• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 193
  • 59
  • 35
  • 9
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 377
  • 377
  • 99
  • 54
  • 47
  • 41
  • 35
  • 33
  • 30
  • 30
  • 22
  • 21
  • 18
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
351

Effets d'un décalage horaire "simulé" et d'une sieste sur les performances physiques et psychomotrices du sportif / Effects of a simulated jet lag and short nap on physical and psychomotor performances in athletes

Petit, Élisabeth 09 December 2013 (has links)
Résumé : Chez le sportif, le franchissement de plusieurs fuseaux horaires avec décalage horaire s'accompagne d'une fatigue avec somnolence diurne, d'une diminution des performances cognitives, sportives et de la vigilance. Une sieste de courte durée pourrait être une solution adaptée pour prévenir les effets du jet lag. A notre connaissance, aucune étude n'a évalué les effets d'une sieste et/ou les effets combinés du décalage horaire et d'une sieste sur les performances des athlètes.C'est pourquoi, l'objectif de cette thèse est d'étudier chez des athlètes, les effets d'une avance de phase de 5 heures (simulant un voyage transméridien vers l'Est) et d'une sieste post-prandiale de 20 minutes sur les réponses à un exercice physique de courte durée et à des tâches psychomotrices ainsi que sur le sommeil subséquent. Seize sujets jeunes, sains, de sexe masculin et sportifs (âge : 22.2 ± 1.7 ans ; taille : 178.3 ± 5.6 cm, poids : 73,6 ± 7,9 kg ; VC>2 max : 55.5 ± 9,1 ml.min.kg"' ; siesteurs non habituels) ont participé à cette étude. Aucun ne présentait de pathologie du sommeil. Chaque sujet a passé en laboratoire une nuit d'habituation et 8 nuits expérimentales dont 4 en condition normale (23H-7H, 2 nuits pré-tests et 2 post-tests) et 4 en avance de phase de 5 h ( 18H-2H, 2 nuits pré et 2 post-tests) avec enregistrement EEG continu. Après un repas standardisé au laboratoire, les sujets ont été soumis, entre 13 et 14H (condition normale), et entre 08 et 09H (condition de décalage), soit à une sieste (20 min de sommeil), soit à une période de repos en décubitus sans sommeil. A l'issue, les sujets ont réalisé un test de performance attentionnelle, évaluant 6 champs de l'attention, un test de Handgrip et un test Wingate avec mesure de la lactatémie en fin d'exercice et lors de la récupération. Ces mêmes tests ont été reconduits 2 heures plus tard dans le même ordre. La température rectale a été enregistrée par holter tout au long de la période expérimentale.Les résultats montrent que le décalage horaire modifie l'architecture du sommeil de la nuit pré tests avec un déficit de sommeil d"lh20, se traduisant par une moindre efficacité de sommeil. En revanche, ce décalage améliore la qualité du sommeil de la nuit subséquente (post-tests) avec une augmentation de la quantité du N3 et du sommeil paradoxal. Une baisse significative de l'amplitude de la température interne témoigne d'un réajustement actif des sujets. L'architecture de la sieste (stades 2 et 3) est similaire qu'elle ait lieu après une nuit normale ou après décalage horaire avec toutefois une quantité de SP qui tend à augmenter après la nuit en avance de phase. Elle n'a pas d'effets sur la composition du sommeil qui suit (condition normale ou en décalage), en dehors d'une augmentation de la latence d'endormissement en condition de décalage... / Purpose T he aim of thé study vvas to examine thé effects of a post-prandial 20 min nap on a short-term physicalexercise and subséquent sleep in athlètes keeping their usual sleep schedules and in 5-h phase-advance condition.Methods Sixteen healthy young mâle athlètes (âge 22.2 ± 1.7 years. non-habitual nappers) participated in thé study.After a baseline 8-h time in bed in normal and 5-h advanced sleep schedules, a standardized moming and lunch in alaboratory enviromnent, subjects undervvent either a nap (20 min of sleep elapsed from 3 epochs of stage 1 or 1 epochof stage 2), or a rest without sleep by lying in a bed, between 13:00 and 14:00 hours in non-shifted condition or 08:00and 09:00 hours in shifted condition, after vvhich anaerobic exercises were perforrned tvvice 2 h apart. Core bodytempérature vvas recorded throughout thé study period.Resuhs The nap extended sleep onset latency from6.72 ± 3.83 to 11.84 ± 13.44 min, after shifted condition but did not modify sleep architecture of thé post-trial nightamong athlètes, vvhether shifted or not. Moreover, napping did not improve physical performance but it delayedacrophase and batyphase of core body température rhythm pararneters.Conclusion N apping showed no reliable benefit on short-term performances of athlètes exercising at local time or aftera simulated jet lag.
352

Short-term effects of hydrated lime and quicklime on the decay of human remains using pig cadavers as human body analogues: Laboratory experiments

Schotsmans, Eline M.J., Denton, J., Fletcher, Jonathan N., Janaway, Robert C., Wilson, Andrew S. January 2014 (has links)
No / Contradictions and misconceptions regarding the effect of lime on the decay of human remains have demonstrated the need for more research into the effect of different types of lime on cadaver decomposition. This study follows previous research by the authors who have investigated the effect of lime on the decomposition of human remains in burial environments. A further three pig carcasses (Sus scrofa), used as human body analogues, were observed and monitored for 78 days without lime, with hydrated lime (Ca(OH)2) and with quicklime (CaO) in the taphonomy laboratory at the University of Bradford. The results showed that in the early stages of decay, the unlimed and hydrated lime cadavers follow a similar pattern of changes. In contrast, the application of quicklime instigated an initial acceleration of decay. Microbial investigation demonstrated that the presence of lime does not eliminate all aerobic bacteria. The experiment also suggested that lime functions as a sink, buffering the carbon dioxide evolution. This study complements the field observations. It has implications for the investigation of time since death of limed remains. Knowledge of the effects of lime on decomposition processes is of interest to forensic pathologists, archaeologists, humanitarian organisations and those concerned with disposal of animal carcasses or human remains in mass disasters.
353

Bridging environmental physiology and community ecology : temperature effects at the community level

Iles, Alison C. 20 November 2014 (has links)
Most climate change predictions focus on the response of individual species to changing local conditions and ignore species interactions, largely due to the lack of a sound theoretical foundation for how interactions are expected to change with climate and how to incorporate them into climate change models. Much of the variability in species interaction strengths may be governed by fundamental constraints on physiological rates, possibly providing a framework for including species interactions into climate change models. Metabolic rates, ingestion rates and many other physiological rates are relatively predictable from body size and body temperature due to constraints imposed by the physical and chemical laws that govern fluid dynamics and the kinetics of biochemical reaction times. My dissertation assesses the usefulness of this framework by exploring the community-level consequences of physiological constraints. In Chapter 2, I incorporated temperature and body size scaling into the biological rate parameters of a series of realistically structured trophic network models. The relative magnitude of the temperature scaling parameters affecting consumer energetic costs (metabolic rates) and energetic gains (ingestion rates) determined how consumer energetic efficiency changed with temperature. I systematically changed consumer energetic efficiency and examined the sensitivity of network stability and species persistence to various temperatures. I found that a species' probability of extinction depended primarily on the effects of organismal physiology (body size and energetic efficiency with respect to temperature) and secondarily on the effects of local food web structure (trophic level and consumer generality). This suggests that physiology is highly influential on the structure and dynamics of ecological communities. If consumer energetic efficiency declined as temperature increased, that is, species did best at lower temperatures, then the simulated networks had greater stability at lower temperatures. The opposite scenario resulted in greater stability at higher temperatures. Thus, much of the community-level response depends on what species energetic efficiencies at the organismal-level really are, which formed the research question for Chapter 3: How does consumer energetic efficiency change with temperature? Existing evidence is scarce but suggestive of decreasing consumer energetic efficiency with increasing temperature. I tested this hypothesis on seven rocky intertidal invertebrate species by measuring the relative temperature scaling of their metabolic and ingestion rates as well as consumer interaction strength under lab conditions. Energetic efficiencies of these rocky intertidal invertebrates declined and species interaction strengths tended to increase with temperature. Thus, in the rocky intertidal, the mechanistic effect of temperature would be to lower community stability at higher temperatures. Chapter 4 tests if the mechanistic effects of temperature on ingestion rates and species interaction strengths seen in the lab are apparent under field conditions. Bruce Menge and I related bio-mimetic estimates of body temperatures to estimates of per capita mussel ingestion rates and species interaction strengths by the ochre sea star Pisaster ochraceus, a keystone predator of the rocky intertidal. We found a strong, positive effect of body temperature on both per capita ingestion rates and interaction strengths. However, the effects of season and the unique way in which P. ochraceus regulates body temperatures were also apparent, leaving room for adaptation and acclimation to partially compensate for the mechanistic constraint of body temperature. Community structure of the rocky intertidal is associated with environmental forcing due to upwelling, which delivers cold, nutrient rich water to the nearshore environment. As upwelling is driven by large-scale atmospheric pressure gradients, climate change has the potential to affect a wide range of significant ecological processes through changes in water temperature. In Chapter 5, my coauthors and I identified long-term trends in the phenology of upwelling events that are consistent with climate change predictions: upwelling events are becoming stronger and longer. As expected, longer upwelling events were related to lower average water temperatures in the rocky intertidal. Furthermore, recruitment rates of barnacles and mussels were associated with the phenology of upwelling events. Thus climate change is altering the mode and the tempo of environmental forcing in nearshore ecosystems, with ramifications for community structure and function. Ongoing, long-term changes in environmental forcing in rocky intertidal ecosystems provide an opportunity to understand how temperature shapes community structure and the ramifications of climate change. My dissertation research demonstrates that the effect of temperature on organismal performance is an important force structuring ecological communities and has potential as a tractable framework for predicting the community level effects of climate change. / Graduation date: 2013 / Access restricted to the OSU Community, at author's request, from Nov. 20, 2012 - Nov. 20, 2014
354

Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing

Horn, Jacqueline Marie 05 1900 (has links)
A wearable body temperature sensor would allow for early detection of fever or infection, as well as frequent and accurate hassle-free recording. This thesis explores the design of a body-temperature-sensing device inkjet-printed on a flexible substrate. All structures were first modeled by first-principles, theoretical calculations, and then simulated in HFSS. A variety of planar square inductor geometries were studied before selecting an optimal design. The designs were fabricated using multiple techniques and compared to the simulation results. It was determined that inductance must be carefully measured and documented to ensure good functionality. The same is true for parallel-plate and interdigitated capacitors. While inductance remains relatively constant with temperature, the capacitance of the device with a temperature-sensitive dielectric layer will result in a shift in the resonant frequency as environmental or ambient temperature changes. This resonant frequency can be wirelessly detected, with no battery required for the sensing device, from which the temperature can be deduced. From this work, the optimized version of the design comprises of conductive silver in with a temperature-sensitive graphene oxide layer, intended for inkjet-printing on flexible polyimide substrates. Graphene oxide demonstrates a high dielectric permittivity with good sensing capabilities and high accuracy. This work pushes the state-of-the-art in applying these novel materials and techniques to enable flexible body temperature sensors for future biomedical applications.
355

Respostas fisiológicas e comportamentais de recém-nascidos pré-termos submetidos a duas técnicas de banho de imersão: ensaio clínico cruzado / Physiological and behavioral responses of preterm newborn underwent to two immersion baths techniques: cross-over clinical trial

Freitas, Patricia de 28 May 2015 (has links)
Introdução: a revisão de literatura aponta que os recém-nascidos submetidos ao banho de imersão produzem menor variação térmica pós-banho comparado aos submetidos ao banho com esponja. No Brasil, o Ministério da Saúde vem capacitando profissionais que atuam em unidades de internação neonatal para implementar o Método Mãe Canguru e, entre outras práticas, recomenda que o recém-nascido pré-termo (RNPT) e com baixo peso seja submetido ao banho de imersão envolto em cueiro ou lençol, sugerindo mudança da prática hegemônica do banho com esponja ou banho de imersão convencional. No entanto, a técnica de banho de imersão recomendada carece de evidências científicas quanto a sua segurança em relação às repercussões na estabilidade da temperatura corporal (T), frequência cardíaca (FC), cortisol salivar (CS) e comportamental em RNPT. Hipótese: os RNPT submetidos ao banho de imersão envoltos em lençol (BIE) apresentam respostas fisiológicas e comportamentais similares aos submetidos à técnica de banho de imersão convencional (BIC), nos primeiros 20 minutos pós-banho. Objetivo: avaliar os parâmetros fisiológicos e comportamentais de RNPT submetidos ao banho de imersão envolto em lençol (BIE) e banho de imersão convencional (BIC). Método: ensaio clínico randomizado cruzado com amostra composta por 43 RNPT, internados na Unidade Neonatal de um hospital escola da cidade de São Paulo. Os RNPT foram alocados no grupo A ou B, seguindo uma lista de randomização gerada pelo software R que foi envelopada e mantida com os auxiliares da pesquisa responsáveis pelos banhos dos RNPT. A randomização definiu a técnica do primeiro banho que o RN seria submetido. Somente após análise dos dados foi aberto o envelope da randomização sendo identificado que no grupo A, o primeiro banho foi o BIC (intervenção controle) e no grupo B, o BIE (intervenção experimental). A técnica do BIE seguiu a técnica recomendada no Manual Atenção Humanizada ao Recém-Nascido de Baixo Peso: Método Mãe-Canguru, publicada pelo Ministério da Saúde. Foram utilizadas filmadoras para obter os valores da FC e da SatO2 registradas pelo monitor cardíaco instalado nos RNPT e para captar imagens das reações comportamentais antes e após os banhos. As temperaturas axilares foram aferidas com termômetro digital e amostras de saliva foram coletadas com esponja oftálmica (Merocel)®, refrigeradas e processada pelo teste Elisa. As filmagens do estado comportamental 10 minutos pré e 10 e 20 minutos pós-banho foram analisadas utilizando o instrumento de avaliação do sono-vigília validado por Brandon e Holditch-Davis. Os dados foram registrados em formulário próprio e armazenados em planilha Microsoft Excel. A análise estatística foi realizada com os programas Minitab, versão 16.1 e SPSS, versão 20. Além da análise descritiva das variáveis numéricas para obtenção de medidas de tendência central e dispersão e frequências absoluta e relativa, foram utilizados os testes Qui-quadrado e Exato de Fisher; o teste T pareado, ANOVA e Modelos Generalizados Lineares na análise dos dados. Resultados: As temperaturas axilares médias dos RNPT pré-BIC e pré-BIE foram, respectivamente, 36,695°C e 36,667°C, p = 0,329. No 10° minuto pós-BIC e BIE, as médias das temperaturas axilares foram, respectivamente, 36,533°C e 36,535°C, p = 0,944. No 20° minuto pós-BIC e BIE, as médias da temperatura axilar foram 36,626°C e 36,628°C, p = 0,663. Houve queda na temperatura axilar no 10° minuto pós-banho, independente do tipo de banho realizado (p <0,001). A hipótese de que o BIE é equivalente ao BIC em relação à variação da temperatura axilar foi confirmada. Houve redução significante nos valores das FC no 10° e 20° minutos pós-BIC e BIE comparados aos valores pré-banho, independente do tipo de banho (p<0,001). Ocorreu aumento gradativo dos valores médios de SatO2 no 10º e 20° minutos após os banhos sem diferenças significantes nos valores pré-banhos, p = 0,969. A concentração do cortisol salivar aumentou após o banho em ambos os grupos, p = 0,001, entretanto não ocorreram diferenças entre os grupos, ou seja, os níveis de cortisol salivar aumentaram após o banho, independente do tipo de banho, p = 0,797. O percentual de tempo em estado sono ativo aumentou após o banho, independente do tipo de banho, p<0,001, ou seja, houve mudança significativa no comportamento do recém-nascido, sem diferenças entre os banhos, p = 0,425. Conclusão: Tanto os RNPT que receberam BIC quanto os que receberam BIE apresentaram queda na temperatura corporal no 10° minuto pós-banho com aumento da temperatura corporal no 20° minuto pós-banho. Comparado aos achados da literatura, a redução da temperatura corporal foi menor que no banho com esponja. O BIE é equivalente ao BIC, portanto ambos são indicados aos RNPT. Convêm salientar o aumento dos custos do BIE em razão do consumo de lençol e da capacitação necessária da equipe de enfermagem nesta técnica de banho, sem prolongar o tempo médio dispendido no banho, visto que poderá reduzir a temperatura da água do banho e consequentemente causar queda na temperatura corporal do RN. / Introduction: the literature review shows that newborns underwent to immersion baths produce less post-bath thermal variation compared to those underwent to the sponge bath. In Brazil, the Ministry of Health has been qualifying working professionals in neonatal hospitalization units to implement the Kangaroo Mother Care and, among other practices, recommends that the preterm newborn infants (PNI) and underweight are underwent to the swaddle immersion bath wrapped in clothes or sheet, suggesting change of the hegemonic practice of sponge bath or conventional immersion bath. However, the immersion bath technique recommended requires more scientific evidence about its safety in relation to impact on the stability of body temperature (T), heart rate (HR), salivary cortisol (SC) and behavioral in PNI. Hypothesis: PNI underwent to swaddle immersion bath wrapped in sheet (SIB) have physiological and behavioral responses similar to those underwent to the conventional immersion bath technique (CIB), in the first 20 minutes post-bath. Objective: To evaluate the physiological and behavioral parameters of preterm newborn infants underwent to swaddle immersion bath in sheet (SIB) and conventional immersion bath (CIB). Method: Randomized crossover clinical trial with a sample of 43 preterm newborn infants in the neonatal unit of a university hospital in the city of Sao Paulo. PNI were allocated in the A or B groups, following a randomization list which was generated by the software R, which was enveloped and maintained with research assistants who were responsible for the baths of PNI. Randomization list defined the first bath technique that the newborn was underwent. The randomization envelope was only opened after data analysis being identified that in group A, the first bath was the CIB (control intervention) and group B, the SIB (experimental intervention). The SIB technique followed the technique recommended in the Humane Care Infant, Low Birth Weight: Kangaroo Mother Care Manual, published by the Ministry of Health of Brazil. Video cameras were used for the HR and SpO2 values recorded at heart monitor installed in the PNI and to capture images of behavioral responses before and after baths. Axillary temperatures were measured with a digital thermometer and saliva samples were collected with ophthalmic sponge (Merocel) ®, refrigerated and processed by the Elisa test. The video recorded of behavioral states of 10 minutes pre-baths and 10 and 20 minutes post-baths were analyzed using the sleep-wake assessment tool validated by Brandon and Holditch-Davis. Data were recorded and stored in the proper form in Microsoft Excel spreadsheet. Statistical analysis was performed using Minitab software, version 16.1 and SPSS, version 20. In addition to the descriptive analysis of numerical variables to obtain measures of central tendency, dispersion, absolute and relative frequencies, Chi-square tests were used and Fisher Exact, the paired T-test, ANOVA and Generalized Linear Models in the data analysis. Results: The mean axillary temperatures of PNI pre-CIB and SIB were respectively 36.695 °C and 36.667 °C, p = 0.329. At 10 minutes post-CIB and SIB, the mean axillary temperatures were, respectively, 36.533 ° C to 36.535 ° C, p = 0.944. At 20 minutes post- CIB and SIB, the average of axillary temperature were 36.626°C and 36.628 ° C, p = 0.663. There was a decrease in the axillary temperature at 10 minutes post-bath, regardless of the type performed bath (p < 0.001). The hypothesis that the SIB is equivalent to the CIB related to the variation in the axillary temperature was confirmed. There was a significant reduction in the HR values at the 10th and 20 th minutes after CIB and SIB compared to pre-bath values, regardless type of the bath (p< 0.001). There was a progressive rise on SpO2 mean values on the 10th and 20 th minutes after baths with no significant differences in pre-baths values, p = 0.969. The salivary cortisol concentrations increased after bathing in both groups, p = 0.001, however there were no differences between the groups, in other words, salivary cortisol levels increased after bathing, regardless of the type of bath, p = 0.797. The percentage of time in active sleep state increased after bathing, regardless of bath type, p <0.001, that is meaning there was significant change in newborn behavior, without differences between baths, p = 0.425. Conclusion: Both the PNI who received CIB, as those receiving SIB, had a decrease in body temperature in the 10th minute post bath followed by an increased body temperature at 20 minutes post-bath. Compared to previous studies, reduction of body temperature was lower than in the sponge bath. The SIB is equivalent to the CIB therefore both are recommended for preterm infants. It should be emphasized the increased in the SIB costs due to the bed sheet consumption and the required nursing staff training in this bath technique, without extending the average time spent in the bath, as it may reduce the temperature of the bath water, consequently causing body temperature drop on the newborn
356

O efeito da exposição ao calor sobre o desempenho cognitivo de idosos: um estudo controlado / The effect of heat exposure on the cognitive performance of older adults: a controlled trial

Trezza, Beatriz Maria 13 February 2015 (has links)
Introdução: Concomitante ao processo de envelhecimento populacional, estão ocorrendo mudanças climáticas, sendo a principal delas o aquecimento global. O envelhecimento leva a mudanças tanto nos mecanismos de termorregulação quanto no desempenho cognitivo. Embora inúmeros estudos tenham avaliado o efeito do calor sobre a cognição de adultos jovens, este é um tema praticamente inexplorado na população geriátrica. Objetivos: Avaliar o efeito da exposição ao calor sobre o desempenho cognitivo de idosos saudáveis e identificar fatores que expliquem as variações na susceptibilidade ao estresse térmico nesta população. Casuística e Métodos: 68 idosos com bom desempenho físico e cognitivo realizaram uma bateria de testes neuropsicológicos em duas condições ambientais: 24oC (controle) e 32oC (calor). Através de cinco testes selecionados da Bateria Neuropsicológica Automatizada de Testes de Cambridge (CANTAB), foram avaliados diferentes aspectos do desempenho cognitivo com foco principal em memória, atenção e velocidade de processamento. Um escore composto global de desempenho cognitivo foi criado usando a medida mais representativa de cada um desses testes. Antes e após cada uma das sessões de testes, foram aferidos o peso corporal, a temperatura axilar, a temperatura auricular, a frequência cardíaca e a pressão arterial. Por meio da análise de variância para medidas repetidas (ANOVA), verificou-se a interação entre o efeito da temperatura na cognição (avaliada pelo escore composto global) e características sociodemográficas (idade, sexo, educação, cor), frequência de exercício físico e umidade relativa registrada durante o protocolo de exposição ao calor. Adicionalmente, foi também desenvolvido um modelo de regressão linear multivariada a fim de identificar variáveis independentes que explicariam a susceptibilidade ao estresse pelo calor. Resultados: A idade média da amostra foi de 73,28 anos. 42,9% dos indivíduos relataram praticar atividade física quatro ou mais vezes por semana. As temperaturas auriculares e axilares aumentaram significativamente após a exposição ao calor, sendo que as diferenças médias encontradas foram de 0,55 e 0,43oC respectivamente. Não foram observadas diferenças significativas entre quaisquer medidas individuais de desempenho ou no escore composto global quando comparamos o desempenho cognitivo sob as duas temperaturas experimentais. Na análise de interação, somente os níveis de umidade registrados durante o protocolo de exposição ao calor e a frequência da prática de exercícios modificaram significativamente o efeito da temperatura sobre o desempenho cognitivo. Os sujeitos expostos a maior umidade relativa do ar no protocolo de calor e os voluntários menos ativos apresentaram piora no desempenho cognitivo na sessão a 32oC. Estes achados foram confirmados num modelo de regressão linear totalmente ajustado. Conclusão: A análise principal mostrou que o desempenho cognitivo de idosos com boa funcionalidade não sofreu efeito deletério da exposição ao calor. No entanto, os voluntários expostos ao calor mais úmido e aqueles que relataram menor frequência de exercício físico apresentaram pior desempenho na sessão de calor que na de controle. As variáveis sócio-demográficas como idade, gênero, escolaridade e cor não tiveram influência na susceptibilidade ao estresse térmico / Introduction: Concomitantly to the process of population aging, major climate changes are taking place, among which global warming is regarded as the most important. Aging leads to changes in temperature control mechanisms and is associated with a subtle and progressive decline in cognitive functions. Although a great deal of studies have evaluated the effect of heat on the cognitive performance of young adults, to the best of our knowledge, no studies have directly investigated the effects of warm environments on the cognitive functioning of older adults. Objectives: To evaluate the effect of heat exposure on the cognitive performance of healthy older adults and to identify factors that would explain variations in susceptibility to heat stress in that population. Methods: 68 older adults with both good physical and cognitive performance were requested to take a series of neuropsychological tests under two environmental conditions: at 24oC and 32oC. Five tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were administered to measure different aspects of cognitive functioning while focusing on memory, attention and processing speed. A global composite score of cognitive performance was created, using the most representative measures of each one of those five tests. Before and after each session, measures of auxiliary temperature, tympanic temperature, blood pressure, heart rate, and body weight were obtained. Interaction analysis was carried out using repeated measures analysis of variance (ANOVA) in order to check whether the effect of temperature on cognition, assessed by the global composite score, was modified by sociodemographic characteristics (age, gender, education, race), frequency of physical activity or relative humidity registered during the heat protocol. In addition, a multiple linear regression model has been fitted to identify independent variables that would explain susceptibility to heat stress Results: The mean age of the sample was 73.28 years and 42.9% of the participants reported performing physical activities at least four times a week. Tympanic and auxiliary temperatures increased significantly after the heat exposure with increases of 0.55 and 0.43oC, respectively. No significant differences were observed among any individual measures or the composite score, when comparing the cognitive performance under the two experimental temperatures. In the interaction analysis, only the humidity levels during the heat exposure protocol and the frequency of physical activities significantly modified the effects of temperature on cognitive performance. Participants exposed to higher relative air humidity during the heat protocol and the less active ones have presented worse cognitive performance in the session at 32oC. Those findings have been confirmed by a totally adjusted linear regression model. Conclusion: The main analysis has shown that the cognitive performance of older healthy adults has not had deleterious effect of heat exposure. Nevertheless, the volunteers exposed to more humid heat and those who have reported lower frequency of physical exercises have shown worse performance during the heat session than in the control session. The sociodemographic variables such as age, gender, education and race have not had any influence over susceptibility to heat stress
357

Respostas fisiológicas e comportamentais de recém-nascidos pré-termos submetidos a duas técnicas de banho de imersão: ensaio clínico cruzado / Physiological and behavioral responses of preterm newborn underwent to two immersion baths techniques: cross-over clinical trial

Patricia de Freitas 28 May 2015 (has links)
Introdução: a revisão de literatura aponta que os recém-nascidos submetidos ao banho de imersão produzem menor variação térmica pós-banho comparado aos submetidos ao banho com esponja. No Brasil, o Ministério da Saúde vem capacitando profissionais que atuam em unidades de internação neonatal para implementar o Método Mãe Canguru e, entre outras práticas, recomenda que o recém-nascido pré-termo (RNPT) e com baixo peso seja submetido ao banho de imersão envolto em cueiro ou lençol, sugerindo mudança da prática hegemônica do banho com esponja ou banho de imersão convencional. No entanto, a técnica de banho de imersão recomendada carece de evidências científicas quanto a sua segurança em relação às repercussões na estabilidade da temperatura corporal (T), frequência cardíaca (FC), cortisol salivar (CS) e comportamental em RNPT. Hipótese: os RNPT submetidos ao banho de imersão envoltos em lençol (BIE) apresentam respostas fisiológicas e comportamentais similares aos submetidos à técnica de banho de imersão convencional (BIC), nos primeiros 20 minutos pós-banho. Objetivo: avaliar os parâmetros fisiológicos e comportamentais de RNPT submetidos ao banho de imersão envolto em lençol (BIE) e banho de imersão convencional (BIC). Método: ensaio clínico randomizado cruzado com amostra composta por 43 RNPT, internados na Unidade Neonatal de um hospital escola da cidade de São Paulo. Os RNPT foram alocados no grupo A ou B, seguindo uma lista de randomização gerada pelo software R que foi envelopada e mantida com os auxiliares da pesquisa responsáveis pelos banhos dos RNPT. A randomização definiu a técnica do primeiro banho que o RN seria submetido. Somente após análise dos dados foi aberto o envelope da randomização sendo identificado que no grupo A, o primeiro banho foi o BIC (intervenção controle) e no grupo B, o BIE (intervenção experimental). A técnica do BIE seguiu a técnica recomendada no Manual Atenção Humanizada ao Recém-Nascido de Baixo Peso: Método Mãe-Canguru, publicada pelo Ministério da Saúde. Foram utilizadas filmadoras para obter os valores da FC e da SatO2 registradas pelo monitor cardíaco instalado nos RNPT e para captar imagens das reações comportamentais antes e após os banhos. As temperaturas axilares foram aferidas com termômetro digital e amostras de saliva foram coletadas com esponja oftálmica (Merocel)®, refrigeradas e processada pelo teste Elisa. As filmagens do estado comportamental 10 minutos pré e 10 e 20 minutos pós-banho foram analisadas utilizando o instrumento de avaliação do sono-vigília validado por Brandon e Holditch-Davis. Os dados foram registrados em formulário próprio e armazenados em planilha Microsoft Excel. A análise estatística foi realizada com os programas Minitab, versão 16.1 e SPSS, versão 20. Além da análise descritiva das variáveis numéricas para obtenção de medidas de tendência central e dispersão e frequências absoluta e relativa, foram utilizados os testes Qui-quadrado e Exato de Fisher; o teste T pareado, ANOVA e Modelos Generalizados Lineares na análise dos dados. Resultados: As temperaturas axilares médias dos RNPT pré-BIC e pré-BIE foram, respectivamente, 36,695°C e 36,667°C, p = 0,329. No 10° minuto pós-BIC e BIE, as médias das temperaturas axilares foram, respectivamente, 36,533°C e 36,535°C, p = 0,944. No 20° minuto pós-BIC e BIE, as médias da temperatura axilar foram 36,626°C e 36,628°C, p = 0,663. Houve queda na temperatura axilar no 10° minuto pós-banho, independente do tipo de banho realizado (p <0,001). A hipótese de que o BIE é equivalente ao BIC em relação à variação da temperatura axilar foi confirmada. Houve redução significante nos valores das FC no 10° e 20° minutos pós-BIC e BIE comparados aos valores pré-banho, independente do tipo de banho (p<0,001). Ocorreu aumento gradativo dos valores médios de SatO2 no 10º e 20° minutos após os banhos sem diferenças significantes nos valores pré-banhos, p = 0,969. A concentração do cortisol salivar aumentou após o banho em ambos os grupos, p = 0,001, entretanto não ocorreram diferenças entre os grupos, ou seja, os níveis de cortisol salivar aumentaram após o banho, independente do tipo de banho, p = 0,797. O percentual de tempo em estado sono ativo aumentou após o banho, independente do tipo de banho, p<0,001, ou seja, houve mudança significativa no comportamento do recém-nascido, sem diferenças entre os banhos, p = 0,425. Conclusão: Tanto os RNPT que receberam BIC quanto os que receberam BIE apresentaram queda na temperatura corporal no 10° minuto pós-banho com aumento da temperatura corporal no 20° minuto pós-banho. Comparado aos achados da literatura, a redução da temperatura corporal foi menor que no banho com esponja. O BIE é equivalente ao BIC, portanto ambos são indicados aos RNPT. Convêm salientar o aumento dos custos do BIE em razão do consumo de lençol e da capacitação necessária da equipe de enfermagem nesta técnica de banho, sem prolongar o tempo médio dispendido no banho, visto que poderá reduzir a temperatura da água do banho e consequentemente causar queda na temperatura corporal do RN. / Introduction: the literature review shows that newborns underwent to immersion baths produce less post-bath thermal variation compared to those underwent to the sponge bath. In Brazil, the Ministry of Health has been qualifying working professionals in neonatal hospitalization units to implement the Kangaroo Mother Care and, among other practices, recommends that the preterm newborn infants (PNI) and underweight are underwent to the swaddle immersion bath wrapped in clothes or sheet, suggesting change of the hegemonic practice of sponge bath or conventional immersion bath. However, the immersion bath technique recommended requires more scientific evidence about its safety in relation to impact on the stability of body temperature (T), heart rate (HR), salivary cortisol (SC) and behavioral in PNI. Hypothesis: PNI underwent to swaddle immersion bath wrapped in sheet (SIB) have physiological and behavioral responses similar to those underwent to the conventional immersion bath technique (CIB), in the first 20 minutes post-bath. Objective: To evaluate the physiological and behavioral parameters of preterm newborn infants underwent to swaddle immersion bath in sheet (SIB) and conventional immersion bath (CIB). Method: Randomized crossover clinical trial with a sample of 43 preterm newborn infants in the neonatal unit of a university hospital in the city of Sao Paulo. PNI were allocated in the A or B groups, following a randomization list which was generated by the software R, which was enveloped and maintained with research assistants who were responsible for the baths of PNI. Randomization list defined the first bath technique that the newborn was underwent. The randomization envelope was only opened after data analysis being identified that in group A, the first bath was the CIB (control intervention) and group B, the SIB (experimental intervention). The SIB technique followed the technique recommended in the Humane Care Infant, Low Birth Weight: Kangaroo Mother Care Manual, published by the Ministry of Health of Brazil. Video cameras were used for the HR and SpO2 values recorded at heart monitor installed in the PNI and to capture images of behavioral responses before and after baths. Axillary temperatures were measured with a digital thermometer and saliva samples were collected with ophthalmic sponge (Merocel) ®, refrigerated and processed by the Elisa test. The video recorded of behavioral states of 10 minutes pre-baths and 10 and 20 minutes post-baths were analyzed using the sleep-wake assessment tool validated by Brandon and Holditch-Davis. Data were recorded and stored in the proper form in Microsoft Excel spreadsheet. Statistical analysis was performed using Minitab software, version 16.1 and SPSS, version 20. In addition to the descriptive analysis of numerical variables to obtain measures of central tendency, dispersion, absolute and relative frequencies, Chi-square tests were used and Fisher Exact, the paired T-test, ANOVA and Generalized Linear Models in the data analysis. Results: The mean axillary temperatures of PNI pre-CIB and SIB were respectively 36.695 °C and 36.667 °C, p = 0.329. At 10 minutes post-CIB and SIB, the mean axillary temperatures were, respectively, 36.533 ° C to 36.535 ° C, p = 0.944. At 20 minutes post- CIB and SIB, the average of axillary temperature were 36.626°C and 36.628 ° C, p = 0.663. There was a decrease in the axillary temperature at 10 minutes post-bath, regardless of the type performed bath (p < 0.001). The hypothesis that the SIB is equivalent to the CIB related to the variation in the axillary temperature was confirmed. There was a significant reduction in the HR values at the 10th and 20 th minutes after CIB and SIB compared to pre-bath values, regardless type of the bath (p< 0.001). There was a progressive rise on SpO2 mean values on the 10th and 20 th minutes after baths with no significant differences in pre-baths values, p = 0.969. The salivary cortisol concentrations increased after bathing in both groups, p = 0.001, however there were no differences between the groups, in other words, salivary cortisol levels increased after bathing, regardless of the type of bath, p = 0.797. The percentage of time in active sleep state increased after bathing, regardless of bath type, p <0.001, that is meaning there was significant change in newborn behavior, without differences between baths, p = 0.425. Conclusion: Both the PNI who received CIB, as those receiving SIB, had a decrease in body temperature in the 10th minute post bath followed by an increased body temperature at 20 minutes post-bath. Compared to previous studies, reduction of body temperature was lower than in the sponge bath. The SIB is equivalent to the CIB therefore both are recommended for preterm infants. It should be emphasized the increased in the SIB costs due to the bed sheet consumption and the required nursing staff training in this bath technique, without extending the average time spent in the bath, as it may reduce the temperature of the bath water, consequently causing body temperature drop on the newborn
358

O efeito da exposição ao calor sobre o desempenho cognitivo de idosos: um estudo controlado / The effect of heat exposure on the cognitive performance of older adults: a controlled trial

Beatriz Maria Trezza 13 February 2015 (has links)
Introdução: Concomitante ao processo de envelhecimento populacional, estão ocorrendo mudanças climáticas, sendo a principal delas o aquecimento global. O envelhecimento leva a mudanças tanto nos mecanismos de termorregulação quanto no desempenho cognitivo. Embora inúmeros estudos tenham avaliado o efeito do calor sobre a cognição de adultos jovens, este é um tema praticamente inexplorado na população geriátrica. Objetivos: Avaliar o efeito da exposição ao calor sobre o desempenho cognitivo de idosos saudáveis e identificar fatores que expliquem as variações na susceptibilidade ao estresse térmico nesta população. Casuística e Métodos: 68 idosos com bom desempenho físico e cognitivo realizaram uma bateria de testes neuropsicológicos em duas condições ambientais: 24oC (controle) e 32oC (calor). Através de cinco testes selecionados da Bateria Neuropsicológica Automatizada de Testes de Cambridge (CANTAB), foram avaliados diferentes aspectos do desempenho cognitivo com foco principal em memória, atenção e velocidade de processamento. Um escore composto global de desempenho cognitivo foi criado usando a medida mais representativa de cada um desses testes. Antes e após cada uma das sessões de testes, foram aferidos o peso corporal, a temperatura axilar, a temperatura auricular, a frequência cardíaca e a pressão arterial. Por meio da análise de variância para medidas repetidas (ANOVA), verificou-se a interação entre o efeito da temperatura na cognição (avaliada pelo escore composto global) e características sociodemográficas (idade, sexo, educação, cor), frequência de exercício físico e umidade relativa registrada durante o protocolo de exposição ao calor. Adicionalmente, foi também desenvolvido um modelo de regressão linear multivariada a fim de identificar variáveis independentes que explicariam a susceptibilidade ao estresse pelo calor. Resultados: A idade média da amostra foi de 73,28 anos. 42,9% dos indivíduos relataram praticar atividade física quatro ou mais vezes por semana. As temperaturas auriculares e axilares aumentaram significativamente após a exposição ao calor, sendo que as diferenças médias encontradas foram de 0,55 e 0,43oC respectivamente. Não foram observadas diferenças significativas entre quaisquer medidas individuais de desempenho ou no escore composto global quando comparamos o desempenho cognitivo sob as duas temperaturas experimentais. Na análise de interação, somente os níveis de umidade registrados durante o protocolo de exposição ao calor e a frequência da prática de exercícios modificaram significativamente o efeito da temperatura sobre o desempenho cognitivo. Os sujeitos expostos a maior umidade relativa do ar no protocolo de calor e os voluntários menos ativos apresentaram piora no desempenho cognitivo na sessão a 32oC. Estes achados foram confirmados num modelo de regressão linear totalmente ajustado. Conclusão: A análise principal mostrou que o desempenho cognitivo de idosos com boa funcionalidade não sofreu efeito deletério da exposição ao calor. No entanto, os voluntários expostos ao calor mais úmido e aqueles que relataram menor frequência de exercício físico apresentaram pior desempenho na sessão de calor que na de controle. As variáveis sócio-demográficas como idade, gênero, escolaridade e cor não tiveram influência na susceptibilidade ao estresse térmico / Introduction: Concomitantly to the process of population aging, major climate changes are taking place, among which global warming is regarded as the most important. Aging leads to changes in temperature control mechanisms and is associated with a subtle and progressive decline in cognitive functions. Although a great deal of studies have evaluated the effect of heat on the cognitive performance of young adults, to the best of our knowledge, no studies have directly investigated the effects of warm environments on the cognitive functioning of older adults. Objectives: To evaluate the effect of heat exposure on the cognitive performance of healthy older adults and to identify factors that would explain variations in susceptibility to heat stress in that population. Methods: 68 older adults with both good physical and cognitive performance were requested to take a series of neuropsychological tests under two environmental conditions: at 24oC and 32oC. Five tests from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were administered to measure different aspects of cognitive functioning while focusing on memory, attention and processing speed. A global composite score of cognitive performance was created, using the most representative measures of each one of those five tests. Before and after each session, measures of auxiliary temperature, tympanic temperature, blood pressure, heart rate, and body weight were obtained. Interaction analysis was carried out using repeated measures analysis of variance (ANOVA) in order to check whether the effect of temperature on cognition, assessed by the global composite score, was modified by sociodemographic characteristics (age, gender, education, race), frequency of physical activity or relative humidity registered during the heat protocol. In addition, a multiple linear regression model has been fitted to identify independent variables that would explain susceptibility to heat stress Results: The mean age of the sample was 73.28 years and 42.9% of the participants reported performing physical activities at least four times a week. Tympanic and auxiliary temperatures increased significantly after the heat exposure with increases of 0.55 and 0.43oC, respectively. No significant differences were observed among any individual measures or the composite score, when comparing the cognitive performance under the two experimental temperatures. In the interaction analysis, only the humidity levels during the heat exposure protocol and the frequency of physical activities significantly modified the effects of temperature on cognitive performance. Participants exposed to higher relative air humidity during the heat protocol and the less active ones have presented worse cognitive performance in the session at 32oC. Those findings have been confirmed by a totally adjusted linear regression model. Conclusion: The main analysis has shown that the cognitive performance of older healthy adults has not had deleterious effect of heat exposure. Nevertheless, the volunteers exposed to more humid heat and those who have reported lower frequency of physical exercises have shown worse performance during the heat session than in the control session. The sociodemographic variables such as age, gender, education and race have not had any influence over susceptibility to heat stress
359

Sistemski prediktivni faktori ishoda lečenja kod povređenih sa teškim traumatskim moždanim oštećenjem / Systemic Predictive Factors for Treatment Outcome in Patients with Severe Traumatic Brain Injury

Lazukić Aleksandra 07 September 2018 (has links)
<p><!--[if gte mso 9]><xml> <o:DocumentProperties> <o:Author>Windows User</o:Author> <o:Version>12.00</o:Version> </o:DocumentProperties></xml><![endif]--><!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:TrackMoves/> <w:TrackFormatting/> <w:PunctuationKerning/> <w:ValidateAgainstSchemas/> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:DoNotPromoteQF/> <w:LidThemeOther>EN-US</w:LidThemeOther> <w:LidThemeAsian>X-NONE</w:LidThemeAsian> <w:LidThemeComplexScript>X-NONE</w:LidThemeComplexScript> <w:Compatibility> <w:BreakWrappedTables/> <w:SnapToGridInCell/> <w:WrapTextWithPunct/> <w:UseAsianBreakRules/> <w:DontGrowAutofit/> <w:SplitPgBreakAndParaMark/> <w:DontVertAlignCellWithSp/> <w:DontBreakConstrainedForcedTables/> <w:DontVertAlignInTxbx/> <w:Word11KerningPairs/> <w:CachedColBalance/> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> <m:mathPr> <m:mathFont m:val="Cambria Math"/> <m:brkBin m:val="before"/> <m:brkBinSub m:val="&#45;-"/> <m:smallFrac m:val="off"/> <m:dispDef/> <m:lMargin m:val="0"/> <m:rMargin m:val="0"/> <m:defJc m:val="centerGroup"/> <m:wrapIndent m:val="1440"/> <m:intLim m:val="subSup"/> <m:naryLim m:val="undOvr"/> </m:mathPr></w:WordDocument></xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 2"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 3"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 4"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 5"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 6"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 7"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 8"/> <w:LsdException Locked="false" Priority="9" QFormat="true" Name="heading 9"/> <w:LsdException Locked="false" Priority="39" Name="toc 1"/> <w:LsdException Locked="false" Priority="39" Name="toc 2"/> <w:LsdException Locked="false" Priority="39" Name="toc 3"/> <w:LsdException Locked="false" Priority="39" Name="toc 4"/> <w:LsdException Locked="false" Priority="39" Name="toc 5"/> <w:LsdException Locked="false" Priority="39" Name="toc 6"/> <w:LsdException Locked="false" Priority="39" Name="toc 7"/> <w:LsdException Locked="false" Priority="39" Name="toc 8"/> <w:LsdException Locked="false" Priority="39" Name="toc 9"/> <w:LsdException Locked="false" Priority="35" QFormat="true" Name="caption"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="1" Name="Default Paragraph Font"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Placeholder Text"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" UnhideWhenUsed="false" Name="Revision"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> <w:LsdException Locked="false" Priority="37" Name="Bibliography"/> <w:LsdException Locked="false" Priority="39" QFormat="true" Name="TOC Heading"/> </w:LatentStyles></xml><![endif]--><!--[if gte mso 10]><style> /* Style Definitions */ table.MsoNormalTable{mso-style-name:"Table Normal";mso-tstyle-rowband-size:0;mso-tstyle-colband-size:0;mso-style-noshow:yes;mso-style-priority:99;mso-style-qformat:yes;mso-style-parent:"";mso-padding-alt:0in 5.4pt 0in 5.4pt;mso-para-margin-top:0in;mso-para-margin-right:0in;mso-para-margin-bottom:10.0pt;mso-para-margin-left:0in;line-height:115%;mso-pagination:widow-orphan;font-size:11.0pt;font-family:"Calibri","sans-serif";mso-ascii-font-family:Calibri;mso-ascii-theme-font:minor-latin;mso-hansi-font-family:Calibri;mso-hansi-theme-font:minor-latin;mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;}</style><![endif]-->Uvod: Traumatsko moždano o&scaron;tećenje (TMO) predstavlja globalni zdravstveni problem koji pogađa oko 10 miliona ljudi godi&scaron;nje &scaron;irom sveta. Te&scaron;ka traumatska moždana o&scaron;tećenja (TTMO) čine 10% svih TMO i imaju visoku stopu mortaliteta i neizvestan oporavak. Ranije prepoznavanje sistemskih faktora koji utiču na ishod lečenja može da ima značajan uticaj na pravovremeno započinjanje terapijskih mera i smanjivanje morbiditeta i mortaliteta. Cilj istraživanja: Identifikovati sistemske faktore koji imaju značajan uticaj na ishod lečenja povređenih sa TTMO u Jedinici intenzivnog lečenja (JIL) tokom prvog dana hospitalizacije. Metodologija: Ispitivanje je sprovedeno kao retrospektivno-prospektivna studija koja je obuhvatila 115 povređenih ispitanika sa TTMO koji su hospitalizovani u JIL Urgentnog centra Kliničkog centra Vojvodine (UC KCV) u periodu od 1.01.2014.-1.10.2017. Iz medicinske dokumentacije, za svakog ispitanika uključenog u istraživanje su uzeti u razmatranje i analizu sledeći parametri u toku prvih 24 časa od momenta prijema u JIL: demografske i op&scaron;te karakteristike ispitanika od značaja za istraživanje i sistemski prediktivni faktori (sistolni i srednji arterijski pritisak- SAP/MAP, glikemija-&Scaron;UK, telesna temperatura-TT, pH, parcijalni pritisak kiseonika-PaO2 i parcijalni pritisak ugljem dioksida- PaCO2) registrovani u pet vremenskih tačaka (0h, 6h, 12h,18h, 24h). Svi gore navedeni podaci su posmatrani i analizirani kao prediktorski faktori tj. nezavisne varijable u odnosu na zavisnu varijablu &bdquo;ishod lečenja&ldquo; definisanu kao Glazgovska skala ishoda (Glasgow outcome scale-GOS) nakon otpusta povređenih iz JIL na Kliniku za neurohirurgiju KCV i GOS nakon otpusta iz Klinike za neurohirurgiju KCV i &bdquo;tok lečenja&ldquo; definisan kroz dužinu boravka povređenih u JIL UC KCV, dužinu boravka na Klinici za neurohirurgiju KCV, odnosno ukupno trajanje hospitalizacije u KCV, kao i otpust kući ili u odgovarajući rehabilitacioni centar. Statistička analiza je izvr&scaron;ena pomoću statističkog paketa IBM SPSS 23. Podaci su predstavljeni tabelarno i grafički, a statistička značajnost određivana je na nivou p &lt; 0,05. Prikupljeni podaci su obrađeni adekvatnim statističkim metodima. Rezultati: Sistemski faktori koji su se izdvojili kao prediktori smrtnog ishoda (GOS 1) kod povređenih sa TTMO tokom prvog dana boravka u JIL su upotreba vazoaktivne potpore i glikemija. Upotreba vazoaktivne potpore povećava verovatnoću za smrtni ishod 4,7 puta (OR=0,214; 95%CI: 0,096-0,479; p&lt;0,05). i vrednosti glikemije &gt; 10 mmol/l povećavaju verovatnoću za smrtni ishod u nultom satu (OR= 0,240, 95%CI: 0,087-0,662; p=0,05) i u 24 satu (OR=0,206, 95%CI: 0,037 &ndash; 0,929; p=0,05). Sa svakim porastom telesne temperature za jednu jedinicu u posmatranom intervalu raste verovatnoća za pozitivan ishod (OR =2,118 , 95%CI: 1,097 &ndash; 4,091; p&lt;0,05) i vrednosti glikemije u intervalu od 4-8 mmol/l povećavaju verovatnoću za pozitivan ishod 2,5 puta. Sistemski faktori koji su se izdvojili u smislu predikcije ishoda lečenja ispitanika nakon otpusta iz JIL su vrednosti glikemije i telesna temperatura. Vrednost glikemije na prijemu u intervalu od 6,9 do 7,4 mmol/l povećavaju verovatnoću boljeg oporavka (GOS 4-5 vs. GOS 2-3). Niže vrednosti glikemiije u narednim vremenskim tačkama (6h, 12h, 18h) takođe povećavaju verovatnoću za bolji oporavak. Ukoliko je telesna temperatura u 6-om i 12-om satu, vi&scaron;a od 36,5 &deg;C veća je verovatnoća za bolji neurolo&scaron;ki oporavak, prilikom otpusta iz JIL, odnosno Klinike za neurohirurgiju KCV. Ispitanici koji su imali vi&scaron;e vrednosti telesne temperature su imali duže trajanje hospitalizacije (OR=4,096; 95%CI; 0,709-7,483;p&lt;0,05). Na dužinu boravka u JIL, kao i na otpust kući ili odgovarajući rehabilitacioni centar nije imao uticaj nijedan posmatrani sistemski faktor. Zaključak: Sistemski prediktivni faktori toka i ishoda lečenja povređenih sa TTMO su upotreba vazoaktivne potpore, glikemija i telesna temperatura.</p> / <p>Introduction: Traumatic brain injury (TBI) is a global health problem that affects about 10 million people worldwide annually. Severe traumatic brain injury (STBI) account for 10% of all TBI and has high morbidity and unreliable recovery. Early recognition of systemic factors that affect the treatment outcome can have a significant impact on the timely initiation of therapeutic measures and the reduction of morbidity and mortality. The objective of the research: to identify systemic factors that have a significant impact on the treatment outcome of the STBI patients in the Intensive Care Unit (ICU) during the first day of hospitalization. Methodology: The study was conducted as a retrospective-prospective study that included 115 injured patients with STBI who were hospitalized in the ICU, Emergency Center (EC) of the Clinical Center of Vojvodina (CCV) in the period from 01.01.2014 to 1.10.2017. From the medical documentation, for each participant involved in the research, the following parameters within the first 24 hours after the admission were considered and analyzed: demographic and general characteristics of the participants of importance for research and systemic predictive factors (systolic and mean arterial pressure-SAP / MAP, glycemia, body temperature -TT, pH, partial pressure of oxygen-PaO2 and partial pressure of carbon dioxide-PaCO2) registered at five time points (0h, 6h, 12h,18h, 24h). All of the above data were observed and analyzed as predictors, ie, independent variables in relation to the dependent variable &quot;treatment outcome&quot; defined as the Glasgow Outcome Scale (GOS) after the transfer from the ICU to the Clinic of neurosurgery of the CCV and GOS after discharge from a Clinic of neurosurgery and &quot;treatment course&quot; defined by length of stay in ICU, or the total duration of hospitalization in CCV, as well as the release to the home or the appropriate rehabilitation center. Statistical analysis was performed using the IBM SPSS 23 statistical package. The data are presented in tables and graphs, and the statistical significance was determined at p &lt;0.05. The collected data were processed with adequate statistical methods. Results: Systemic factors that had predictive value for the lethal outcome (GOS 1) in STBI during the first day of ICU stay were the use of vasopressors and glycemia. The use of vasopressors increases the likelihood of fatal outcome 4.7 times (OR= 0,214; 95%CI: 0,096-0,479; p&lt;0,05) and glycemic values &gt; 10 mmol/l increase the likelihood of fatal outcome on admission (OR=0,240, 95%CI: 0,087-0,662; p=0,05) and after 24 hours (OR=0,206, 95%CI: 0,037 &ndash; 0,929; p=0,05). With each increase in body temperature for one unit in the observed interval, the probability of a positive outcome increases (OR=2,118, 95%CI: 1,097 &ndash; 4,091;p&lt;0,05) and glycemic values in the range 4-8 mmol/l increase the probability of a positive outcome 2.5 times. Systemic factors that predict the treatment outcome of the patients after their discharge from ICU are glycemia and body temperature. The blood sugar on admission in the ICU in the range from 6.9 to 7.4 mmol/l increases the opportunity of a better recovery (GOS 4-5 vs. GOS 2-3). Lower glycemic values at the next time points (6h, 12h, 18h) also increase the opportunity of a better recovery. If the body temperature in the 6th and 12th-hour postadmission is higher than 36.5&deg; C, the greater opportunity for better neurological improvement when the patient is discharged from ICU, or from the Clinic of neurosurgery. Participants who had higher values of body temperature had a longer duration of hospitalization (OR 4.096; 95% CI; 0.709-7.483;p&lt;0,05). The length of the stay in ICU, as well as the release to the home or the appropriate rehabilitation center, was not affected by any observed systemic factor. Conclusion: Systemic predictive flow factors and outcome of treatment factors with STBI use of vasopressors, glycemia and body temperature.</p>
360

Serum Amyloid A Protein (SAA) in Healthy and Infected Individuals

Lannergård, Anders January 2005 (has links)
<p>Serum amyloid A protein (SAA) is an acute phase protein that has recently gained increasing interest as a potential marker for disease and treatment monitoring. We investigated SAA and CRP levels in (a) patients with various common infectious diseases (n=98), (b) patients with pyelonephritis (n=37) versus patients with cystitis (n=32), (c) healthy individuals of varying ages (n=231), (d) very immature newborn infants with or without nosocomial infections (NIs) (n=72) and (e) patients with bacterial infections treated with cefuroxime (n=81). </p><p>SAA significantly correlated with CRP in viral as well as in bacterial infections (for the total group: r<sup>2</sup>=0.757, p<0.0001) and showed a systemic inflammatory response in 90% of the patients with cystitis as compared with 23% for CRP. Equally high efficiencies (0.96 and 0.94 for SAA and CRP, respectively) were observed in discriminating between pyelonephritis and cystitis. SAA and high sensitive (hs) CRP were lower in umbilical cords (p<0.0001) and higher in elderly adults (p<0.0001-0.03) than in the other age groups; higher in immature newborn infants than in term infants; and higher in the NI group than in the non-NI group. Interindividual variabilities of the time course of the biomarkers SAA and CRP were considerable. Because of the smoothed distribution of SAA and CRP (i.e. elevations were both essentially unchanged during the first 3 days of cefuroxime treatment), these markers were not useful when deciding parenteral-oral switch of therapy, which occurred within this time period in most cases.</p><p>SAA is a sensitive systemic marker in cystitis. SAA and hsCRP in umbilical cord blood are close to the detection limit and increase with age. They increase in relation to NI in very immature newborn infants and might therefore be used in diagnosis and monitoring. Finally, SAA and CRP in adults with bacterial infections could not predict an early parenteral-oral switch of antimicrobial therapy.</p>

Page generated in 0.1156 seconds