• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 15
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 37
  • 27
  • 24
  • 16
  • 15
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Essays on Birnbaum-Saunders models

Santos, Helton Saulo Bezerra dos January 2013 (has links)
Nessa tese apresentamos três diferentes aplicações dos modelos Birnbaum-Saunders. No capítulo 2 introduzimos um novo método por função-núcleo não-paramétrico para a estimação de densidades assimétricas, baseado nas distribuições Birnbaum-Saunders generalizadas assimétricas. Funções-núcleo baseadas nessas distribuições têm a vantagem de fornecer flexibilidade nos níveis de assimetria e curtose. Em adição, os estimadores da densidade por função-núcleo Birnbaum-Saunders gene-ralizadas assimétricas são livres de viés na fronteira e alcançam a taxa ótima de convergência para o erro quadrático integrado médio dos estimadores por função-núcleo-assimétricas-não-negativos da densidade. Realizamos uma análise de dados consistindo de duas partes. Primeiro, conduzimos uma simulação de Monte Carlo para avaliar o desempenho do método proposto. Segundo, usamos esse método para estimar a densidade de três dados reais da concentração de poluentes atmosféricos. Os resultados numéricos favorecem os estimadores não-paramétricos propostos. No capítulo 3 propomos uma nova família de modelos autorregressivos de duração condicional baseados nas distribuições misturas de escala Birnbaum-Saunders (SBS). A distribuição Birnbaum-Saunders (BS) é um modelo que tem recebido considerável atenção recentemente devido às suas boas propriedades. Uma extensão dessa distribuição é a classe de distribuições SBS, a qual (i) herda várias das boas propriedades da distribuição BS, (ii) permite a estimação de máxima verossimilhança em uma forma eficiente usando o algoritmo EM, e (iii) possibilita a obtenção de um procedimento de estimação robusta, entre outras propriedades. O modelo autorregressivo de duração condicional é a família primária de modelos para analisar dados de duração de transações de alta frequência. A metodologia estudada aqui inclui estimação dos parâmetros pelo algoritmo EM, inferência para esses parâmetros, modelo preditivo e uma análise residual. Realizamos simulações de Monte Carlo para avaliar o desempenho da metodologia proposta. Ainda, avalia-mos a utilidade prática dessa metodologia usando dados reais de transações financeiras da bolsa de valores de Nova Iorque. O capítulo 4 trata de índices de capacidade do processo (PCIs), os quais são ferramentas utilizadas pelas empresas para determinar a qualidade de um produto e avaliar o desempenho de seus processos de produção. Estes índices foram desenvolvidos para processos cuja característica de qualidade tem uma distribuição normal. Na prática, muitas destas ca-racterísticas não seguem esta distribuição. Nesse caso, os PCIs devem ser modificados considerando a não-normalidade. O uso de PCIs não-modificados podemlevar a resultados inadequados. De maneira a estabelecer políticas de qualidade para resolver essa inadequação, transformação dos dados tem sido proposta, bem como o uso de quantis de distribuições não-normais. Um distribuição não-normal assimétrica o qual tem tornado muito popular em tempos recentes é a distribuição Birnbaum-Saunders (BS). Propomos, desenvolvemos, implementamos e aplicamos uma metodologia baseada em PCIs para a distribuição BS. Além disso, realizamos um estudo de simulação para avaliar o desempenho da metodologia proposta. Essa metodologia foi implementada usando o software estatístico chamado R. Aplicamos essa metodologia para um conjunto de dados reais de maneira a ilustrar a sua flexibilidade e potencialidade. / In this thesis, we present three different applications of Birnbaum-Saunders models. In Chapter 2, we introduce a new nonparametric kernel method for estimating asymmetric densities based on generalized skew-Birnbaum-Saunders distributions. Kernels based on these distributions have the advantage of providing flexibility in the asymmetry and kurtosis levels. In addition, the generalized skew-Birnbaum-Saunders kernel density estimators are boundary bias free and achieve the optimal rate of convergence for the mean integrated squared error of the nonnegative asymmetric kernel density estimators. We carry out a data analysis consisting of two parts. First, we conduct a Monte Carlo simulation study for evaluating the performance of the proposed method. Second, we use this method for estimating the density of three real air pollutant concentration data sets, whose numerical results favor the proposed nonparametric estimators. In Chapter 3, we propose a new family of autoregressive conditional duration models based on scale-mixture Birnbaum-Saunders (SBS) distributions. The Birnbaum-Saunders (BS) distribution is a model that has received considerable attention recently due to its good properties. An extension of this distribution is the class of SBS distributions, which allows (i) several of its good properties to be inherited; (ii) maximum likelihood estimation to be efficiently formulated via the EM algorithm; (iii) a robust estimation procedure to be obtained; among other properties. The autoregressive conditional duration model is the primary family of models to analyze high-frequency financial transaction data. This methodology includes parameter estimation by the EM algorithm, inference for these parameters, the predictive model and a residual analysis. We carry out a Monte Carlo simulation study to evaluate the performance of the proposed methodology. In addition, we assess the practical usefulness of this methodology by using real data of financial transactions from the New York stock exchange. Chapter 4 deals with process capability indices (PCIs), which are tools widely used by companies to determine the quality of a product and the performance of their production processes. These indices were developed for processes whose quality characteristic has a normal distribution. In practice, many of these characteristics do not follow this distribution. In such a case, the PCIs must be modified considering the non-normality. The use of unmodified PCIs can lead to inadequacy results. In order to establish quality policies to solve this inadequacy, data transformation has been proposed, as well as the use of quantiles from non-normal distributions. An asymmetric non-normal distribution which has become very popular in recent times is the Birnbaum-Saunders (BS) distribution. We propose, develop, implement and apply a methodology based on PCIs for the BS distribution. Furthermore, we carry out a simulation study to evaluate the performance of the proposed methodology. This methodology has been implemented in a noncommercial and open source statistical software called R. We apply this methodology to a real data set to illustrate its flexibility and potentiality.
22

Modeling based on a reparameterized Birnbaum-Saunders distribution for analysis of survival data / Modelagem baseada na distribuição Birnbaum-Saunders reparametrizada para análise de dados de sobrevivência

Leão, Jeremias da Silva 09 January 2017 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-04-24T18:48:10Z No. of bitstreams: 1 TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-25T18:50:15Z (GMT) No. of bitstreams: 1 TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2017-04-25T18:50:23Z (GMT) No. of bitstreams: 1 TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5) / Made available in DSpace on 2017-04-25T18:59:25Z (GMT). No. of bitstreams: 1 TeseJSL.pdf: 1918523 bytes, checksum: 4d551d58b97032091209f65b7428e992 (MD5) Previous issue date: 2017-01-09 / Não recebi financiamento / In this thesis we propose models based on a reparameterized Birnbaum-Saunder (BS) distribution introduced by Santos-Neto et al. (2012) and Santos-Neto et al. (2014), to analyze survival data. Initially we introduce the Birnbaum-Saunders frailty model where we analyze the cases (i) with (ii) without covariates. Survival models with frailty are used when further information is nonavailable to explain the occurrence time of a medical event. The random effect is the “frailty”, which is introduced on the baseline hazard rate to control the unobservable heterogeneity of the patients. We use the maximum likelihood method to estimate the model parameters. We evaluate the performance of the estimators under different percentage of censured observations by a Monte Carlo study. Furthermore, we introduce a Birnbaum-Saunders regression frailty model where the maximum likelihood estimation of the model parameters with censored data as well as influence diagnostics for the new regression model are investigated. In the following we propose a cure rate Birnbaum-Saunders frailty model. An important advantage of this proposed model is the possibility to jointly consider the heterogeneity among patients by their frailties and the presence of a cured fraction of them. We consider likelihood-based methods to estimate the model parameters and to derive influence diagnostics for the model. In addition, we introduce a bivariate Birnbaum-Saunders distribution based on a parameterization of the Birnbaum-Saunders which has the mean as one of its parameters. We discuss the maximum likelihood estimation of the model parameters and show that these estimators can be obtained by solving non-linear equations. We then derive a regression model based on the proposed bivariate Birnbaum-Saunders distribution, which permits us to model data in their original scale. A simulation study is carried out to evaluate the performance of the maximum likelihood estimators. Finally, examples with real-data are performed to illustrate all the models proposed here. / Nesta tese propomos modelos baseados na distribuição Birnbaum-Saunders reparametrizada introduzida por Santos-Neto et al. (2012) e Santos-Neto et al. (2014), para análise dados de sobrevivência. Incialmente propomos o modelo de fragilidade Birnbaum-Saunders sem e com covariáveis observáveis. O modelo de fragilidade é caracterizado pela utilização de um efeito aleatório, ou seja, de uma variável aleatória não observável, que representa as informações que não podem ou não foram observadas tais como fatores ambientais ou genéticos, como também, informações que, por algum motivo, não foram consideradas no planejamento do estudo. O efeito aleatório (a “fragilidade”) é introduzido na função de risco de base para controlar a heterogeneidade não observável. Usamos o método de máxima verossimilhança para estimar os parâmetros do modelo. Avaliamos o desempenho dos estimadores sob diferentes percentuais de censura via estudo de simulações de Monte Carlo. Considerando variáveis regressoras, derivamos medidas de diagnóstico de influência. Os métodos de diagnóstico têm sido ferramentas importantes na análise de regressão para detectar anomalias, tais como quebra das pressuposições nos erros, presença de outliers e observações influentes. Em seguida propomos o modelo de fração de cura com fragilidade Birnbaum-Saunders. Os modelos para dados de sobrevivência com proporção de curados (também conhecidos como modelos de taxa de cura ou modelos de sobrevivência com longa duração) têm sido amplamente estudados. Uma vantagem importante do modelo proposto é a possibilidade de considerar conjuntamente a heterogeneidade entre os pacientes por suas fragilidades e a presença de uma fração curada. As estimativas dos parâmetros do modelo foram obtidas via máxima verossimilhança, medidas de influência e diagnóstico foram desenvolvidas para o modelo proposto. Por fim, avaliamos a distribuição bivariada Birnbaum-Saunders baseada na média, como também introduzimos um modelo de regressão para o modelo proposto. Utilizamos os métodos de máxima verossimilhança e método dos momentos modificados, para estimar os parâmetros do modelo. Avaliamos o desempenho dos estimadores via estudo de simulações de Monte Carlo. Aplicações a conjuntos de dados reais ilustram as potencialidades dos modelos abordados.
23

Essays on Birnbaum-Saunders models

Santos, Helton Saulo Bezerra dos January 2013 (has links)
Nessa tese apresentamos três diferentes aplicações dos modelos Birnbaum-Saunders. No capítulo 2 introduzimos um novo método por função-núcleo não-paramétrico para a estimação de densidades assimétricas, baseado nas distribuições Birnbaum-Saunders generalizadas assimétricas. Funções-núcleo baseadas nessas distribuições têm a vantagem de fornecer flexibilidade nos níveis de assimetria e curtose. Em adição, os estimadores da densidade por função-núcleo Birnbaum-Saunders gene-ralizadas assimétricas são livres de viés na fronteira e alcançam a taxa ótima de convergência para o erro quadrático integrado médio dos estimadores por função-núcleo-assimétricas-não-negativos da densidade. Realizamos uma análise de dados consistindo de duas partes. Primeiro, conduzimos uma simulação de Monte Carlo para avaliar o desempenho do método proposto. Segundo, usamos esse método para estimar a densidade de três dados reais da concentração de poluentes atmosféricos. Os resultados numéricos favorecem os estimadores não-paramétricos propostos. No capítulo 3 propomos uma nova família de modelos autorregressivos de duração condicional baseados nas distribuições misturas de escala Birnbaum-Saunders (SBS). A distribuição Birnbaum-Saunders (BS) é um modelo que tem recebido considerável atenção recentemente devido às suas boas propriedades. Uma extensão dessa distribuição é a classe de distribuições SBS, a qual (i) herda várias das boas propriedades da distribuição BS, (ii) permite a estimação de máxima verossimilhança em uma forma eficiente usando o algoritmo EM, e (iii) possibilita a obtenção de um procedimento de estimação robusta, entre outras propriedades. O modelo autorregressivo de duração condicional é a família primária de modelos para analisar dados de duração de transações de alta frequência. A metodologia estudada aqui inclui estimação dos parâmetros pelo algoritmo EM, inferência para esses parâmetros, modelo preditivo e uma análise residual. Realizamos simulações de Monte Carlo para avaliar o desempenho da metodologia proposta. Ainda, avalia-mos a utilidade prática dessa metodologia usando dados reais de transações financeiras da bolsa de valores de Nova Iorque. O capítulo 4 trata de índices de capacidade do processo (PCIs), os quais são ferramentas utilizadas pelas empresas para determinar a qualidade de um produto e avaliar o desempenho de seus processos de produção. Estes índices foram desenvolvidos para processos cuja característica de qualidade tem uma distribuição normal. Na prática, muitas destas ca-racterísticas não seguem esta distribuição. Nesse caso, os PCIs devem ser modificados considerando a não-normalidade. O uso de PCIs não-modificados podemlevar a resultados inadequados. De maneira a estabelecer políticas de qualidade para resolver essa inadequação, transformação dos dados tem sido proposta, bem como o uso de quantis de distribuições não-normais. Um distribuição não-normal assimétrica o qual tem tornado muito popular em tempos recentes é a distribuição Birnbaum-Saunders (BS). Propomos, desenvolvemos, implementamos e aplicamos uma metodologia baseada em PCIs para a distribuição BS. Além disso, realizamos um estudo de simulação para avaliar o desempenho da metodologia proposta. Essa metodologia foi implementada usando o software estatístico chamado R. Aplicamos essa metodologia para um conjunto de dados reais de maneira a ilustrar a sua flexibilidade e potencialidade. / In this thesis, we present three different applications of Birnbaum-Saunders models. In Chapter 2, we introduce a new nonparametric kernel method for estimating asymmetric densities based on generalized skew-Birnbaum-Saunders distributions. Kernels based on these distributions have the advantage of providing flexibility in the asymmetry and kurtosis levels. In addition, the generalized skew-Birnbaum-Saunders kernel density estimators are boundary bias free and achieve the optimal rate of convergence for the mean integrated squared error of the nonnegative asymmetric kernel density estimators. We carry out a data analysis consisting of two parts. First, we conduct a Monte Carlo simulation study for evaluating the performance of the proposed method. Second, we use this method for estimating the density of three real air pollutant concentration data sets, whose numerical results favor the proposed nonparametric estimators. In Chapter 3, we propose a new family of autoregressive conditional duration models based on scale-mixture Birnbaum-Saunders (SBS) distributions. The Birnbaum-Saunders (BS) distribution is a model that has received considerable attention recently due to its good properties. An extension of this distribution is the class of SBS distributions, which allows (i) several of its good properties to be inherited; (ii) maximum likelihood estimation to be efficiently formulated via the EM algorithm; (iii) a robust estimation procedure to be obtained; among other properties. The autoregressive conditional duration model is the primary family of models to analyze high-frequency financial transaction data. This methodology includes parameter estimation by the EM algorithm, inference for these parameters, the predictive model and a residual analysis. We carry out a Monte Carlo simulation study to evaluate the performance of the proposed methodology. In addition, we assess the practical usefulness of this methodology by using real data of financial transactions from the New York stock exchange. Chapter 4 deals with process capability indices (PCIs), which are tools widely used by companies to determine the quality of a product and the performance of their production processes. These indices were developed for processes whose quality characteristic has a normal distribution. In practice, many of these characteristics do not follow this distribution. In such a case, the PCIs must be modified considering the non-normality. The use of unmodified PCIs can lead to inadequacy results. In order to establish quality policies to solve this inadequacy, data transformation has been proposed, as well as the use of quantiles from non-normal distributions. An asymmetric non-normal distribution which has become very popular in recent times is the Birnbaum-Saunders (BS) distribution. We propose, develop, implement and apply a methodology based on PCIs for the BS distribution. Furthermore, we carry out a simulation study to evaluate the performance of the proposed methodology. This methodology has been implemented in a noncommercial and open source statistical software called R. We apply this methodology to a real data set to illustrate its flexibility and potentiality.
24

Desenvolvimento de um modelo estatístico para aplicação no estudo de fadiga em emendas dentadas de madeira / not available

Mariano Martinez Espinosa 27 November 2001 (has links)
Madeira laminada colada (MLC) é um material de construção muito empregado em estruturas. Este produto é composto de lâminas classificadas de madeira, coladas horizontalmente, para formar peças estruturais de madeira grandes dimensões. A união das lâminas é realizada através de distintos tipos de emendas longitudinais, sendo as emendas dentadas as mais utilizadas. Considerando que os componentes estruturais de MLC, em geral, são solicitadas a carregamentos cíclicos, este trabalho tem por finalidade a proposta de um modelo estatístico para a determinação da vida à fadiga em menos dentadas de madeira. O trabalho foi realizado no Laboratório de Madeiras e de Estruturas de madeira (LaMEM), com o estudo teórico e experimental da fadiga em corpos-de-prova tracionados de ligações com emendas dentadas, baseado em um planejamento estatístico de experimentos e na NBR 7190/97. Os resultados contidos mostram que o modelo Polinomial Ortogonal Múltiplo da distribuição de Birnbaum-Saunders é de grande precisão e o mais adequado ao estudo da fadiga. O uso deste modelo pode ser de grande benefício, já que com ele se poderá estimar e caracterizar com maior confiabilidade e precisão a um menor custo a vida à fadiga em emendas dentadas de madeira, considerando as variáveis independentes de tensão e freqüência. / In the production of structural elements of Glued Laminated Timber (GLULAM), the horizontal union of lumbers are made with finger joints. Considering that the structural components of GLULAM need a great number of finger joints, and some of these structures are subject to cyclic loading, the objective of this work is to present a statistical model to estimate the fatigue life in lumber tension finger joints. The theoretical and experimental work was made in the Laboratory of Wood and Timber Structures (LaMEM), based on a statistical experiment design using tension tests and in agreement with the NBR 7190/97 code. The estimation procedure was based on the multiple orthogonal polynomial Birnbaum-Saunders model and the results show that the parameter estimates of the multiple orthogonal polynomial Birnbaum-Saunders model are obtained with at good accuracy and the most appropriate for the wood fatigue study. The use of the model can be of great benefit, since with it can be fit and characterize with greater reliability and precision at a smaller cost the fatigue life in finger joints of wood, considering the independent variables stress and frequency.
25

Essays on Birnbaum-Saunders models

Santos, Helton Saulo Bezerra dos January 2013 (has links)
Nessa tese apresentamos três diferentes aplicações dos modelos Birnbaum-Saunders. No capítulo 2 introduzimos um novo método por função-núcleo não-paramétrico para a estimação de densidades assimétricas, baseado nas distribuições Birnbaum-Saunders generalizadas assimétricas. Funções-núcleo baseadas nessas distribuições têm a vantagem de fornecer flexibilidade nos níveis de assimetria e curtose. Em adição, os estimadores da densidade por função-núcleo Birnbaum-Saunders gene-ralizadas assimétricas são livres de viés na fronteira e alcançam a taxa ótima de convergência para o erro quadrático integrado médio dos estimadores por função-núcleo-assimétricas-não-negativos da densidade. Realizamos uma análise de dados consistindo de duas partes. Primeiro, conduzimos uma simulação de Monte Carlo para avaliar o desempenho do método proposto. Segundo, usamos esse método para estimar a densidade de três dados reais da concentração de poluentes atmosféricos. Os resultados numéricos favorecem os estimadores não-paramétricos propostos. No capítulo 3 propomos uma nova família de modelos autorregressivos de duração condicional baseados nas distribuições misturas de escala Birnbaum-Saunders (SBS). A distribuição Birnbaum-Saunders (BS) é um modelo que tem recebido considerável atenção recentemente devido às suas boas propriedades. Uma extensão dessa distribuição é a classe de distribuições SBS, a qual (i) herda várias das boas propriedades da distribuição BS, (ii) permite a estimação de máxima verossimilhança em uma forma eficiente usando o algoritmo EM, e (iii) possibilita a obtenção de um procedimento de estimação robusta, entre outras propriedades. O modelo autorregressivo de duração condicional é a família primária de modelos para analisar dados de duração de transações de alta frequência. A metodologia estudada aqui inclui estimação dos parâmetros pelo algoritmo EM, inferência para esses parâmetros, modelo preditivo e uma análise residual. Realizamos simulações de Monte Carlo para avaliar o desempenho da metodologia proposta. Ainda, avalia-mos a utilidade prática dessa metodologia usando dados reais de transações financeiras da bolsa de valores de Nova Iorque. O capítulo 4 trata de índices de capacidade do processo (PCIs), os quais são ferramentas utilizadas pelas empresas para determinar a qualidade de um produto e avaliar o desempenho de seus processos de produção. Estes índices foram desenvolvidos para processos cuja característica de qualidade tem uma distribuição normal. Na prática, muitas destas ca-racterísticas não seguem esta distribuição. Nesse caso, os PCIs devem ser modificados considerando a não-normalidade. O uso de PCIs não-modificados podemlevar a resultados inadequados. De maneira a estabelecer políticas de qualidade para resolver essa inadequação, transformação dos dados tem sido proposta, bem como o uso de quantis de distribuições não-normais. Um distribuição não-normal assimétrica o qual tem tornado muito popular em tempos recentes é a distribuição Birnbaum-Saunders (BS). Propomos, desenvolvemos, implementamos e aplicamos uma metodologia baseada em PCIs para a distribuição BS. Além disso, realizamos um estudo de simulação para avaliar o desempenho da metodologia proposta. Essa metodologia foi implementada usando o software estatístico chamado R. Aplicamos essa metodologia para um conjunto de dados reais de maneira a ilustrar a sua flexibilidade e potencialidade. / In this thesis, we present three different applications of Birnbaum-Saunders models. In Chapter 2, we introduce a new nonparametric kernel method for estimating asymmetric densities based on generalized skew-Birnbaum-Saunders distributions. Kernels based on these distributions have the advantage of providing flexibility in the asymmetry and kurtosis levels. In addition, the generalized skew-Birnbaum-Saunders kernel density estimators are boundary bias free and achieve the optimal rate of convergence for the mean integrated squared error of the nonnegative asymmetric kernel density estimators. We carry out a data analysis consisting of two parts. First, we conduct a Monte Carlo simulation study for evaluating the performance of the proposed method. Second, we use this method for estimating the density of three real air pollutant concentration data sets, whose numerical results favor the proposed nonparametric estimators. In Chapter 3, we propose a new family of autoregressive conditional duration models based on scale-mixture Birnbaum-Saunders (SBS) distributions. The Birnbaum-Saunders (BS) distribution is a model that has received considerable attention recently due to its good properties. An extension of this distribution is the class of SBS distributions, which allows (i) several of its good properties to be inherited; (ii) maximum likelihood estimation to be efficiently formulated via the EM algorithm; (iii) a robust estimation procedure to be obtained; among other properties. The autoregressive conditional duration model is the primary family of models to analyze high-frequency financial transaction data. This methodology includes parameter estimation by the EM algorithm, inference for these parameters, the predictive model and a residual analysis. We carry out a Monte Carlo simulation study to evaluate the performance of the proposed methodology. In addition, we assess the practical usefulness of this methodology by using real data of financial transactions from the New York stock exchange. Chapter 4 deals with process capability indices (PCIs), which are tools widely used by companies to determine the quality of a product and the performance of their production processes. These indices were developed for processes whose quality characteristic has a normal distribution. In practice, many of these characteristics do not follow this distribution. In such a case, the PCIs must be modified considering the non-normality. The use of unmodified PCIs can lead to inadequacy results. In order to establish quality policies to solve this inadequacy, data transformation has been proposed, as well as the use of quantiles from non-normal distributions. An asymmetric non-normal distribution which has become very popular in recent times is the Birnbaum-Saunders (BS) distribution. We propose, develop, implement and apply a methodology based on PCIs for the BS distribution. Furthermore, we carry out a simulation study to evaluate the performance of the proposed methodology. This methodology has been implemented in a noncommercial and open source statistical software called R. We apply this methodology to a real data set to illustrate its flexibility and potentiality.
26

Two essays on Birnbaum-Saunders regression models for censored data / Dois ensaios em modelos de regressão Birnbaum-Saunders para dados censurados

Sousa, Mário Fernando de 06 December 2016 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-02T15:17:50Z No. of bitstreams: 2 Dissertação - Mário Fernando de Sousa - 2016.pdf: 645506 bytes, checksum: d6fd190570fce6feeb390cfeaf50032f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-05-02T15:18:06Z (GMT) No. of bitstreams: 2 Dissertação - Mário Fernando de Sousa - 2016.pdf: 645506 bytes, checksum: d6fd190570fce6feeb390cfeaf50032f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-05-02T15:18:06Z (GMT). No. of bitstreams: 2 Dissertação - Mário Fernando de Sousa - 2016.pdf: 645506 bytes, checksum: d6fd190570fce6feeb390cfeaf50032f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-12-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work aims to fill a gap in the literature on modeling asymmetric and censored data. The main objective is to provide a contribution by developing two models, which will be presented in two papers, respectively. In the first paper, we develop the tobit-Birnbaum-Saunders model, a variation of the standard tobit model. We discuss estimation based on the maximum likelihood method, residuals, diagnostic techniques and an empirical application. In the second paper, we propose the use of a mixture between the Birnbaum-Saunders and Bernoulli distributions. The objective is to generalize the tobit-Birnbaum-Saunders model in order to consider the possibility of partial observations below a cutoff point. For the mixture model, we carry out a Monte Carlo simulation study and an empirical application. The results show that, in both cases, the Birnbaum-Saunders distribution provides the best results. / Este trabalho visa preencher uma lacuna existente na literatura pertinente à modelagem de dados assimétricos e censurados. O objetivo principal é oferecer uma contribuição via o desenvolvimento de dois modelos, os quais serão apresentados em dois artigos. No primeiro artigo é proposto o modelo tobit-Birnbaum-Saunders, ou seja, uma variação do modelo tobit clássico, com estimação baseada no método de máxima verossimilhança, resíduos, técnicas de diagnóstico e uma aplicação a dados reais. No segundo artigo é abordada a utilização de um modelo de mistura entre as distribuições Birnbaum-Saunders e Bernoulli, de modo a generalizar o modelo tobit-Birnbaum-Saunders e considerar a possibilidade de observações parciais abaixo do ponto de corte. Para o modelo de mistura são realizadas simulações de Monte Carlo e uma aplicação a dados reais. Os resultados mostram que, em ambos os casos, a distribuição Birnbaum-Saunders oferece os melhores resultados.
27

Advances on the Birnbaum-Saunders distribution / Avanços na distribuição Birnbaum-Saunders

Luiz Ricardo Nakamura 26 August 2016 (has links)
The Birnbaum-Saunders (BS) distribution is the most popular model used to describe lifetime process under fatigue. Throughout the years, this distribution has received a wide ranging of applications, demanding some more flexible extensions to solve more complex problems. One of the most well-known extensions of the BS distribution is the generalized Birnbaum- Saunders (GBS) family of distributions that includes the Birnbaum-Saunders special-case (BSSC) and the Birnbaum-Saunders generalized t (BSGT) models as special cases. Although the BS-SC distribution was previously developed in the literature, it was never deeply studied and hence, in this thesis, we provide a full Bayesian study and develop a tool to generate random numbers from this distribution. Further, we develop a very flexible regression model, that admits different degrees of skewness and kurtosis, based on the BSGT distribution using the generalized additive models for location, scale and shape (GAMLSS) framework. We also introduce a new extension of the BS distribution called the Birnbaum-Saunders power (BSP) family of distributions, which contains several special or limiting cases already published in the literature, including the GBS family. The main feature of the new family is that it can produce both unimodal and bimodal shapes depending on its parameter values. We also introduce this new family of distributions into the GAMLSS framework, in order to model any or all the parameters of the distribution using parametric linear and/or nonparametric smooth functions of explanatory variables. Throughout this thesis we present five different applications in real data sets in order to illustrate the developed theoretical results. / A distribuição Birnbaum-Saunders (BS) é o modelo mais popular utilizado para descrever processos de fadiga. Ao longo dos anos, essa distribuição vem recebendo aplicações nas mais diversas áreas, demandando assim algumas extensões mais flexíveis para resolver problemas mais complexos. Uma das extensões mais conhecidas na literatura é a família de distribuições Birnbaum-Saunders generalizada (GBS), que inclui as distribuições Birnbaum-Saunders casoespecial (BS-SC) e Birnbaum-Saunders t generalizada (BSGT) como modelos especiais. Embora a distribuição BS-SC tenha sido previamente desenvolvida na literatura, nunca foi estudada mais profundamente e, assim, nesta tese, um estudo bayesiano é desenvolvido acerca da mesma além de um novo gerador de números aleatórios dessa distribuição ser apresentado. Adicionalmente, um modelo de regressão baseado na distribuição BSGT é desenvolvido utilizando-se os modelos aditivos generalizados para locação, escala e forma (GAMLSS), os quais apresentam grande flexibilidade tanto para a assimetria como para a curtose. Uma nova extensão da distribuição BS também é apresentada, denominada família de distribuições Birnbaum-Saunders potência (BSP), que contém inúmeros casos especiais ou limites já publicados na literatura, incluindo a família GBS. A principal característica desta nova família é que ela é capaz de produzir formas tanto uni como bimodais dependendo do valor de seus parâmetros. Esta nova família também é introduzida na estrutura dos modelos GAMLSS para fornecer uma ferramenta capaz de modelar todos os parâmetros da distribuição como funções lineares e/ou não-lineares suavizadas de variáveis explicativas. Ao longo desta tese são apresentadas cinco diferentes aplicações em conjuntos de dados reais para ilustrar os resultados teóricos obtidos.
28

On validation of parametric models applied in survival analysis and reliability / Sur la validation des modèles paramétriques appliqués en analyse de survie et fiabilité

Tahir, Muhammad-Ramzan 02 July 2012 (has links)
Le premier objectif de la thèse est de présenter un test d'ajustement pour les modèles paramétriques couramment utilisés en l'analyse de survie, la fiabilité, les sciences sociales, l'ingénierie, la santé publique et la démographie, en présence de censure à droite. Nous développons un logiciel en langue R pour les modèles paramétrique. Le modèle de Birnbaum-Saunders (BS) est utilisé pour la test d'ajustement pour les modèles AFT paramétriques et en analyse de système redondant. L'autre contribution porte sur l'analyse de système redondant composé avec une composante en état hot et l'autre en réserve fonctionnent en état warm pour augmenter la fiabilité de systeme. Nous calculons la fiabilité du système en termes de Fonction de répartition et nous donnons l'intervalle de confiance asymptotique. / This is an increasing importance in survival analysis and reliability to select a suitable basic model for further inquiries of the data. Little deviation in basic model can cause serious problems in final results. The presence of censoring and accelerated stresses make this task more difficult. Chi-square type goodness of fit tests are most commonly used for model selection. Many modifications in chi-square tests have been proposed by various researcher. The first aim of the thesis is to present a goodness of fit test for wide rage of parametric models (shape-scale families) commonly used in survival analysis, social sciences, engineering, public health and demography, in presence of right censoring. We give the explicit forms of the quadratic form of the test statistic (NRR test) for various models and apply the test on real data. We develop a computer program in R-language for all models. A separate section is dedicated for the test in demography. We focus on the Birnbaum-Saunders (BS) distribution for goodness of fit test for parametric AFT-model and analysis of redundant system.The other purpose of the thesis is to give the analysis of redundant system. To ensure high reliability of the main components of the systems, standby units are used. The main component is replaced by the standby unit automatically, if it fails. The standby unit can be in warm, hot, or cold state. We give the procedure of one main and (n-1) standby units placed in hot state, and give the detailed analysis of one main and one standby unit using BS parametric family. We use Sedyakin's physical principal and the approach of accelerated failure time model for the analysis of redundant system. This approach is different from the traditional ones in the literature but difficulties in calculations. We calculate the reliability of the system in terms of distribution function (unreliability function) and asymptotic confidence interval.
29

Birnbaum Importance Patterns and Their Applications in the Component Assignment Problem

Yao, Qingzhu 01 May 2011 (has links)
The Birnbaum importance (BI) is a well-known measure that evaluates the relative contribution of components to system reliability. It has been successfully applied to tackling some reliability problems. This dissertation investigates two topics related to the BI in the reliability field: the patterns of component BIs and the BI-based heuristics and meta-heuristics for solving the component assignment problem (CAP).There exist certain patterns of component BIs (i.e., the relative order of the BI values to the individual components) for linear consecutive-k-out-of-n (Lin/Con/k/n) systems when all components have the same reliability p. This study summarizes and annotates the existing BI patterns for Lin/Con/k/n systems, proves new BI patterns conditioned on the value of p, disproves some patterns that were conjectured or claimed in the literature, and makes new conjectures based on comprehensive computational tests and analysis. More importantly, this study defines a concept of segment in Lin/Con/k/n systems for analyzing the BI patterns, and investigates the relationship between the BI and the common component reliability p and the relationship between the BI and the system size n. One can then use these relationships to further understand the proved, disproved, and conjectured BI patterns.The CAP is to find the optimal assignment of n available components to n positions in a system such that the system reliability is maximized. The ordering of component BIs has been successfully used to design heuristics for the CAP. This study proposes five new BI-based heuristics and discusses their corresponding properties. Based on comprehensive numerical experiments, a BI-based two-stage approach (BITA) is proposed for solving the CAP with each stage using different BI-based heuristics. The two-stage approach is much more efficient and capable to generate solutions of higher quality than the GAMS/CoinBonmin solver and a randomization method.This dissertation then presents a meta-heuristic, i.e., a BI-based genetic local search (BIGLS) algorithm, for the CAP in which a BI-based local search is embedded into the genetic algorithm. Comprehensive numerical experiments show the robustness and effectiveness of the BIGLS algorithm and especially its advantages over the BITA in terms of solution quality.
30

Getting To The Pulp Of Haruki Murakami's Norwegian Wood: Translatability and the Role of Popular Culture

Zuromski, Jacquelyn 01 January 2004 (has links)
Haruki Murakami's Norwegian Wood (1987) veers from his favored detective-fiction genre by offering readers a 1960s coming-of-age romance, a story whose plot nonetheless spins around the protagonist seeking out his personal identity. The conflicts between Japanese tradition and modern, global perspectives are illustrated through the inclusion of popular culture elements such as music, literature and films. This thesis seeks to show how the novel's references to popular culture of the 1960s combine to help the protagonist establish an identity for himself as well as his place within the universal community. First, though, the project explores the impact of the translatability issues that arise with each of the novel's two English translations, variations dictated by the needs of differing audiences. The introduction provides an overview of the study, as well as historical background pertinent to the understanding of the Sixties-era popular culture iconography privileged by Murakami. My methodology favors a cultural studies approach and utilizes reader response and reception theories. Separate chapters then compare specifics between the two translations and examine the functionality and significance of music, literature and film within the novel. The conclusion justifies the subsequent deviations between the translations and argues for the necessity and value of both English versions, but claims Rubin's as the definitive English translation. Likewise, the study of the novel's many popular culture references exemplifies the roles that music, books, and film play in the creation of the protagonist's individual identity in Norwegian Wood while simultaneously illustrating the effectiveness of using globally recognizable media as a bridge between cultures.

Page generated in 0.0523 seconds