31 |
Validação de genes candidatos de arroz de terras altas (Oryza sativa L.) para tolerância à seca / Validation of candidate genes from upland rice (Oryza sativa L.) for drought toleranceSantos, Fabianna Ferreira dos 31 October 2017 (has links)
Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-11-21T16:58:09Z
No. of bitstreams: 2
Dissertação - Fabianna Ferreira dos Santos - 2017.pdf: 2021838 bytes, checksum: b3bb0be06a5e24c873bd447f07705f2e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-11-22T10:22:27Z (GMT) No. of bitstreams: 2
Dissertação - Fabianna Ferreira dos Santos - 2017.pdf: 2021838 bytes, checksum: b3bb0be06a5e24c873bd447f07705f2e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-11-22T10:22:27Z (GMT). No. of bitstreams: 2
Dissertação - Fabianna Ferreira dos Santos - 2017.pdf: 2021838 bytes, checksum: b3bb0be06a5e24c873bd447f07705f2e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-10-31 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Upland rice is grown without irrigation and the availability of water is totally dependent
on the occurrence of rainfall. The objective of this study was to evaluate the differential
expression of genes previously identified as responsive in drought conditions in upland
rice genotypes grown under controlled irrigation and water restriction conditions. Two
water treatments were applied, irrigation during the whole experiment and the water
restriction, where irrigation was suspended for five days from the beginning of the
reproductive stage (R2 / R3), with subsequent replacement of 50% of
evapotranspirated water by irrigated plants at the base of the column for 10 days,
followed by adequate irrigation until the end of the plant cycle. At the end of the crop
cycle, evaluations of the production components (number of full grains, number of
empty grains and mass of 100 grains) and yield were performed. Productivity estimates
of 24 genotypes ranged from 44 to 170 g column-1
in the irrigated treatment and from
4 to 86 g column-1
in the water deficiency condition. The genotypes Três Meses
Branco, BRS Esmeralda, BRSGO Serra Dourada, Casca Branca, BRSMG Curinga,
Bico Ganga and Rabo de Burro were among the most productive genotypes both in
irrigated condition and in water deficiency condition. Of the 24 genotypes used in the
experiment described above, 12 contrasting yields in water treatments were
characterized for differential expression for two target genes. One gene integrates the
antioxidative defense system (Superoxide dismutase cofactor Manganese - MnSOD)
and the other is a glycosyltransferase that promotes the glycosylation of an
anthocyanin molecule (anthocyanidin 3-O-beta-D-glucosyltransferase). ANOVA based
on the gene expression data revealed genotypes, water treatments and collection time
in the gene expression (p≤0.05). The MnSOD gene presented the highest level of
expression in all genotypes in the condition of greatest water restriction (five days
without irrigation), with higher levels of expression in the less productive genotypes
under stress conditions. On the other hand, the glycosyltransferase gene presented a
considerably reduced expression in the most critical condition of the stress, without
clear indicative of differentiation among the most productive genotypes during stress.
The two genes evaluated were clearly responsive (p≤0.05) to the most severe water
stress, but did not explain the differences between the genotypes grouped in the
productivity estimates with and without dry stress. Therefore, it is possible to conclude
that, due to the complexity in the processes adaptive to drought, each genotype uses
different mechanisms of molecular responses, and it is not possible to differentiate
them only through the genes evaluated in this study. / O arroz de terras altas é cultivado sem irrigação e a disponibilidade de água é
totalmente dependente da ocorrência de chuva. O objetivo desse estudo foi avaliar
em genótipos de arroz de terras altas cultivados em condições controladas de
irrigação e restrição hídrica a expressão diferencial de genes previamente
identificados como responsivos em condições de seca. Foram aplicados dois
tratamentos hídricos, o irrigado durante todo experimento e o de restrição hídrica,
onde a irrigação foi suspensa por cinco dias a partir do início do estádio reprodutivo
(R2/R3), com subsequente reposição de 50 % da água evapotranspirada pelas
plantas irrigadas na base da coluna por 10 dias, seguido por irrigação adequada até
o final do ciclo da planta. Ao término do ciclo da cultura foram realizadas as avaliações
dos componentes de produção (número de grãos cheios, número de grãos vazios e
massa de 100 grãos) e da produtividade. As estimativas de produtividade dos 24
genótipos variaram de 44 a 170 g coluna-1 no tratamento irrigado e de 4 a 86 g coluna-
1 na condição de deficiência hídrica. Os genótipos Três Meses Branco, BRS
Esmeralda, BRSGO Serra Dourada, Casca Branca, BRSMG Curinga, Bico Ganga e
Rabo de Burro figuraram dentre os mais produtivos tanto em condição irrigada quanto
em condição de deficiência hídrica. Dos 24 genótipos utilizados no experimento
descrito acima, 12 contrastantes quanto à produtividade nos tratamentos hídricos
foram caracterizados quanto à expressão diferencial para dois genes-alvo. Um gene
integra o sistema de defesa antioxidativo (Superóxido dismutase cofator Manganês –
MnSOD) e o outro é uma glicosiltransferase que promove a glicosilação de uma
molécula de antocianina (anthocyanidin 3-O-beta-D-glucosyltransferase). A ANOVA
realizada a partir dos dados de expressão gênica revelou efeito dos genótipos,
tratamentos hídricos e época de coleta na expressão gênica (p≤0.05). O gene MnSOD
apresentou o maior nível de expressão em todos os genótipos na condição de maior
restrição hídrica (cinco dias sem irrigação), com maiores níveis de expressão nos
genótipos menos produtivos em condição de estresse. Já o gene glicosiltransferase
apresentou uma expressão consideravelmente reduzida na condição mais crítica do
estresse, sem indicativo claro de diferenciação entre os genótipos mais produtivos
durante o estresse. Os dois genes avaliados foram claramente responsivos (p≤0.05)
ao estresse hídrico mais severo, porém não explicaram as diferenças entre os
genótipos agrupados quanto às estimativas de produtividade com e sem estresse de
seca. Diante disso, é possível concluir que diante da complexidade nos processos
adaptativos à seca, cada genótipo utiliza diferentes mecanismos de respostas
moleculares, não sendo possível diferencia-los somente através dos genes avaliados
nesse estudo.
|
32 |
Effet de la nutrition azotée sur la résistance de la légumineuse Medicago truncatula à Aphanomyces euteiches / Effect of nitrogen nutrition on Medicago truncatula resistance against Aphanomyces euteichesThalineau, Elise 09 December 2016 (has links)
L’azote (N) est un facteur majeur limitant la croissance des plantes. Sa disponibilité peut également avoir un impact sur la résistance des plantes aux pathogènes en régulant leur immunité. Afin de mieux comprendre les liens entre la nutrition azotée et les défenses de la plante, nous avons analysé l’impact de la disponibilité en N sur la résistance de Medicago truncatula à un pathogène racinaire, Aphanomyces euteiches, en prenant en compte la variabilité génétique de la plante. Cet oomycète est considéré comme un des facteurs limitant le plus la production des légumineuses. Deux conditions de nutrition azotée, non limitante ou carencée en N, et dix génotypes de M. truncatula ont été testés in vitro. Les résultats ont montré que la résistance est modulée par les conditions nutritionnelles, dépendament du génotype. Les analyses d’expression de gènes impliqués dans le métabolisme azoté et dans les réponses de défense ainsi que la quantification des teneurs en acides aminés et des composés métaboliques secondaires ont montré des réponses différentes selon les génotypes et la condition nutritive. Elles ont souligné en particulier le rôle potentiellement important de la glutamine dans ce pathosystème. De plus, nous avons mis en évidence l’importance de l’homéostasie du monoxyde d’azote (NO) dans la résistance de M. truncatula à A. euteiches et que la disponibilité en azote impactait l’homéostasie du NO en affectant les niveaux de S-nitrosothiols et l’activité de la S-nitrosoglutathion réductase dans les racines. Ces résultats soulignent l’importance du métabolisme azoté et de son interaction avec le génotype de la plante dans les réactions de défense chez M. truncatula. / Nitrogen (N) is a major limiting factor for plant growth. N availability can also impact plant resistance to pathogens by regulating plant immunity. To better understand the links between N nutrition and plant defense, we analyzed the impact of N availability of plant on Medicago truncatula resistance to the root pathogen, Aphanomyces euteiches, taking into account plant genetic variability. This oomycete is considered as the most limiting factor for legume production. Two conditions of N nutrition, non-limiting or deprived in N, and ten plant genotypes were tested in vitro. The results showed that the resistance is modulated by nutritional conditions, depending on plant genotype. Analysis of the expression of genes involved in N metabolism and defense and quantification of different amino-acids contents and secondary metabolic compounds showed different responses of the genotypes and highlighted a potential role of glutamine in this pathosystem. Furthermore, our work underlined the importance of nitric oxide (NO) homeostasis for M. truncatula resistance to A. euteiches and that N availability impacts NO homeostasis by affecting S-nitrosothiol levels and S-nitrosoglutathione reductase activity in roots. These studies highlight, therefore, the importance of N metabolism and its interaction with plant genotype in defense responses in M. truncatula.
|
33 |
Proteômica da interação planta-patógeno/simbionte em cana-de-açúcar (Saccharum spp.)ALMEIDA, Renata Rodrigues de 30 July 2015 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2016-04-22T16:20:14Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese_Renata_Almeida_PPGG_041115.pdf: 4144409 bytes, checksum: 709008675e5c4c4efeeb7b0b06e8e4ee (MD5) / Made available in DSpace on 2016-04-22T16:20:14Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
Tese_Renata_Almeida_PPGG_041115.pdf: 4144409 bytes, checksum: 709008675e5c4c4efeeb7b0b06e8e4ee (MD5)
Previous issue date: 2015-07-30 / CAPES / Reuni / CNPq / A cana-de-açúcar tem papel relevante na economia brasileira, apesar de estar sucetível a fatores bióticos e abióticos que influenciam para redução de produtividade agrícola e industrial. Apesar de existirem organismos como agentes causais de doenças que contribuam com danos à cana-de-açúcar, micro-organismos simbiontes interagem com a cultura conferindo benefícios no processo, tais como a fixação de Nitrogênio. Dessa forma, a análise das proteínas envolvidas na resposta a fatores bióticos pode auxiliar no desenvolvimento de novas variedades. No presente trabalho, foi analisado o proteoma da interação da cana-de-açúcar com patógeno (Leifsonia xyli subsp. xyli; Lxx) e/ou com o simbionte (Gluconacetobacter diazotrophicus; Gd) por 2-DE (Eletroforese bidimensional) seguida de MS (Espectrometria de massa). Os resultados da eletroforese bidimensional com a interação cana-de-açúcar/Gd mostraram que 173 spots foram diferencialmente expressos. A análise por espectrometria de massa identificou 65 proteínas. Tais proteínas foram principalmente associadas com produção de energia, componentes de fotossistemas e indução de resposta a estímulos ambientais. Na interação cana-de-açúcar/Lxx, em análise da eletroforese bidimensional, se observou 138 spots com expressão diferenciada. A análise por espectrometria de massa identificou 56 proteínas responsivas a estresses bióticos, defesa e metabolismo de carboidratos. Durante a interação simultânea com Gd e Lxx, o proteoma da cana-de-açúcar a análise da eletroforese bidimensional mostrou que 142 spots apresentaram nível de expressão alterada. A análise por espectrometria de massa identificou 30 proteínas associadas com metabolismo de carboidratos e defesa contra estresses bióticos. Os resultados obtidos compõem um conjunto de proteínas (e genes codificantes) com provável utilidade como marcadores funcionais auxiliares no melhoramento genético, na seleção de variedades com interação benéfica de crescimento/fixação biológica de nitrogênio com Gd, e/ou maior resistência à patogenicidade de Lxx. / The sugarcane has an important role in the Brazilian economy, despite its suceptibility to biotic and abiotic factors that decrease agricultural and industrial productivity. Although there are parasitic organisms that contribute to damage sugarcane, symbiotic microorganisms interact with the culture, providing benefits in the process, such as nitrogen fixation. Thus, the analysis of proteins involved in the response to biotic factors may assist the developing new sugarcane varieties. In this study, we analyzed the proteome of the interaction of sugarcane with pathogen (Leifsonia xyli subsp. xyli; Lxx) and / or symbiont (Gluconacetobacter diazotrophicus; Gd) by 2-DE (Two-dimensional electrophoresis) followed by MS (Mass Spectrometry). The results of two-dimensional electrophoresis with sugarcane / Gd interaction showed that 173 spots showed altered expression level. Analysis by mass spectrometry identified 65 proteins. These differentially expressed proteins were primarily associated with energy production, and induction components photosystems response to environmental stimuli. Since the sugarcane interaction / Lxx the analysis of two-dimensional electrophoresis demonstrated that 138 spots showed altered expression level. The analysis by mass spectrometry identified 56 proteins responsive to biotic stresses, defense and carbohydrate metabolism. During simultaneous interaction with Gd and Lxx, the proteome analysis of sugarcane showed that 142 spots with altered expression level. Analysis by mass spectrometry identified 30 proteins associated with carbohydrate metabolism and protection against biotic stresses. The results obtained in this work comprise a set proteins (and encoding genes) with probable utility as auxiliary functional markers in plant breeding, in the selection of varieties with beneficial interaction for growth/biological nitrogen fixation with Gd, and/or increased resistance to pathogenic Lxx.
|
34 |
Synthesis of Phytosulfokine Analogs as Probes for Studying Plant Signaling and Molecular TraffickingNtim, Thomas 01 December 2021 (has links)
Plants are exposed to a wide range of biotic and abiotic stresses that hinder their growth and reduce crop productivity. In their adaptive response, plants use signaling molecules that are trafficked throughout the plant. This research focuses on the chemical synthesis and assessment of analogs of the plant signal phytosulfokine (PSK, a sulfated pentapeptide), its delivery to plants and its observation using a fiber-optic fluorescence microscope. PSK regulates growth, cell expansion, heat tolerance, and tissue longevity. Analogs of PSK were synthesized using solid-phase peptide synthesis. Pure PSK and TAMRA-labeled PSK were delivered into the wild-type Arabidopsis thaliana Col-0 and a transgenic line expressing PSKR-GFP (PSK receptor – green fluorescent protein). PSKR-GFP could be detected in imaging experiments, but no internalization was observed upon treatment with PSK. Successful implementation of a microscopic approach suited for live plants opens a path to understanding how plants signal and adapt under different stress conditions.
|
35 |
Physio-biochemical characterization of two wheat cultivars to Fusarium proliferatum infectionJanuary 2019 (has links)
Magister Scientiae (Biodiversity and Conservation Biology) / Wheat is a key global commodity in terms of acreage and tradeable value and as a staple in
household diets. Many factors including biotic stress conditions have detrimental effects on
global wheat production and yield. The increasing prevalence of biotic stress inflicted by fungal
species such as Fusarium has significantly reduced yield and quality of cereal crops thus,
threatening sustainable agriculture and food security. Interactions between wheat and
Fusarium spp. such as Fusarium proliferatum triggers the accumulation of reactive oxygen
species (ROS) to levels toxic to the plant thus leading to oxidative damage and ultimate cellular
death. In order to maintain redox homeostasis, plants rely on ROS-scavenging antioxidants
(enzymatic and non-enzymatic) to control ROS molecules to levels less toxic to plants. This
study investigated the impact of F. proliferatum on the physio-biochemical responses of two
wheat cultivars (SST 015 and SST 088). Changes in seed germination, growth, biomass,
chlorophyll and mineral contents were monitored. Furthermore, changes in ROS accumulation
and antioxidant enzyme activity was measured in the shoots of both wheat cultivars.
|
36 |
Physiological and molecular characterization of wheat cultivars to Fusarium oxysporum infectionDavids, Danielle Andrea January 2019 (has links)
>Magister Scientiae - MSc / Biotic stress is one of the main causes for agricultural loss of economically important cereal crops. The increasing prevalence of biotic stress inflicted by fungal species such as Fusarium has significantly reduced yields and quality of cereals, threatening sustainable agriculture and food security worldwide. Interactions between wheat and Fusarium spp. such as Fusarium oxysporum promotes the accumulation of reactive oxygen species (ROS). Overproduction of ROS can become toxic to plants depending on the scavenging ability of antioxidant systems to maintain redox homeostasis. This study investigated the effects of F. oxysporum on the physiological and biochemical response of three wheat cultivars namely, SST 056, SST 088 and SST 015. Physiological responses were monitored by measuring changes observed in plant growth parameters including shoot and root growth and biomass, relative water content as well as photosynthetic metabolism and osmolyte content in all three wheat cultivars. Downstream biochemical analysis involved monitoring the accumulation of ROS biomarkers (superoxide and hydrogen peroxide) as well as the detection of enzymatic activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD). These biochemical responses were only monitored on the two wheat cultivars which presented contrasting responses to F. oxysporum infection. Results showed that F. oxysporum significantly reduced plant growth, biomass, chlorophyll pigments and relative water content of all three cultivars, with the highest reduction observed for SST 088 relative to SST 015 and SST056. On the other hand, proline content was significantly enhanced in all three wheat cultivars, with the highest increase observed for SST 015 relative to SST 056 and SST 088. Based on the contrasting physiological results observed for these three cultivars, downstream biochemical analysis was focused on SST 015 and SST 088. F. oxysporum trigged an increased in superoxide and hydrogen peroxide contents in both cultivars, with the highest increase observed for SST 088. A similar trend was observed for the extent of lipid peroxidation, manifested as enhanced MDA levels. Furthermore, F. oxysporum differentially altered antioxidant enzyme activity relative to the control of both wheat cultivars. A Significant increase in SOD activity was observed for both cultivars in response to F. oxysporum. However, contrasting responses in APX and POD activity (as seen for the band intensities of individual isoforms) was observed in these wheat cultivars in response to F. oxysporum. Based on the results obtained in this study we suggest that F. oxysporum infection has varying degrees of severity in different wheat cultivars. In light of the significant reduction of plant development coupled with enhanced ROS accumulation and differential antioxidant capacity for SST 015 relative SST 088, we suggest that SST 015 is more resilient to F. oxysporum. We thus conclude that a direct relationship exists between ROS accumulation and antioxidant scavenging in regulating plant tolerance against F. oxysporum pathogens.
|
37 |
Non-Destructive Imaging of Phytosulfokine Trafficking in Plants Using Fiber-Optic Fluorescence MicroscopyAbakah, Bernard 01 May 2023 (has links)
Plants secrete peptide ligands and use receptor signaling to respond to stress and control development. Understanding these phenomena is key to improving plant health and productivity for food, fiber, and energy applications. Phytosulfokine (PSK), a sulfated peptide hormone, regulates plant cell division, growth, and stress tolerance via specific phytosulfokine receptors (PSKRs). This study uses fiber-optic fluorescence microscopy to elucidate trafficking of PSK in live plants. The microscope features two-color optics and an objective lens connected to a 1-m coherent imaging fiber mounted on either a conventional upright microscope body or 5-axis positioning system (X–Y–Z plus pitch and yaw). PSK and fluorescently-labelled PSK were delivered into roots and leaves of various Arabidopsis thaliana genotypes, and their movement was non-destructively tracked with the microscope. High-resolution (3–5 µm) epifluorescence micrographs confirmed that PSK is mobile in plants and levels of PSKR1, PSKR2, or both may impact the trafficking of PSK.
|
38 |
Decoding the complexity of natural variation for shoot growth and response to the environment in Arabidopsis thaliana / Décoder la complexité de la variabilité naturelle pour la croissance et la réponse à l’environnement chez Arabidopsis thalianaTrontin, Charlotte 21 May 2013 (has links)
Des génotypes adaptés à des environnements contrastés ont de grandes chances de se comporter différemment lorsqu’ils sont placés dans des conditions similaires et contrôlées, notamment si leur sensibilité aux signaux environnementaux et/ou leur croissance intrinsèque sont limitées à différents niveaux. De ce fait, la variabilité observée dans les populations naturelles peut être utilisée comme une source illimitée de nouveaux allèles ou gènes pour l’étude des bases génétiques de la variation des traits quantitatifs. Mon travail de doctorat a consisté en l’analyse de la variabilité naturelle pour la croissance et la réponse à l’environnement chez Arabidopsis thaliana. Le but des approches de génétique quantitative est de comprendre comment la diversité génétique et épigénétique contrôle la variabilité phénotypique observée dans les populations à différentes échelles, au cours du développement et sous différentes contraintes environnementales. De plus, ces analyses ont pour objectif de comprendre comment les processus adaptatifs et démographiques influencent la fréquence de ces variants dans les populations en fonction de leur environnement local. Ainsi, l’étude de la variabilité naturelle peut être appréhendée en utilisant diverses approches, de la génétique et des méthodes de biologie moléculaire aux études écologiques et évolutives. Au cours de mon doctorat, j’ai eu la chance de travailler sur plusieurs de ces aspects au travers de trois projets indépendants qui exploitent tous la variabilité naturelle d’A. thaliana.Le premier projet a consisté en l’analyse du pattern de polymorphisme observé dans des populations d’A. thaliana au gène MOT1 qui code pour un transporteur de molybdate (la forme assimilable du molybdène (Mo), un micro-élément essentiel) et qui est responsable d’une partie des variations de croissance et de fitness observées à l’échelle de l’espèce en fonction de la disponibilité en Mo des sols. J’ai montré à différentes échelles géographiques que le pattern de polymorphisme à MOT1 ne reflète pas une évolution neutre mais présente plutôt des traces de sélection diversifiante. Ce travail a contribué à renforcer l’hypothèse selon laquelle des mutations au niveau du gène MOT1 pourraient avoir été sélectionnées dans certaines populations pour faire face aux niveaux élevés de Mo observés dans certains sols et potentiellement délétères malgré leur effet négatif sur des milieux pauvres en Mo.Le deuxième projet portait sur la caractérisation et l’analyse fonctionnelle de deux récepteur-kinase putatifs (RLK) identifiés de part leurs effets sur la croissance foliaire spécifiquement en réponse à un stress induit par du mannitol mais pas sous d’autres contraintes osmotiques. La fonction de ces récepteurs chez A. thaliana -qui n’est pas connu pour produire du mannitol- peut paraître intrigante. Les différentes expériences réalisées au cours de cette thèse nous ont cependant permis de construire un modèle selon lequel ces récepteurs pourraient être activés par le mannitol produit par certains pathogènes tel que les champignons et participer aux réponses de défense de la plante.Le troisième projet a été réalisé en collaboration avec l’équipe de Michel Vincentz (CBMEG, Brésil) et de Vincent Colot (IBENS, Paris) et consiste en l’analyse de l’occurrence de variants épigénétiques naturels au gène QQS dans différentes populations d’Asie Centrale et de leurs possibles conséquences phénotypique et adaptative.En conclusion, l’analyse des variants génétiques et épigénétiques naturels à l’origine des variations de biomasse en interaction avec l’environnement permet de comprendre comment l’évolution façonne la variabilité naturelle. / Genotypes adapted to contrasting environments are expected to behave differently when placed in common controlled conditions, if their sensitivity to environmental cues or intrinsic growth behaviour are set to different thresholds, or are limited at distinct levels. This allows natural variation to be exploited as an unlimited source of new alleles or genes for the study of the genetic basis of quantitative trait variation. My doctoral work focuses on analysing natural variation for shoot growth and response to the environment in A. thaliana. Natural variation analyses aim at understanding how molecular genetic or epigenetic diversity controls phenotypic variation at different scales and times of plant development and under different environmental conditions, and how selection or demographic processes influence the frequency of those molecular variants in populations for them to get adapted to their local environment. As such, the analysis of A. thaliana natural variation can be addressed using a variety of approaches, from genetics and molecular methods to ecology and evolutionary questions. During my PhD, I got the chance to tackle several of those aspects through my contributions to three independent projects which have in common to exploit A. thaliana natural variation. The first one is the analysis of the pattern of polymorphism from a set of 102 A. thaliana accessions at the MOT1 gene coding for a molybdate transporter (an essential micronutrient) and responsible for contrasted growth and fitness among accessions in response to Mo availability in the soil. I showed at different geographical scales that MOT1 pattern of polymorphisms is not consistent with neutral evolution and shows signs of diversifying selection. This work helped reinforce the hypothesis that in some populations, mutations in MOT1 have been selected to face soils rich in Mo and potentially deleterious despite their negative effect on Mo-limiting soils. The second project consists in the characterisation and functional analysis of two putative receptor-like kinases (RLKs) identified from their effect on shoot growth specifically under mannitol-supplemented media and not in response to other osmotic constraints. The function of such RLKs in A. thaliana, which is not known to synthesize mannitol was intriguing at first but, through different experiments, we built the hypothesis that those RLKs could be activated by the mannitol produced by some pathogens such as fungi and participate to plant defensive response. The third project, in collaboration with Michel Vincentz’s team from CBMEG (Brasil) and Vincent Colot (IBENS, Paris), consists in the analysis of the occurrence of natural epigenetic variants of the QQS gene in different populations from Central Asia and their possible phenotypic and adaptive consequences. Overall, these analyses of the genetic and epigenetic molecular variation leading to the biomass phenotype(s) in interaction with the environment provide clues as to how and where in the pathways adaptation is shaping natural variation.
|
39 |
Vliv biotického stresu na metabolismus sacharidů rostlin tabáku (Nicotiana tabacum L.) / The effect of biotic stress on the metabolism of saccharides in tobacco plants (Nicotiana tabacum L.)Kloudová, Kateřina January 2012 (has links)
Plants have developed a number of ways how to minimise negative influence of the environment. As a consequence of stress action, plants carbohydrate metabolism is quite often influenced, esp. on the level of expression and activities of different enzymes and also several metabolites concentration. One of key enzymes of carbohydrate metabolism is invertase. The aim of this work was to find out, whether the activity of its isoforms (cytoplasmic, vacuolar and extracellular) in tobacco plants is influenced by Potato virus Y (PVY). It was shown, that activity of cytoplasmic invertase was not affected, but the activity of vacuolar and extracellular isoform was enhanced during potyviral infection. Hence, it is likely, that vacuolar and extracellular invertases are related to plant antiviral defence. The effect of PVY on other enzymes of carbohydrate metabolism and several metabolites content was studied. Activity of α-amylase and phosphorylase, starch-degrading enzymes, was strongly enhanced during potyviral infection. That is probably how plant cells get glucose, which is a key source of energy and metabolites for biosynthesis of different compounds. It may also serve as a signal molecule. Activity of other hydrolytic enzymes, β-glucosidase and β-hexosaminidase, was also slightly increased. There was no...
|
40 |
A knowledgebase of stress reponsive gene regulatory elements in arabidopsis ThalianaAdam, Muhammed Saleem January 2011 (has links)
<p>Stress responsive genes play a key role in shaping the manner in which plants process and respond to environmental stress. Their gene products are linked to DNA transcription and its consequent translation into a response product. However, whilst these genes play a significant role in manufacturing responses to stressful stimuli, transcription factors coordinate access to these genes, specifically by accessing a gene&rsquo / s promoter region which houses transcription factor binding sites. Here transcriptional elements play a key role in mediating responses to environmental stress where each transcription factor binding site may constitute a potential response to a stress signal. Arabidopsis thaliana, a model organism, can be used to identify the mechanism of how transcription factors shape a plant&rsquo / s survival in a stressful environment. Whilst there are numerous plant stress research groups, globally there is a shortage of publicly available stress responsive gene databases. In addition a number of previous databases such as the Generation Challenge Programme&rsquo / s comparative plant stressresponsive gene catalogue, Stresslink and DRASTIC have become defunct whilst others have stagnated. There is currently a single Arabidopsis thaliana stress response database called STIFDB which was launched in 2008 and only covers abiotic stresses as handled by major abiotic stress responsive transcription factor families. Its data was sourced from microarray expression databases, contains numerous omissions as well as numerous erroneous entries and has not been updated since its inception.The Dragon Arabidopsis Stress Transcription Factor database (DASTF) was developed in response to the current lack of stress response gene resources. A total of 2333 entries were downloaded from SWISSPROT, manually curated and imported into DASTF. The entries represent 424 transcription factor families. Each entry has a corresponding SWISSPROT, ENTREZ GENBANK and TAIR accession number. The 5&rsquo / untranslated regions (UTR) of 417 families were scanned against TRANSFAC&rsquo / s binding site catalogue to identify binding sites. The relational database consists of two tables, namely a transcription factor table and a transcription factor family table called DASTF_TF and TF_Family respectively. Using a two-tier client-server architecture, a webserver was built with PHP, APACHE and MYSQL and the data was loaded into these tables with a PYTHON script. The DASTF database contains 60 entries which correspond to biotic stress and 167 correspond to abiotic stress while 2106 respond to biotic and/or abiotic stress. Users can search the database using text, family, chromosome and stress type search options. Online tools have been integrated into the DASTF  / database, such as HMMER, CLUSTALW, BLAST and HYDROCALCULATOR. User&rsquo / s can upload sequences to identify which transcription factor family their sequences belong to by using HMMER. The website can be accessed at http://apps.sanbi.ac.za/dastf/ and two updates per year are envisaged.</p>
|
Page generated in 0.0975 seconds