Spelling suggestions: "subject:"axiomatic""
11 |
Axiomatized Relationships between OntologiesChui, Carmen 21 November 2013 (has links)
This work focuses on the axiomatized relationships between different ontologies of varying levels of expressivity. Motivated by experiences in the decomposition of first-order logic ontologies, we partially decompose the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) into modules. By leveraging automated reasoning tools to semi-automatically verify the modules, we provide an account of the meta-theoretic relationships found between DOLCE and other existing ontologies. As well, we examine the composition process required to determine relationships between DOLCE modules and the Process Specification Language (PSL) ontology. Then, we propose an ontology based on the semantically-weak Computer Integrated Manufacturing Open System Architecture (CIMOSA) framework by augmenting its constructs with terminology found in PSL. Finally, we attempt to map two semantically-weak product ontologies together to analyze the applications of ontology mappings in e-commerce.
|
12 |
Axiomatized Relationships between OntologiesChui, Carmen 21 November 2013 (has links)
This work focuses on the axiomatized relationships between different ontologies of varying levels of expressivity. Motivated by experiences in the decomposition of first-order logic ontologies, we partially decompose the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) into modules. By leveraging automated reasoning tools to semi-automatically verify the modules, we provide an account of the meta-theoretic relationships found between DOLCE and other existing ontologies. As well, we examine the composition process required to determine relationships between DOLCE modules and the Process Specification Language (PSL) ontology. Then, we propose an ontology based on the semantically-weak Computer Integrated Manufacturing Open System Architecture (CIMOSA) framework by augmenting its constructs with terminology found in PSL. Finally, we attempt to map two semantically-weak product ontologies together to analyze the applications of ontology mappings in e-commerce.
|
13 |
[pt] ENSAIOS EM FINANÇAS COMPORTAMENTAIS / [en] ESSAYS ON BEHAVIORAL FINANCEARNALDO JOAO DO NASCIMENTO JUNIOR 31 May 2021 (has links)
[pt] Baseado na Teoria Cumulativa da Perspectiva, três ensaios são apresentados
nessa tese. Todos os três trabalhos estão conectados pelo entendimento aprofundado
da Função de Ponderação de Probabilidade e suas conexões cenários
de decisão sob risco.
O primeiro ensaio é um trabalho empírico utilizando a teoria da perspectiva
para analisar o viés do efeito de enquadramento em decisões de investimentos
em certos países emergentes: Brasil, China, Russia, México e África do Sul.
Em todos os casos, identificamos empiricamente o poder preditivo da teoria da
perspectiva para os retornos dos ativos. Também encontramos que a função de
ponderação de probabilidade é o fator mais importante para o poder preditivo.
O segundo ensaio é um trbalho teórico propondo uma axiomatização da
função de ponderação de Goldstein-Einhorn. Desde 1987, a conhecida função
de ponderação de Goldstein-Einhorn é largamente utilizada em trabalhos em
muitos artigos empíricos e teóricos. Richard Gonzalez e GeorgeWu propuseram
uma axiomatização para esta função em 1999. O trabalho que apresentamos
analisa a condição de preferência dos autores e encontra uma família maior
de funções de ponderação. Fornecemos exemplos úteis e sugerimos uma nova
condição de preferência que é necessária e suficiente para a função de Goldstein-
Einhorn. Esta nova condição de prefer6encia simula o comportamento das
pessoas em situações que envolvem atitutes arriscadas.
O terceiro ensaio propõe uma medida para as características psicológicas chamadas
de atratividade e discriminabilidade, no contexto das funções de ponderação
de probabilidades. Esse conceitos são importantes para nos ajudar a
entender como algumas emoções influenciam nosso comportamento. Propomos
medidas no sentido absoluto e relativo e as comparamos com alguns exemplos
particulares encontrados na literatura. Nossos resultados são consistentes com
o entendimento qualitativo encontrado na literatura e fornece um entendimento
quantitativo para ele. / [en] Based on Cumulative Prospect Theory, three essays are presented in this thesis.
All three works are linked by a deeper understanding of Probability Weighting
Functions and its connection with decisions in a risk scenario.
The first essay is an empirical work using prospect theory to analyze the
narrow framing bias in investment decisions in certain emerging countries:
Brazil, China, Russia, Mexico and South Africa. In all cases, we empirically
identified the predictive power of prospect theory for stock returns. We also
found that the probability weighting function is the most important factor in
this predictive power.
The second essay is a theoretical work proposing an axiomatization for the
Goldstein-Einhorn weighting function. Since 1987, the well known Goldstein-
Einhorn Weighting Function is widely used in many empirical and theoretical
papers. Richard Gonzalez and George Wu proposed an axiomatization for it in
1999. The present work analyses their preference condition and finds a bigger
family of weighting functions. We provide useful examples and suggest a new
preference condition which is necessary and sufficient for Goldstein-Einhorn
function. This new preference condition simulates the behavior of people in
risky attitudes.
The third essay propose a measure to evaluate the psychological features of
attractiveness and discriminability in the context of probability weighting
functions. These concepts are important to help us understand how some
emotions drive our behavior. We propose measures in absolute and in the
relative sense and compare with some particular cases found in the literature.
Our findings are consistent with the qualitative understanding widespread in
the literature and provide a quantitative analysis for it.
|
14 |
Ontology Pattern-Based Data IntegrationKrisnadhi, Adila Alfa January 2015 (has links)
No description available.
|
15 |
Joining implications in formal contexts and inductive learning in a Horn description logic: Extended VersionKriegel, Francesco 20 June 2022 (has links)
A joining implication is a restricted form of an implication where it is explicitly specified which attributesmay occur in the premise and in the conclusion, respectively. A technique for sound and complete axiomatization of joining implications valid in a given formal context is provided. In particular, a canonical base for the joining implications valid in a given formal context is proposed, which enjoys the property of being of minimal cardinality among all such bases. Background knowledge in form of a set of valid joining implications can be incorporated. Furthermore, an application to inductive learning in a Horn description logic is proposed, that is, a procedure for sound and complete axiomatization of Horn-M concept inclusions from a given interpretation is developed. A complexity analysis shows that this procedure runs in deterministic exponential time.
|
16 |
Une analyse de la relation entre les mécaniques classique et relativisteOuellette, Pierre 01 1900 (has links)
Notre thèse étudie la relation entre les mécaniques classique et relativiste. Il est généralement supposé, à partir de l’hypothèse des petites vitesses, que la mécanique classique correspond à la mécanique relativiste dans les cas où la vitesse des objets est petite par rapport à la vitesse de la lumière. Cette position nous semble inadéquate pour la simple raison que la mécanique classique ne peut être restreinte au seule domaine des petites vitesses. Nous proposons l’hypothèse que les deux mécaniques ont une structure commune et que chacune se distingue sous certaines conditions. Pour appuyer cette hypothèse, nous proposons une axiomatisation de la mécanique suffisamment générale pour servir de structure commune aux mécaniques classique et relativiste. Cette axiomatisation comporte une théorie de la relativité qui précise comment les quantités relatives sont reliées entre elles lorsque déterminées par rapport à différents référentiels, et les lois du mouvement qui précisent comment les forces exercées sur un objet détermine son mouvement. Cette mécanique générale est déterminée à deux constantes près et c’est en déterminant la valeur de ces constantes qu’apparaît le bris de la structure commune qui génère la mécanique classique d’une part et la mécanique relativiste d’autre part. / Our thesis studies the relationship between classical and relativistic mechanics. It is generally assumed,
based on the assumption of small velocities, that classical mechanics corresponds to relativistic mechanics
in cases where the speed of objects is small compared to the speed of light. This position seems inadequate
to us, for the simple reason that classical mechanics cannot be restricted to the realm of small velocities
alone. We propose the hypothesis that the two mechanics have a common structure, and that each can
be distinguished under certain conditions. To support this hypothesis, we propose an axiomatization of
mechanics that is sufficiently general to serve as a common structure for both classical and relativistic
mechanics. This axiomatization includes a theory of relativity that specifies how relative quantities are
related to each other when determined with respect to different reference frames, and laws of motion
that specify how forces exerted on an object determine its motion. This general mechanics is determined
to within two constants, and it is by determining the value of these constants that the common structure
that generates classical mechanics on the one hand and relativistic mechanics on the other is broken down.
|
17 |
Efficient Axiomatization of OWL 2 EL Ontologies from Data by means of Formal Concept Analysis: (Extended Version)Kriegel, Francesco 28 December 2023 (has links)
We present an FCA-based axiomatization method that produces a complete EL TBox (the terminological part of an OWL 2 EL ontology) from a graph dataset in at most
exponential time. We describe technical details that allow for efficient implementation as well as variations that dispense with the computation of extremely large axioms, thereby
rendering the approach applicable albeit some completeness is lost. Moreover, we evaluate the prototype on real-world datasets. / This is an extended version of an article accepted at AAAI 2024.
|
18 |
A axiomatização da aritmética e a contribuição de Hermann Günther GrabmannServidoni, Maria do Carmo Pereira 07 November 2006 (has links)
Made available in DSpace on 2016-04-27T16:57:50Z (GMT). No. of bitstreams: 1
EDM - Maria do Carmo P Servidoni.pdf: 866161 bytes, checksum: 8e9e034ec8ba50f2872318b1cea8c98d (MD5)
Previous issue date: 2006-11-07 / Secretaria da Educação do Estado de São Paulo / This research had as purpose the epistemology development of the knowledge
object, number, in its formation as mathematical entity. It became evident that, in
the end of the XIX century, the need of this formation caused many controversies,
because number was understood as gift by God and consequently, considered
something perfect. To the development of this research, we had as references
Gramanns works, the first mathematician to consider, even if, in an unconscious
form, the Axiomatization of Arithmetic. The main reference was the article entitled:
The debate about the Axiomatization of Arithmetic: Otto Hölder against Robert
Gramann by Mircea Radu (2003), in which, there is a debate about
Axiomatization of Arithmetic under two points of view, on the other hand, we have
Otto Hölder who believed in the synthetic nature of Mathematics, in such case, he
rejected the axiomatical method as base for itself, and otherwise, Hermann
Gramann and Robert Gramann that agree with the same idea, but they reject
the axiomatical method. However, Gramann didnt understand so well his
treatment of Arithmetic, because the laws that would define the natural numbers
belonged to Algebra, another discipline that Grassmann considered as originated
for all the other ones. In the development of this research, we indicated that the
bases of the Axiomatization of Arithmetic were in the salience of big
transformations occurred in Mathematics in the time of XIX century and beginning
of XX one: the appearing of the non-Euclidean Geometries, the Algebra s release
of Arithmetics veins and the intricate process of Arithmetization of Analysis. In this
period, it also developed the relevancy or not of the use of axiomatic method as a
basis of Arithmetic. We concluded that, in spite of all controversies of this period,
11
the possibility of Axiomatization of Arithmetic and the adoption of the axiomatical
source in formal sciences contributed for the exact sciences / Esta pesquisa teve como objetivo o desenvolvimento epistemológico do objeto de
conhecimento número em sua constituição como entidade matemática. Ficou
evidenciado que, no final do século XIX, a necessidade dessa constituição gerou
muitas controvérsias, porque número era concebido como presente de Deus e,
conseqüentemente, considerado algo perfeito. Para o desenvolvimento dessa
pesquisa, tivemos como referência os trabalhos de Grassmann, o primeiro
matemático a propor, mesmo que, de forma inconsciente, a Axiomatização da
Aritmética. A referência principal foi o artigo intitulado: A debate about the
axiomatization of arithmetic: Otto Hölder against Robert Gramann de Mircea
Radu (2003), no qual se encontra um debate a respeito da Axiomatização da
Aritmética sob dois pontos de vista; por um lado, temos Otto Hölder que
acreditava na natureza sintética da Matemática, sendo assim rejeitava o método
axiomático como base para a mesma; por outro lado, Robert Grassmann e
Hermann Grassmann que, também, concordam com a idéia de Hölder, pois
rejeitam o método axiomático. No entanto, apresentaram uma abordagem da
Aritmética, aparentemente, axiomática. Na verdade, Grassmann não entendia
assim seu tratamento da Aritmética, pois as leis que definiriam os números
naturais pertenciam à Álgebra, outra disciplina que Grassmann considerou como
geradora de todas as outras. No desenvolvimento dessa pesquisa, indicamos que
as bases da axiomatização da Aritmética estavam no bojo das grandes
transformações ocorridas na Matemática durante o século XIX e início do XX: o
aparecimento das Geometrias não-euclidianas, a libertação da Álgebra das veias
da Aritmética e o processo intrincado da Aritmetização da Análise. Nesse período,
também, desenvolveu-se a discussão da pertinência ou não do uso do método
9
axiomático, como um fundamento da Aritmética. Concluiu-se que apesar de toda
a polêmica desse período, a possibilidade da axiomatização da Aritmética e a
adoção do princípio axiomático nas ciências formais contribuíram para o avanço
das ciências exatas
|
19 |
Bildung relational denken / eine strukturtheoretische Präzisierung des transformatorischen Bildungsbegriffs anhand von Robert Kegans EntwicklungstheorieRichter, Beate 03 April 2014 (has links)
Eingebettet in die Theorie der Weiterbildung nimmt die Dissertation die Forderung der bildungstheoretisch orientierten Biographieforschung auf, den transformatorischen Bildungsbegriff zu präzisieren. Aus der Diagnose einer Stagnation in diesem Bereich wird der Wechsel vom interpretativen zum relationalen Paradigma vorgeschlagen und eine relationale Entwicklungslogik als methodologische Basis relationalen Denkens eingeführt. Mit der Übertragung der Ergebnisse der informellen Axiomatisierung von Robert Kegans strukturaler Entwicklungstheorie auf den Bildungsbegriff wird unter Verwendung weiterer Referenztheorien aus dem Bereich der relationalen Kommunikationstheorien die Präzisierung des Begriffs möglich. Bildung wird als Prozess der Transformation der Regel der Bedeutungsbildung einer Person unter Konfrontation mit der Regel der Bedeutungsbildung nächsthöherer Ordnung definiert und als eine Struktur der Übergänge zwischen Kontext-Regeln beschrieben, die ein Beobachter der Person im Interaktionsprozess zuschreibt. Mit dem hier entwickelten Kontext-Ebenen-Modell der Bedeutungsbildung lassen sich zum einen Zeichen-Arten ZA definieren, die eine empirische Beschreibung des Bildungsprozesses einer Person zulassen, und zum anderen drei Typen von Kontext-Regeln XR bestimmen, die aus der relationalen Entwicklungslogik abgeleitet, die Prinzipien der Bedeutungsbildung als Regeln der Zeichenrelationierung darstellen. Das Kontext-Ebenen-Modell der Bedeutungsbildung steht als Ergebnis einerseits für eine erfolgreiche Präzisierung des transformatorischen Bildungsbegriffs, andererseits für die Leistungsfähigkeit der strukturalistischen Methode im Rahmen des Programms der relationalen Weiterbildungsforschung. / Embedded in the theory of adult education (andragogy) this PhD-thesis takes up the challenge proclaimed by the biography research based on the concept of Bildung and seeks to define the concept of transformational Bildung more precisely. To overcome the identified stagnation in this research field, this thesis proposes a change from qualitative research paradigm to relational paradigm and introduces the relational logic of development as methodology of relational thinking. The application of the results of the informal axiomatization of Robert Kegan’s theory of human development to the concept of transformational Bildung as well as the use of various approaches based on relational communication theories allowed to provide a more precise definition of the concept of transformational Bildung. In this thesis Bildung is defined as a process of transformation of individual’s rules of meaning making caused by a person’s confrontation with the rules of meaning making of a higher order. From the observer’s perspective the structure of the Bildung process can be described as a transition from one context rule to another. The developed model of context levels of meaning making allows defining types of signs (ZA) that enable to measure the levels in the process of Bildung. Furthermore, this model allows determining three types of context rules (XR), which – according to the relational logic of development – represent principles of meaning making seen as rules for relating signs. Thus, on the one hand, the model of context levels of meaning making has succeeded to specify the concept of transformational Bildung and, on the other hand, has proven the effectiveness of the structuralist method for the relational adult education research.
|
Page generated in 0.0835 seconds