaction between auxin and ethylene are complex and control various processes of plant development, such as root elongation or differentiation of secondary roots. But there are few studies showing the role of interactions between these two hormones during development and maturation of the fruit. The color change in the tomato fruit is a feature of the maturation that is associated with the degradation of the chlorophyll and carotenoid accumulation. In this work, the application of exogenous auxin and ethylene showed the impact of these two hormones in the tomato ripening and in particular the change of fruit color. We have shown that indole-acetic acid (IAA) delays the transition from green to orange / red, while ethylene, supplied as 1-aminocyclopropane-1-carboxylic acid form (ACC), its precursor, accelerated this transition. However the auxin inhibition by p-chlorophenoxy isobutyic acid (PCIB), an auxin antagonist, caused the same effects similar to ethylene. The carotenoid analysis showed that the ACC and PCIB increase the lycopene content and reduced the carotene content while IAA causes the opposite effect. The study of the accumulation of mRNAs for several key genes of the carotenoid biosynthetic pathway has shown that the gene β-lcy encoding lycopene cyclase plays a key role in the control of biosynthesis and accumulation of pigments and that its expression is highly dependent on the auxin-ethylene balance. In addition, our results showed that the rin gene plays an important role in controlling the expression of the key carotenoid biosynthetic pathway genes. To get a better view of differentially expressed genes by auxin and ethylene during ripening, transcriptome analysis of fruits treated with ACC and IAA was performed by a preliminary RNA-Seq approach. Among the transcription factors studied in the laboratory, the gene Sl-IAA17, a member of the family of Aux/IAA was affected by auxin and ethylene. Functional characterization of Sl-IAA17 gene during fruit development was performed by creating transgenic lines under-expressing this gene by RNAi. These lines display a phenotype producing bigger fruit than wild type. Histological analysis of the tissues showed that fruit phenotype is associated with a thicker pericarp. By microscopy, we observed that increasing the thickness of the pericarp in the transgenic lines was not due to a greater number of cells but to the increase in cell size. Finally, we observed that cell expansion in transgenic fruit is tightly coupled with higher ploidy levels than wild fruits, suggesting a stimulation of the endoreduplication process. These results clearly demonstrate the existence of a close relationship between the auxin signal, the control cell size, fruit volume and the endoreduplication process. In conclusion, the results provide new insights into the interactions between auxin and ethylene during fruit development and in particular during the transition immature fruit, mature fruit. In addition, they provide new information on the understanding of the role of the signaling pathway of auxin in controlling the development of fleshy fruits and in particular on the basis of certain members of the AUX/IAA on regulating volume and fruit weight.
36

Les AtNSRs, protéines régulatrices de l’épissage alternatif et du silencing post transcriptionnel / The AtNSRs, proteins involved in alternative splicing regulation and post transcriptionnal gene silencing

Bardou, Florian 05 May 2013 (has links)
Chez les eucaryotes, plusieurs protéines liant l'ARN ou RBPs agissent sur l'ARNm à différents niveaux, de l'épissage à la traduction. Récemment, un grand nombre d’ARN non-codant des protéines (npcRNAs) ont été identifiés chez les eucaryotes et ont été montré comme interagissant avec une variété de ribonucléoprotéines (RNP) pour contrôler l'expression des gènes au niveau post-transcriptionnel. Nous avons identifié une Nuclear-Speckle RBP (ou NSR) qui interagit avec le npcRNA, ENOD40, un lncARN qui s'accumule au cours de la formation des racines latérales et des nodules chez les légumineuses. Durant cette thèse nous avons analysé le rôle des NSR d’Arabidopsis thaliana ainsi que leur lien avec les npcARN.Deux gènes AtNSRs homologues existent chez Arabidopsis nommés NSRa et NSRb, ces gènes codent des protéines localisées dans des speckles nucléaires avec certaines protéines apparentées à l’épissage. Fait intéressant, les fusions AtNSR-GFP sont relocalisées dans des granules cytoplasmiques dans certaines cellules des racines différenciées ainsi que lors d’une co-expression éctopique de ENOD40. Le gène AtNSRb est régulé par l'auxine alors AtNSRa est constitutif. Les simples mutants Atnsr ne montrent pas de phénotype, mais la croissance des racines des doubles mutants est partiellement insensible à l'auxine, ce qui suggère une fonction redondante de ces protéines dans les racines. La localisation observée pour ces protéines nous a mené à explorer un rôle des NSRs dans l’épissage, nous avons donc analysé le profil d'épissage de 288 gènes en réponse à l'auxine chez Arabidopsis et comparé ces profils entre le WT et les mutants nsra/nsrb. Tout d’abord nous avons remarqué que l’épissage général ne variait pas, en revanche, l’analyse de 288 gènes alternativement épissés montre que le profil d'épissage de 77 gènes semble être modifié durant la réponse à l'auxine et 51 gènes nécessitent les protéines AtNSR pour ce changement. Afin de vérifier l’interaction des NSRs avec les cibles d’AS et avec les npcARN nous avons co-immunoprécipité les NSRs et nous avons identifié au moins 5 cible d’AS et 2 npcARN. L’expression de l’ARN ENOD40 ainsi que du partenaire npcARN module L’AS chez Arabidopsis. Dans un deuxième chapitre, nous avons exploré le rôle des NSRs dans le PTGS déclenché par un transgène contenant un intron ce qui nous a permis de lier l’épissage alternatif et le silencing. Nous proposons donc que les NSRs pourraient lier l’épissage alternatif et l’action des ARN non codants, notamment lors de la croissance de la racine. / In eukaryotes, several RNA binding proteins (RBPs) act on mRNA at various levels from splicing to translation. Recently a large number of non-protein coding RNAs (npcRNAs) have been identified in eukaryotes and shown to integrate into a variety of ribonucleoproteins (RNP) to control posttranscriptional gene expression. Our laboratory has identified a plant Nuclear-Speckle RBP (or NSR) that interacts with an npcRNA, ENOD40 that accumulates during lateral root and nodule formation in legumes. NSR is relocalised into a cytoplasmic RNP in the ENOD40-expressing cells. During this PhD, we have analysed the role of NSRs in Arabidopsis thaliana and its link with npcRNAs. Two AtNSR homologs from Arabidopsis thaliana, named AtNSRa and AtNSRb, code for proteins also localised in nuclear speckles together with certain splicing-related proteins. Interestingly, AtNSR-GFP fusions are relocalised into cytoplasmic granules in certain differentiated root cells and by ectopic expression of the ENOD40 RNA. The AtNSRb gene is regulated by auxin whereas AtNSRa is constitutive. Root growth and lateral root formation of double nsra/nsrb mutants is partially insensitive to auxin. The localisation of these proteins prompted us to explore roles in splicing. No defects in general splicing were observed however analysis of 288 alternatively spliced genes in WT and nsra/nsrb roots in response to auxin revealed 77 changes in splicing profiles in response to auxin from which 51 required AtNSRs. In order to validate the interaction of NSRs with alternatively spliced mRNAs and npcRNAs, we have co-immunoprecipitated NSRs and identified at least 5 interacting alternatively spliced mRNAs and 2 npcRNAs. Expression of the ENOD40 RNA or one interacting ncRNA modulate alternatively splicing in Arabidopsis. In a second chapter, we explored the role of NSRs in the modulation of PTGS triggered by intron-containing transgenes allowing us to link alternatively splicing and silencing. We propose that NSRs may link alternative splicing and the action of non-coding RNA, notably during root growth and development.
37

Dissecting the factors controlling seed development in the model legume Medicago truncatula / Dissection des facteurs contrôlant le développement de la graine chez la légumineuse modèle Medicago truncatula

Atif, Rana Muhammad 17 December 2012 (has links)
Les légumineuses sont une source riche pour l’alimentation humaine comme celle du bétail mais elles sont aussi nécessaires à une agriculture durable. Cependant, les fractions majeures des protéines de réserve dans la graine sont pauvres en acides aminés soufrés et peuvent être accompagné de facteurs antinutritionnels, ce qui affecte leur valeur nutritive. Dans ce cadre, Medicago truncatula est une espèce modèle pour l’étude du développement de la graine des légumineuses, et en particulier concernant la phase d’accumulation des protéines de réserve. Vu la complexité des graines de légumineuses, une connaissance approfondie de leur morphogenèse ainsi que la caractérisation des mécanismes sous-jacents au développement de l’embryon et au remplissage de la graine sont essentielles. Une étude de mutagenèse a permis d’identifier le facteur de transcription DOF1147 (DNA-binding with One Finger) appartenant à la famille Zn-finger, qui s’exprime dans l’albumen pendant la transition entre les phases d’embryogenèse et de remplissage de la graine. Lors de mon travail de thèse, il a été possible de générer plusieurs constructions pour l’analyse de l’expression de DOF1147 ainsi que de la protéine DOF1147. Un protocole efficace pour la transformation génétique stable de M. truncatula a été établi et des études de localisation subcellulaire ont montré que DOF1147 est une protéine nucléaire. Un arbre phylogénétique a révélé différents groupes de facteurs de transcription DOF avec des domaines conservés dans leur séquence protéique. L’analyse du promoteur in silico chez plusieurs gènes-cible potentiels de DOF1147 a identifié les éléments cis-régulateurs de divers facteurs de transcription ainsi que des éléments répondant aux auxines (AuxREs), ce qui suggère un rôle possible de l’auxine pendant le développement de la graine. Une étude in vitro du développement de la graine avec divers régimes hormonaux, a montré l’effet positif de l’auxine sur la cinétique du développement de la graine, que ce soit en terme de gain de masse ou de taille, plus fort avec l’ANA que l’AIB. Grâce à une approche cytomique de ces graines en développement nous avons, en plus, démontré l’effet de l’auxine sur la mise en place de l’endoreduplication. En effet, celle-ci est l’empreinte cytogénétique de la transition entre les phases de division cellulaire et d’accumulation de substances de réserve lors du développement de la graine. Dans son ensemble, ce travail a démontré que l’auxine module la transition entre le cycle mitotique et les endocycles chez les graines en développement de M. truncatula en favorisant la continuité des divisions cellulaires tout en prolongeant simultanément l’endoreduplication. / Legumes are not only indispensible for sustainable agriculture but are also a rich source of protein in food and feed for humans and animals, respectively. However, major proteins stored in legume seeds are poor in sulfur-containing amino acids, and may be accompanied by anti-nutritional factors causing low protein digestibility problems. In this regard, Medicago truncatula serves as a model legume to study legume seed development especially the phase of seed storage protein accumulation. As developing legume seeds are complex structures, a thorough knowledge of the morphogenesis of the seed and the characterization of regulatory mechanisms underlying the embryo development and seed filling of legumes is essential. Mutant studies have identified a DOF1147 (DNA-binding with One Finger) transcription factor belonging to the Zn-Finger family which was expressed in the endosperm at the transition period between embryogenesis and seed filling phase. During my PhD work, a number of transgene constructs were successfully generated for expression analysis of DOF1147 gene as well as the DOF1147 protein. A successful transformation protocol was also established for stable genetic transformation of M. truncatula. Subcellular localization studies have demonstrated that DOF1147 is a nuclear protein. A phylogenetic tree revealed different groups of DOF transcription factors with conserved domains in their protein sequence. In silico promoter analysis of putative target genes of DOF1147 identified cis-regulatory elements of various transcription factors along with auxin responsive elements (AuxREs) suggesting a possible role of auxin during seed development. A study of in vitro seed development under different hormone regimes has demonstrated the positive effect of auxin on kinetics of seed development in terms of gain in seed fresh weight and size, with NAA having a stronger effect than IBA. Using the cytomic approach, we further demonstrated the effect of auxin on the onset of endoreduplication in such seeds, which is the cytogenetic imprint of the transition between the cell division phase and the accumulation of storage products phase during seed development. As a whole, this work highlighted that the auxin treatments modulate the transition between mitotic cycles and endocycles in M. truncatula developing seeds by favouring sustained cell divisions while simultaneously prolonging endoreduplication.
38

Etude du rôle de AHP6 dans le contrôle de la phyllotaxie chez la plante modèle Arabidopsis thaliana : robustesse et coordination spatio-temporelle au cours du développement de structures auto-organisées / Study of the role of AHP6 in the control of phyllotaxis in Arabidopsis thaliana : robustness and spatio-temporal coordination in the development of self-organized organisms

Besnard, Fabrice 21 October 2011 (has links)
En se développant, les plantes produisent des organes le long des tiges suivant des organisations stéréotypées, appelées phyllotaxies. Ces structures se forment dans les méristèmes, qui abritent une niche de cellules souches : les organes y sont produits successivement et leur positionnement dépendrait d'interactions dynamiques avec les organes pré-existants. Ces interactions seraient notamment dues à des champs inhibiteurs générés par le transport polaire de l'hormone végétale auxine. Afin de rechercher si d'autres facteurs que l'auxine contrôlent la phyllotaxie chez Arabidopsis thaliana, nous nous sommes intéressés au rôle possible des cytokinines, une autre hormone végétale. Nous avons développé des nouvelles méthodes statistiques pour analyser la structure de la phyllotaxie. Cette approche nous a permis d'identifier des anomalies de phyllotaxie chez des plantes mutantes pour le gène AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER protein 6), un inhibiteur de la signalisation des cytokinines. Notre analyse suggérait des possibles perturbations du plastochrone, la période de temps séparant l'initiation de deux organes, ce que nous avons alors confirmé par imagerie confocale en temps réel. Nos données montrent que AHP6 contrôle la régularité du plastochrone, et suggèrent que les perturbations de phyllotaxies sont dues à l'initiation simultanée de deux à trois organes dans le méristème. De plus, AHP6 est exprimé dans les organes et sa protéine établit des champs qui inhibent la signalisation des cytokinines au delà des organes. Pour mieux comprendre les rôles possibles de ces champs, nous avons généré un modèle numérique théorique de la phyllotaxie. Notre étude suggère que le plastochrone pourrait être déstabilisé par du bruit affectant le seuil d'activation nécessaire aux cellules méristématiques pour se différencier en organe. Des champs inhibiteurs pourraient filtrer les effets de ce bruit en influant sur la cinétique d'émergence des organes. Les propriétés observées des champs de AHP6 sont en accord avec ce modèle et nos données expérimentales suggèrent en effet que AHP6 et les cytokinines peuvent moduler la signalisation auxine lors de l'émergence des organes. Nous proposons comme modèle que le transport et la signalisation de l'auxine positionnent de manière robuste les organes mais génèrent un plastochrone irrégulier en présence de bruit. Des champs inhibiteurs de cytokinines stabiliseraient le plastochrone, assurant un couplage plus robuste entre le temps et l'espace lors de l'établissement de la phyllotaxie. / During development, plant aerial organs are produced along the stems following stereotyped patterns. This so-called phyllotaxis is initiated at the shoot meristem, which contains the stem cell niche: organs are produced iteratively and their precise position is thought to depend on dynamic interactions with preexisting organs. These interactions would notably result from inhibitory fields generated by the polar transport of the plant hormone auxin. To investigate whether other factors than auxin regulate phyllotaxis, we studied the potential role of cytokinin signaling. We developed a new pipeline of methods based on statistics to analyze phyllotactic patterns. This approach allowed us to identify phyllotactic perturbations in mutants of the AHP6 (ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER protein 6), an inhibitor of cytokinin signaling that suggested perturbations in the plastochron, the time between two organ initiations. This was further confirmed using confocal live-imaging. We demonstrated that AHP6 controls the regularity of the plastochron, and our results suggest that the defective phyllotaxis in ahp6 is caused by concomitant initiations of two or three organs in the meristem. Interestingly, AHP6 is expressed in organs and the protein can move beyond these domains, generating cytokinin signaling inhibitory fields. To explore further the putative role of these secondary fields, we generated a mathematical model of phyllotaxis. This suggested that plastochron instabilities could be caused by noise affecting the threshold at which meristematic cells are recruited into organs. Inhibitory fields generated by AHP6 could filter out the effect of noise by modifying the kinetics of early organ emergence. Consistently, the properties of AHP6 fields fit the model predictions and our experimental data show that AHP6 and cytokinin modulate auxin signaling during organ emergence. We thus propose a model in which auxin transport and signaling robustly control organ positioning but generates plastochron instablities in noisy backgrounds. In this scenario cytokinin inhibitory fields would stabilize the rhythmicity of organ initiation, ensuring a robust coupling of space and time during pattern formation.
39

Untersuchungen über die Wirkung von Stoffwechselprodukten, insbesondere Auxinen, des wachstumsfördernden Rhizobakteriums (PGPR) Bacillus subtilis auf die pflanzliche Salztoleranz

Stavropoulou, Archontia 04 August 2005 (has links)
Zur Aufklärung des Wirkungsmechanismus der toleranzerhöhenden Wirkung gegenüber Salinität des Pflanzenwurzeln besiedelnden PGPR Bacillus subtilis wurden bakterielle Stoffwechselprodukte der Stämme FZB24 und FZB41 bei der Testpflanze Tomate unter dem Einfluss von hohem Salzstress getestet. Das Kulturfiltrat mit der Gesamtheit der von B. subtilis produzierten Stoffwechselprodukte zeigte im axenischen Test zur Ermittlung des Wachstums nach 7-tägiger Behandlung der Sämlinge und nachfolgender Kultivierung unter Salzstress eine gewisse toleranzerhöhende Wirkung bei 0,1 %-Konzentration. Zur Produktaufschlüsselung wurde das Kulturfiltrat über Adsorberharz und HPLC fraktioniert. Diese Fraktionen, sowie die aus dem Kulturfiltrat nach 19 h Fermentation wurden ebenfalls bei Sämlingen axenisch getestet. Fraktionen mit verschiedenen Proteinen und Peptiden, die von B. subtilis produziert werden, zeigten teilweise eine konzentrationsabhängige Wirkung hinsichtlich der Wachstumsstimulierung und zugleich Toleranzerhöhung gegenüber Salzstress, weshalb nachfolgend ein Peptidextrakt aus B. subtilis einer Testung im axenischen System unterzogen wurde. Der Peptidextrakt zeigte gleichfalls eine erkennbare konzentrationsabhängige Wirkung. Mit gleichem Testsystem wurden Auxin-Präkursoren und Auxin selbst, die als Stoffwechselprodukte von B. subtilis nachgewiesen sind, sowohl als Wurzelbehandlung, wie auch als Blattbehandlung bei Sämlingen geprüft. Zusätzlich wurde die Wirkung der Auxine auf den Wassergehalt der Sämlinge unter Salzstress, sowie die Adventivwurzelbildung von Hypokotylsegmenten aus etiolierten Sämlingen in An- und Abwesenheit von Salinität getestet. Darüber hinaus wurde die Aufnahme und der Transport von Auxinen, ebenfalls bei Sprosssegmenten aus etiolierten Sämlingen in An- und Abwesenheit von Salinität geprüft. Schließlich wurde die Wirkung der Auxine auf das Wachstum und den Wassergehalt in einer Hydrokultur im Gewächshaus unter Salzstress ermittelt. Die Ergebnisse zeigen, dass namentlich Auxin-Präkursoren und z. T. Auxin als Stoffwechselprodukte von B. subtilis eine Erhöhung der Salzstresstoleranz bei der Testpflanze herbeiführen können, wenngleich die Wirkung auf die Salztoleranz sehr differenziert und unterschiedlich stark ausgeprägt war. Der vorhandene Effekt vor allem der Auxin-Präkursoren wird als offenbar bedeutendster Mechanismus für die wachstumsstimulierende und zugleich toleranzerhöhende Wirkung gegenüber Salinität des Rhizobakteriums bei Wurzelbesiedlung und Interaktion mit dem pflanzlichen Stoffwechsel diskutiert. / To find out the mode of tolerance increasing action against salinity of the plant root colonizing PGPR Bacillus subtilis, bacterial metabolites of the strains FZB24 and FZB41 were studied in the test plant tomato under the influence of high salinity. Because the culture filtrate with the whole range of produced metabolites by B. subtilis showed to a certain extent a tolerance increasing action at dilution of 0,1 % in axenic plant growth tests after 7 days treatment of seedlings and subsequent cultivation under salt stress, it has been fractionated with adsorber resin and HPLC. These fractions, as well as fractions from the culture filtrate after 19 h fermentation were tested also by seedlings in axenic culture. Fractions with different proteins and peptides, which were produced by B. subtilis, showed partly activities also depending of concentration with regard to the growth stimulation and at the same time tolerance increase against salt stress. Following also a peptide extract from B. subtilis was examined in the axenic plant test system, showing similarly a visible action depending of concentration. In the same test system there were tested further auxin precursors and auxin itself, which are known metabolites of B. subtilis, on seedlings both by root treatment and leaf treatment. Additionally was studied the action of auxins on the water content of the seedlings under salt stress, as well as on the adventitious root formation of hypokotyl segments from etiolated seedlings, in presence and absence of salinity. Finally it was studied the uptake and transport of auxins in segments of stems from etiolated seedlings in presence and absence of salinity. Lastly it was tested the action of auxins on plant growth and water content in a hydroponic cultivation under greenhouse conditions and salt stress. The results show that particularly auxin precursors and partly auxin as metabolites of B. subtilis can induce an increase in the salt stress tolerance of the test plant, although the action on the salt tolerance was differentiated and variable in its extent. The existing effect firstly of the auxin precursors is discussed as obviously main mechanism for the plant growth stimulating and at the same time tolerance increasing action of the rhizobacterium against salinity by root colonization and interaction with the plant metabolism.
40

Rôle de l'auxine et de sa signalisation dans la dynamique et la robustesse des patrons développementaux dans le méristème apical caulinaire / The role of auxin and its signaling pathways in the dynamics and robustness of developmental patterns at the shoot apical meristem

Oliva Freitas Santos, Marina 17 January 2014 (has links)
Les végétaux, contrairement aux animaux, génèrent la plupart de leurs organes et tissus au cours de leur développement post-embryonnaire et ce, grâce à des tissus contenant de petits amas de cellules souches appelés méristèmes. Le méristème apical caulinaire (MAC), situé à l’extrémité de la tige, génère toute la partie aérienne de la plante. A sa périphérie, les organes latéraux (fleurs ou feuilles) sont générés selon un patron spatio-temporel précis appelé phyllotaxie. De nombreuses données accumulées ces 20 dernières années ont démontré qu’une hormone végétale, l’auxine, joue un rôle prépondérant dans le contrôle du devenir des cellules dans le MAC. Un ensemble de données expérimentales couplées à des modèles mathématiques suggère que l’auxine s’accumule successivement dans les sites d’organogenèse grâce à l’auto-organisation de ses transporteurs membranaires et instruit les cellules à se différencier en organes.Fautes d’outils appropriés, il était impossible jusqu’alors de visualiser l’auxine in vivo et d’étudier sa dynamique temporelle. Nous avons généré un nouveau senseur de la signalisation de l’auxine, appelé DII-Venus, qui permet de visualiser de manière indirecte mais spécifique les niveaux relatifs d’auxine in planta avec une excellente résolution spatio-temporelle. Cet outil a permis de mettre en évidence pour la première fois des oscillations circadiennes d’auxine au niveau du MAC. Une analyse complète de la structure de la voie de réponse transcriptionelle à l’auxine, couplée à des approches de modélisation, a permis de mettre en évidence des propriétés « tampon » de la voie transcriptionnelle qui la rendent relativement insensible aux fluctuations d’auxine, et contribuent à la robustesse du programme organogénétique. En revanche, la voie non-transriptionnelle de réponse à l’auxine, sensible à ces oscillations, génère des rythmicités de croissance au niveau du MAC qui contribuent à déterminer la temporalité de l’émergence de nouveaux organes. Ces résultats démontrent ainsi pour la première fois que la rythmicité de l’émergence de nouveaux organes au niveau du MAC n’est pas uniquement une conséquence des capacités d’auto-organisation du tissu mais est aussi contrôlée, au moins partiellement, par une horloge biologique. / Plants, contrarily to animals, are able to generate new organs and tissues throughout their lives thanks to the activity of specialized tissues containing stem cells called meristems. The shoot apical meristem (SAM), located at the shoot tip, generates all the aerial parts of the plant that arise after germination. At its periphery, organ production occurs following precise spatio-temporal patterns also known as phyllotaxis. During the past twenty years, the phytohormone auxin has been demonstrated to play a major role in this process. Indeed, both experimental and theoretical studies strongly suggest that auxin accumulates successively in sites of organogenesis thanks to its efflux carriers, and instructs cells to differentiate into organs.However, so far, very little is known about the actual temporal dynamics of auxin in tissues, because of the lack of appropriate tool to visualize auxin in vivo. We developed a new auxin signaling sensor, called DII-VENUS, that allows for monitoring auxin levels in planta with a good spatio-temporal resolution. Using this new tool, we were able to demonstrate that for the first time that the SAM is subjected to circadian oscillations of auxin levels. Our data suggest that these oscillations are not perceived by the auxin transcriptional pathway, which is predicted, according to our mathematical models, to exhibit buffering properties. However, they are perceived by the non-transcriptional putative receptor ABP1 and translated into rhythmic growth patterns at the SAM. These growth oscillations seem to regulate organ initiation in the meristem thus demonstrating for the first time the rhythmic emergence of organs at the SAM does not only result from the self-organizing properties of the tissue but is also controlled, at least partially, by a biological clock.

Page generated in 0.0388 seconds