• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 274
  • 138
  • 87
  • 39
  • 17
  • 16
  • 12
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 660
  • 599
  • 284
  • 213
  • 163
  • 125
  • 101
  • 96
  • 88
  • 85
  • 85
  • 77
  • 74
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Condensação Bose-Einstein em sistemas de átomos de 4He / Bose-Einstein condensation in systems of 4He atoms

Pedroso, Vitor Zamprônio, 1990- 12 September 2014 (has links)
Orientador: Silvio Antonio Sachetto Vitiello / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-26T08:38:32Z (GMT). No. of bitstreams: 1 Pedroso_VitorZampronio_M.pdf: 1351334 bytes, checksum: 9c35568e525b0eca7e7eb168eb22baa4 (MD5) Previous issue date: 2014 / Resumo: Neste trabalho estudamos a condensação Bose-Einstein em sistemas formados por átomos de 4He. Para tanto, introduzimos uma nova função de onda sombra que permite o cálculo da fração de condensado do sistema a T = 0 K diretamente das configurações geradas no cálculo da energia variacional. A função proposta é construída através da integração sobre um conjunto de variáveis auxiliares que interagem com todos os átomos do sistema. Esta função é translacionalmente invariante mesmo na fase sólida e satisfaz a estatística de Bose-Einstein. Utilizando essa nova função de onda concluímos que aproximadamente 4% dos átomos estão no estado de menor energia e o sistema apresenta ordem de longo alcance fora da diagonal. Resultados de energia variacional e função de distribuição radial de pares também são apresentados. As integrais de configuração espaciais foram realizadas utilizando o método de Monte Carlo / Abstract: We study the Bose-Einstein condensation in systems formed by 4He atoms. To this end, we introduce a new shadow wave function that enables the calculation of the condensate fraction of the system at T = 0 K directly from the configurations generated in the calculation of the variational energy. The proposed function is constructed by an integration over a set of auxiliary variables that interact with all the atoms of the system. This function is translationally invariant even in the solid phase and satisfies the Bose- Einstein statistics. Using this new wave function we conclude that approximately 4% of the atoms are in the lowest energy state and the system displays off-diagonal long ranged order. Results from variational energy and pair distribution function are also presented. The configuration integrations were performed using the Monte Carlo method / Mestrado / Física / Mestre em Física
262

Interférométrie atomique avec un condensat de Bose-Eintein : effet des interactions internes / Atom interferometry with a Bose-Einstein condensate : effect of internal interactions

Jannin, Raphaël 08 October 2015 (has links)
Le travail réalisé dans le cadre de cette thèse s'articule en deux volets. Le premier porte sur l'étude de l'effet des interactions entre atomes au sein d'un interféromètre atomique, dont la source est un condensat de Bose-Eintein. Nous présentons un modèle analytiquepermettant d'obtenir des expressions simples pour le déphasage induit par celles-ci. Ce modèle est comparé à des simulations numériques résolvant les équations de Gross-Pitaevskii couplées, et présente un excellent accord. Le second concerne la conception et la construction d'un nouveau dispositif expérimental visant à obtenir un condensat de Bose-Einteindans le but de réaliser des mesures de haute précision par interférométrie atomique. / The work performed during this thesis comprises two orientations. The first one is the study of the effect of interactions between atoms in an atom interferometer which source of atoms is a Bose-Einstein condensate. We present an analytical model allowing to obtain simple expressions for the phase shift induced by them. This model is compared to numerical simulations solving the coupled Gross-Pitaevskii equations and presents a good agreement. The second one is the design and construction of a new experimental set-up for the production of a Bose-Einstein condensate to perform high precision measurements with the use of atom interferometry.
263

La condensation de Bose-Einstein des excitons indirects dans des nano-structures semi-conductrices / Bose-Einstein condensation of indirect excitons in semiconductor nanostructures

Andreev, Sergueï 16 May 2014 (has links)
Cette thèse est dédiée à l'interprétation théorique des expériences sur les gaz froids des excitons indirects dans des nanostructures semi-conductrices. La théorie proposée explique la formation de l'état des excitons macroscopiquement ordonnés ("MOES") et des taches lumineuses localisées dans les images de photoluminescence des excitons. Dans la première partie je montrerai que la séparation macroscopique de charge induite par laser mène à l'apparition d'un champ électrique situé dans le plan de la structure. A cause de ce champ les états quantiques 1s et 2p de l'exciton se croisent et son moment dipolaire s'incline. Par conséquent, l'exciton va se localiser à la frontière entre les deux domaines d'une charge différente, où le champ électrique est le plus fort. Ensuite, j'étudierai un gaz d'excitons mis dans de tels pièges bidimensionnels en négligeant sa structure de spin. J'analyserai la possibilité de la condensation de Bose-Einstein dans le système considéré en utilisant les méthodes puissantes de la théorie à N-corps développées pour des gaz atomiques. En me basant sur le Hamiltonien pour un segment du cercle bidimensionnel ("2D cigar"), je montrerai que la dispersion cohérente des excitons mène à l'autolocalisation accompagnée par une modulation périodique de la densité. L'idée principale de la théorie est, ensuite, de modéliser cet état périodique par une chaîne de condensats piégés (Le Modèle de Chaîne). Un tel modèle permettra de dire que le système peut exhiber la transition de phase de second ordre pour certaines valeurs du paramètre qui caractérise les interactions. La valeur critique de ce paramètre peut être trouvée en analysant le comportement des fluctuations de phase à la température nulle. Le nombre de condensats dans le régime où les interactions sont fortes est déterminé par la balance entre les contributions de l'énergie cinétique est l'entropie dans l'énergie libre du système. Le Modèle de Chaîne permettra aussi de révéler l'invariance d''échelle et l'universalité du phénomène. J'obtiendrai l'expression pour la température unique de la transition de phase dans le système excitonique et discuterai l'effet de désordre. Je finirai par une discussion du rôle des interactions à N-corps et des effets de spin dans la condensation de Bose-Einstein des excitons. Je proposerai un modèle de gaz idéal pour décrire les textures de polarisation linéaire observées autour de chaque tache lumineuse et chaque fragment de MOES. Selon ce modèle, le domaine central incohérent de tous ces objets est composé d'une glace excitonique quantique. / The present Thesis is devoted to theoretical interpretation of intriguing observations made recently in cold gases of indirect excitons in semiconductor quantum wells. The proposed theory provides simple intuitive explanation for the basic phenomenology of the macroscopically ordered exciton state (MOES) and the localized bright spots (LBS) in the exciton photoluminescense pattern. The Thesis is organized as follows.First, we provide an important insight into the formation process of the external ring and LBS. We show that the macroscopic charge separation induced by the photoexcitation results in appearance of an in-plane electric field in the vicinity of the boundary. The field hybridizes 1s and 2p quantum states of an indirect exciton, effectively tilting its dipole moment. Thus polarized exciton seeks for the regions with higher in-plane electric field and, hence, becomes localized at the ring-shaped boundary.As a next step, we consider a gas of spinless dipolar bosons put in such two-dimensional (2D) traps. We analyze the possibility for occurence of Bose-Einstein condensation (BEC) in the system under consideration by means of the powerful many-body theoretical methods developed for ultracold atomic gases. Starting from the Hamiltonian for a segment of the ring (2D cigar) we show, howthe coherent scattering of excitons can result in autolocalization accompanied by a buildup of the diagonal long-range order. The crucial point of the theory then consists in replacement of the periodic coherent state by a chain of harmonically trapped condensates (Chain Model). We argue, that for sufficiently strong contact interaction between the excitons the system can exhibit the true second order phase transistion at finite temperature. The critical value of the interaction parameter can be found by analyzing the behaviour of the quantum phase fluctuations at zero temperature. The number of condensates at the ring in the strongly interacting regime is defined by the balance between the kinetic energy and the entropy terms in the free energy of the system.Futhermore, the use of the Chain Model of the MOES allows one to reveal scale invariance and universality of the pnenomenon. We obtain the expression for the unique critical temperature of the second order phase transition in the exciton system and discuss the effect of disorder.Finally, we comment on the role of many-body interactions and spin degrees of freedom in excitonic BEC. We suggest that each bead (or, equivalently, LBS) has the internal structure: it consists of a solid core (Quantum Exciton Iceberg) surrounded by a coherent exciton fluid. We develop an ideal gas model for the coherent four-component exciton fluid which allows one to explain the measured linear polarization patterns.
264

Dynamique des gaz quantiques ultrafroids dans des milieux aléatoires corrélés / Dynamics of ultracold quantum gases in correlated disordered potentials

Alamir, Ardavan 17 December 2013 (has links)
La problématique de cette thèse est l'étude de la localisation d'un condensat de Bose-Einstein confiné harmoniquement et quasi-1D à travers lequel différents potentiels désordonnés sont transportés. Cette problématique qui se veut pleinement pertinente pour les expérimentalistes est à priori difficile à traiter. Cela est dû au caractère non-linéaire, inhomogène et hors-équilibre du système. De ce fait, la plage des vitesses du désordre est limitée d'une part par la vitesse critique de superfluidité et d'autre part par la configuration inhomogène du système. Des notions habituelles de localisation telles que transmission ou exposant de Lyapunov ne sont plus applicables. Donc, il a fallu apporter une nouvelle mesure de localisation pour notre problématique: le ratio du déplacement du centre de masse du condensat au déplacement du désordre qu'on a identifié à la fraction d'atomes localisés. De plus, nous avons des corrélations dans le désordre qui introduisent l'effet d'un comportement non-monotone de l'efficacité de la localisation du potentiel désordonné en fonction de l'énergie. Ainsi, les corrélations peuvent être un moyen pour mettre en évidence la nature quantique de la localisation. Chose que nous avont fait dans un premier temps avec du désordre de type Modèle d'Edwards et dans une seconde partie avec du désordre de type speckle, qu'on nomme le Random Dimer speckle. Pour ce deuxième cas, nous avons proposé une procédure pour contrôler les corrélations et introduire un pic de localisation dans une certaine région énergétique. Cette configuration pourrait être vérifié dans les expériences à l'aide d'un modulateur spatial de lumière. / The topic of this thesis is the study of localization of a quasi-one-dimensional and harmonically trapped Bose-Einstein condensate through which various disordered potentials are transported. This problem, which wants itself to be fully relevant to experimenters, is a priori difficult to deal with. This is due to the non-linear, inhomhogeneous and out-of-equilibrium nature of the system. Because of this, the range of speeds of disorder is limited on one side by the critical speed of superfluidity and on the other side by the inhomogeneous setting of the system. Usual notions of localization like transmission and Lyapunov exponent are no longer applicable. Thus, we had to introduce a novel measure of localization for our problem: the ratio of the distance moved by the condensate center of mass to the distance moved by the disordered potential that we identify as the fraction of localized atoms. Furthermore, we have correlations in the disorder that introduce the effect of non-monotonic behavior of the localization efficiency of the disordered potential as a function of energy. A a result, correlations can be used as a tool to point the quantum nature of the localization. We did this in a first part with Edwards Model type disorders and in a second part with speckle type disorders, a new one that we call the Random Dimer speckle. For this second part, we propose a scheme to control the correlations and introduce a localization peak in a certain energy region. This device can be verified in experiments with the help of a Spatial Light Modulator.
265

Towards testing Bell's inequality using atoms correlated in momentum / Vers la réalisation du test d’inégalité de Bell avec les atomes corrèle en impulsion

Imanaliev, Almazbek 30 March 2016 (has links)
Ce manuscrit décrit des expériences d’optique atomique quantique utilisant un détecteur résolu en impulsions d’atomes uniques d’hélium métastable. La première partie du manuscrit décrit la mesure de cohérence de deuxième ordre de la superradiance à partir d’un condensat de Bose-Einstein d’helium métastable. Bien que le condensat soit cohérent et le gain du processus de superradiance élevé, celle-ci montre toujours une statistique thermique comme celle de l’émission spontanée. La suite du manuscrit est dédiée au test de la non localité d’une source atomique corrélée en impulsion. Le schéma du test s’inspire d’une réalisation faite par Rarity et Tapster sur des photons intriqués en impulsion. Les ingrédients principaux d’un tel schéma sont la source atomique générée par instabilité dynamique du condensat dans un réseau optique en mouvement, le contrôle cohérent des atomes par diffraction de Bragg et la mesure de la corrélation des atomes dans les différentes voies de sortie du schéma interférométrique. Un point clé est le contrôle et la manipulation de la phase des ondes atomiques. Le chapitre 3 décrit les tests sur le contrôle cohérent par diffraction de Bragg et leurs résultats encourageants. La nature non classique de notre source atomique est démontrée par l’observation d’une interférence à deux particules en les envoyant sur une séparatrice atomique. Cet analogue atomique de l’expérience de Hong Ou et Mandel est le sujet du dernier chapitre de ce manuscrit. Le résultat de cette expérience ouvre la possibilité du test d’inégalité de Bell avec des particules massives corrélées sur des degrés de liberté externe. / This manuscript describes quantum atom optics experiments using metastable helium atoms with a single-atom momentum resolved detector. In the first part of this manuscript, the second order correlation measurement of the superradiance from a metastable helium Bose-Einstein condensate is presented. The superradiance effect is the collective radiation of dense ensemble where a strong gain of the radiation is expected. We have shown the thermal like statistics of the emission even in the presence of the strong gain. The next part of the manuscript is devoted to the quantum nonlocality test using a pair of atoms entangled in momentum. The protocol we came up with is inspired from the one of Rarity and Tapster with pairs of photons entangled in momentum. The essential ingredients of this protocol are the atomic pair produced by dynamical instability of the Bose-Einstein condensate in a moving optical lattice, the coherent control of the atomic pair by Bragg diffraction and the correlation measurement of the atoms in different output modes of the interferometric protocol. The experimental characterization and preparation of coherent control by Bragg diffraction are presented showing the proof of principle of such a protocol. The last part of the manuscript discusses the realization of the atomic Hong-Ou-Mandel experiment using the same atomic pair with an atomic beamsplitter. The non-classical interference result of this experiment has opened an opportunity for us to realize Bell’s inequality test with massive particles correlated in external degrees of freedom.
266

Thermodynamic characterization of heavy fermion systems and low dimensional quantum magnets near a quantum critical point

Radu, Maria Teodora 27 September 2005 (has links) (PDF)
We report experimentally results on the low temperature properties of two classes of materials with a special emphasizes near the QCP induced by substitution and magnetic 1.field: (1) the HF systems YbRh2(Si0.95Ge0.05)2, Yb1-yLayRh2Si2 (y = 0.05, 0.1),and YbIr2Si2 with tetragonal structures and CeIn3-xSnx (x = 0.55, 0.6, 0.65, 0.7, 0.8) with cubic structure; (2) the quantum spin systems: Cs2CuCl4 and Cs2CoCl4. In all the HF compounds we have observed NFL behavior in zero magnetic field close to the QCP. The La substituted system does not show an antiferromagnetic (AFM) transition down to the lowest accessible temperature (0.03 K) while in YbRh2(Si1-xGex)2 with x = 0 and x = 0.05 AFM transitions occur at TN =0.07 K and 0.02 K, respectively. For Yb0.9La0.1Rh2Si2 we observe below 0.07 K saturation of DeltaC/T indicating clearly a LFL state for this concentration. For YbIr2Si2, DeltaC/T saturates below 0.5 K. In contrast to the Yb based compounds in the vicinity of the QCP, CeIn3-xSnx shows no evidence of a divergence in Delta C/T, with B or with x. Furthermore, we used specic heat measurements in the mK temperature range and at high fields (up to 12 T) to probe the phase diagrams in the low dimensional quantum antiferromagnets Cs2CuCl4 and Cs2CoCl4. In applied magnetic field, we have presented experimental evidence that in Cs2CuCl4 the field dependence of the critical temperature Tc(B) ~ (Bc-B)^1-Phi close to the critical field Bc = 8.51 T is well described with Phi=1.5. This is in very good agreement with the exponent expected in the mean-field approximation and support the notion of a Bose-Einstein condensation of magnons in Cs2CuCl4.
267

Generalized Bose-Einstein Condensation in Driven-dissipative Quantum Gases

Vorberg, Daniel 13 March 2018 (has links) (PDF)
Bose-Einstein condensation is a collective quantum phenomenon where a macroscopic number of bosons occupies the lowest quantum state. For fixed temperature, bosons condense above a critical particle density. This phenomenon is a consequence of the Bose-Einstein distribution which dictates that excited states can host only a finite number of particles so that all remaining particles must form a condensate in the ground state. This reasoning applies to thermal equilibrium. We investigate the fate of Bose condensation in nonisolated systems of noninteracting Bose gases driven far away from equilibrium. An example of such a driven-dissipative scenario is a Floquet system coupled to a heat bath. In these time-periodically driven systems, the particles are distributed among the Floquet states, which are the solutions of the Schrödinger equation that are time periodic up to a phase factor. The absence of the definition of a ground state in Floquet systems raises the question, whether Bose condensation survives far from equilibrium. We show that Bose condensation generalizes to an unambiguous selection of multiple states each acquiring a large occupation proportional to the total particle number. In contrast, the occupation numbers of nonselected states are bounded from above. We observe this phenomenon not only in various Floquet systems, i.a. time-periodically-driven quartic oscillators and tight-binding chains, but also in systems coupled to two baths where the population of one bath is inverted. In many cases, the occupation numbers of the selected states are macroscopic such that a fragmented condensation is formed according to the Penrose-Onsager criterion. We propose to control the heat conductivity through a chain by switching between a single and several selected states. Furthermore, the number of selected states is always odd except for fine-tuning. We provide a criterion, whether a single state (e.g., Bose condensation) or several states are selected. In open systems, which exchange also particles with their environment, the nonequilibrium steady state is determined by the interplay between the particle-number-conserving intermode kinetics and particle-number-changing pumping and loss processes. For a large class of model systems, we find the following generic sequence when increasing the pumping: For small pumping, no state is selected. The first threshold, where the stimulated emission from the gain medium exceeds the loss in a state, is equivalent to the classical lasing threshold. Due to the competition between gain, loss and intermode kinetics, further transitions may occur. At each transition, a single state becomes either selected or deselected. Counterintuitively, at sufficiently strong pumping, the set of selected states is independent of the details of the gain and loss. Instead, it is solely determined by the intermode kinetics like in closed systems. This implies equilibrium condensation when the intermode kinetics is caused by a thermal environment. These findings agree well with observations of exciton-polariton gases in microcavities. In a collaboration with experimentalists, we observe and explain the pump-power-driven mode switching in a bimodal quantum-dot micropillar cavity. / Die Bose-Einstein-Kondensation ist ein Quantenphänomen, bei dem eine makroskopische Zahl von Bosonen den tiefsten Quantenzustand besetzt. Die Teilchen kondensieren, wenn bei konstanter Temperatur die Teilchendichte einen kritischen Wert übersteigt. Da die Besetzungen von angeregten Zuständen nach der Bose-Einstein-Statistik begrenzt sind, bilden alle verbleibenden Teilchen ein Kondensat im Grundzustand. Diese Argumentation ist im thermischen Gleichgewicht gültig. In dieser Arbeit untersuchen wir, ob die Bose-Einstein-Kondensation in nicht wechselwirkenden Gasen fern des Gleichgewichtes überlebt. Diese Frage stellt sich beispielsweise in Floquet-Systemen, welche Energie mit einer thermischen Umgebung austauschen. In diesen zeitperiodisch getriebenen Systemen verteilen sich die Teilchen auf Floquet-Zustände, die bis auf einen Phasenfaktor zeitperiodischen Lösungen der Schrödinger-Gleichung. Die fehlende Definition eines Grundzustandes wirft die Frage nach der Existenz eines Bose-Kondensates auf. Wir finden eine Generalisierung der Bose-Kondensation in Form einer Selektion mehrerer Zustände. Die Besetzung in jedem selektierten Zustand ist proportional zur Gesamtteilchenzahl, während die Besetzung aller übrigen Zustände begrenzt bleibt. Wir beobachten diesen Effekt nicht nur in Floquet-Systemen, z.B. getriebenen quartischen Fallen, sondern auch in Systemen die an zwei Wärmebäder gekoppelt sind, wobei die Besetzung des einen invertiert ist. In vielen Fällen ist die Teilchenzahl in den selektierten Zuständen makroskopisch, sodass nach dem Penrose-Onsager Kriterium ein fragmentiertes Kondensat vorliegt. Die Wärmeleitfähigkeit des Systems kann durch den Wechsel zwischen einem und mehreren selektierten Zuständen kontrolliert werden. Die Anzahl der selektierten Zustände ist stets ungerade, außer im Falle von Feintuning. Wir beschreiben ein Kriterium, welches bestimmt, ob es nur einen selektierten Zustand (z.B. Bose-Kondensation) oder viele selektierte Zustände gibt. In offenen Systemen, die auch Teilchen mit der Umgebung austauschen, ist der stationäre Nichtgleichgewichtszustand durch ein Wechselspiel zwischen der (Teilchenzahl-erhaltenden) Intermodenkinetik und den (Teilchenzahl-ändernden) Pump- und Verlustprozessen bestimmt. Für eine Vielzahl an Modellsystemen zeigen wir folgendes typisches Verhalten mit steigender Pumpleistung: Zunächst ist kein Zustand selektiert. Die erste Schwelle tritt auf, wenn der Gewinn den Verlust in einer Mode ausgleicht und entspricht der klassischen Laserschwelle. Bei stärkerem Pumpen treten weitere Übergänge auf, an denen je ein einzelner Zustand entweder selektiert oder deselektiert wird. Schließlich ist die Selektion überraschenderweise unabhängig von der Charakteristik des Pumpens und der Verlustprozesse. Die Selektion ist vielmehr ausschließlich durch die Intermodenkinetik bestimmt und entspricht damit den oben beschriebenen geschlossenen Systemen. Ist die Kinetik durch ein thermisches Bad hervorgerufen, tritt wie im Gleichgewicht eine Grundzustands-Kondensation auf. Unsere Theorie ist in Übereinstimmung mit experimentellen Beobachtungen von Exziton-Polariton-Gasen in Mikrokavitäten. In einer Kooperation mit experimentellen Gruppen konnten wir den Modenwechsel in einem bimodalen Quantenpunkt-Mikrolaser erklären.
268

Gaussian deterministic and probabilistic transformations of bosonic quantum fields: squeezing and entanglement generation

Gagatsos, Christos 17 December 2014 (has links)
The processing of information based on the generation of common quantum optical states (e.g. coherent states) and the measurement of the quadrature components of the light field (e.g. homodyne detection) is often referred to as continuous-variable quantum information processing. It is a very fertile field of investigation, at a crossroads between quantum optics and information theory, with notable successes such as unconditional continuous-variable quantum teleportation or Gaussian quantum key distribution. In quantum optics, the states of the light field are conveniently characterized using a phase-space representation (e.g. Wigner function), and the common optical components effect simple affine transformations in phase space (e.g. rotations). In quantum information theory, one often needs to determine entropic characteristics of quantum states and operations, since the von Neuman entropy is the quantity at the heart of entanglement measures or channel capacities. Computing entropies of quantum optical states requires instead turning to a state-space representation of the light field, which formally is the Fock space of a bosonic mode.<p>This interplay between phase-space and state-space representations does not represent a particular problem as long as Gaussian states (e.g. coherent, squeezed, or thermal states) and Gaussian operations (e.g. beam splitters or squeezers) are concerned. Indeed, Gaussian states are fully characterized by the first- and second-order moments of mode operators, while Gaussian operations are defined via their actions on these moments. The so-called symplectic formalism can be used to treat all Gaussian transformations on Gaussian states, including mixed states of an arbitrary number of modes, and the entropies of Gaussian states are directly linked to their symplectic eigenvalues.<p>This thesis is concerned with the Gaussian transformations applied onto arbitrary states of light, in which case the symplectic formalism is unapplicable and this phase-to-state space interplay becomes highly non trivial. A first motivation to consider arbitrary (non-Gaussian) states of light results from various Gaussian no-go theorems in continuous-variable quantum information theory. For instance, universal quantum computing, quantum entanglement concentration, or quantum error correction are known to be impossible when restricted to the Gaussian realm. A second motivation comes from the fact that several fundamental quantities, such as the entanglement of formation of a Gaussian state or the communication capacity of a Gaussian channel, rely on an optimization over all states, including non-Gaussian states even though the considered state or channel is Gaussian. This thesis is therefore devoted to developing new tools in order to compute state-space properties (e.g. entropies) of transformations defined in phase-space or conversely to computing phase-space properties (e.g. mean-field amplitudes) of transformations defined in state space. Remarkably, even some basic questions such as the entanglement generation of optical squeezers or beam splitters were unsolved, which gave us a nice work-bench to investigate this interplay. <p>In the first part of this thesis (Chapter 3), we considered a recently discovered Gaussian probabilistic transformation called the noiseless optical amplifier. More specifically, this is a process enabling the amplification of a quantum state without introducing noise. As it has long been known, when amplifing a quantum signal, the arising of noise is inevitable due to the unitary evolution that governs quantum mechanics. It was recently realized, however, that one can drop the unitarity of the amplification procedure and trade it for a noiseless, albeit probabilistic (heralded) transformation. The fact that the transformation is probabilistic is mathematically reflected in the fact that it is non trace-preserving. This quantum device has gained much interest during the last years because it can be used to compensate losses in a quantum channel, for entanglement distillation, probabilistic quantum cloning, or quantum error correction. Several experimental demonstrations of this device have already been carried out. Our contribution to this topic has been to derive the action of this device on squeezed states and to prove that it acts quite surprisingly as a universal (phase-insensitive) optical squeezer, conserving the signal-to-noise ratio just as a phase-sensitive optical amplifier but for all quadratures at the same time. This also brought into surface a paradoxical effect, namely that such a device could seemingly lead to instantaneous signaling by circumventing the quantum no-cloning theorem. This paradox was discussed and resolved in our work.<p>In a second step, the action of the noiseless optical amplifier and it dual operation (i.e. heralded noiseless attenuator) on non-Gaussian states has been examined. We have observed that the mean-field amplitude may decrease in the process of noiseless amplification (or may increase in the process of noiseless attenuation), a very counterintuitive effect that Gaussian states cannot exhibit. This work illustrates the above-mentioned phase-to-state space interplay since these devices are defined as simple filtering operations in state space but inferring their action on phase-space quantities such as the mean-field amplitude is not straightforward. It also illustrates the difficulty of dealing with non-Gaussian states in Gaussian transformations (these noiseless devices are probabilistic but Gaussian). Furthermore, we have exhibited an experimental proposal that could be used to test this counterintuitive feature. The proposed set-up is feasible with current technology and robust against usual inefficiencies that occur in optical experiment. <p>Noiseless amplification and attenuation represent new important tools, which may offer interesting perspectives in quantum optical communications. Therefore, further understanding of these transformations is both of fundamental interest and important for the development and analysis of protocols exploiting these tools. Our work provides a better understanding of these transformations and reveals that the intuition based on ordinary (deterministic phase-insensitive) amplifiers and losses is not always applicable to the noiseless amplifiers and attenuators.<p>In the last part of this thesis, we have considered the entropic characterization of some of the most fundamental Gaussian transformations in quantum optics, namely a beam splitter and two-mode squeezer. A beam splitter effects a simple rotation in phase space, while a two-mode squeezer produces a Bogoliubov transformation. Thus, there is a well-known phase-space characterization in terms of symplectic transformations, but the difficulty originates from that one must return to state space in order to access quantum entropies or entanglement. This is again a hard problem, linked to the above-mentioned interplay in the reverse direction this time. As soon as non-Gaussian states are concerned, there is no way of calculating the entropy produced by such Gaussian transformations. We have investigated two novel tools in order to treat non-Gaussian states under Gaussian transformations, namely majorization theory and the replica method.<p>In Chapter 4, we have started by analyzing the entanglement generated by a beam splitter that is fed with a photon-number state, and have shown that the entanglement monotones can be neatly combined with majorization theory in this context. Majorization theory provides a preorder relation between bipartite pure quantum states, and gives a necessary and sufficient condition for the existence of a deterministic LOCC (local operations and classical communication) transformation from one state to another. We have shown that the state resulting from n photons impinging on a beam splitter majorizes the corresponding state with any larger photon number n’ > n, implying that the entanglement monotonically grows with n, as expected. In contrast, we have proven that such a seemingly simple optical component may have a rather surprising behavior when it comes to majorization theory: it does not necessarily lead to states that obey a majorization relation if one varies the transmittance (moving towards a balanced beam splitter). These results are significant for entanglement manipulation, giving rise in particular to a catalysis effect.<p>Moving forward, in Chapter 5, we took the step of introducing the replica method in quantum optics, with the goal of achieving an entropic characterization of general Gaussian operations on a bosonic quantum field. The replica method, a tool borrowed from statistical physics, can also be used to calculate the von Neumann entropy and is the last line of defense when the usual definition is not practical, which is often the case in quantum optics since the definition involves calculating the eigenvalues of some (infinite-dimensional) density matrix. With this method, the entropy produced by a two-mode squeezer (or parametric optical amplifier) with non-trivial input states has been studied. As an application, we have determined the entropy generated by amplifying a binary superposition of the vacuum and an arbitrary Fock state, which yields a surprisingly simple, yet unknown analytical expression. Finally, we have turned to the replica method in the context of field theory, and have examined the behavior of a bosonic field with finite temperature when the temperature decreases. To this end, information theoretical tools were used, such as the geometric entropy and the mutual information, and interesting connection between phase transitions and informational quantities were found. More specifically, dividing the field in two spatial regions and calculating the mutual information between these two regions, it turns out that the mutual information is non-differentiable exactly at the critical temperature for the formation of the Bose-Einstein condensate.<p>The replica method provides a new angle of attack to access quantum entropies in fundamental Gaussian bosonic transformations, that is quadratic interactions between bosonic mode operators such as Bogoliubov transformations. The difficulty of accessing entropies produced when transforming non-Gaussian states is also linked to several currently unproven entropic conjectures on Gaussian optimality in the context of bosonic channels. Notably, determining the capacity of a multiple-access or broadcast Gaussian bosonic channel is pending on being able to access entropies. We anticipate that the replica method may become an invaluable tool in order to reach a complete entropic characterization of Gaussian bosonic transformations, or perhaps even solve some of these pending conjectures on Gaussian bosonic channels.<p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
269

Thermodynamic characterization of heavy fermion systems and low dimensional quantum magnets near a quantum critical point

Radu, Maria Teodora 13 October 2005 (has links)
We report experimentally results on the low temperature properties of two classes of materials with a special emphasizes near the QCP induced by substitution and magnetic 1.field: (1) the HF systems YbRh2(Si0.95Ge0.05)2, Yb1-yLayRh2Si2 (y = 0.05, 0.1),and YbIr2Si2 with tetragonal structures and CeIn3-xSnx (x = 0.55, 0.6, 0.65, 0.7, 0.8) with cubic structure; (2) the quantum spin systems: Cs2CuCl4 and Cs2CoCl4. In all the HF compounds we have observed NFL behavior in zero magnetic field close to the QCP. The La substituted system does not show an antiferromagnetic (AFM) transition down to the lowest accessible temperature (0.03 K) while in YbRh2(Si1-xGex)2 with x = 0 and x = 0.05 AFM transitions occur at TN =0.07 K and 0.02 K, respectively. For Yb0.9La0.1Rh2Si2 we observe below 0.07 K saturation of DeltaC/T indicating clearly a LFL state for this concentration. For YbIr2Si2, DeltaC/T saturates below 0.5 K. In contrast to the Yb based compounds in the vicinity of the QCP, CeIn3-xSnx shows no evidence of a divergence in Delta C/T, with B or with x. Furthermore, we used specic heat measurements in the mK temperature range and at high fields (up to 12 T) to probe the phase diagrams in the low dimensional quantum antiferromagnets Cs2CuCl4 and Cs2CoCl4. In applied magnetic field, we have presented experimental evidence that in Cs2CuCl4 the field dependence of the critical temperature Tc(B) ~ (Bc-B)^1-Phi close to the critical field Bc = 8.51 T is well described with Phi=1.5. This is in very good agreement with the exponent expected in the mean-field approximation and support the notion of a Bose-Einstein condensation of magnons in Cs2CuCl4.
270

Generalized Bose-Einstein Condensation in Driven-dissipative Quantum Gases

Vorberg, Daniel 07 February 2018 (has links)
Bose-Einstein condensation is a collective quantum phenomenon where a macroscopic number of bosons occupies the lowest quantum state. For fixed temperature, bosons condense above a critical particle density. This phenomenon is a consequence of the Bose-Einstein distribution which dictates that excited states can host only a finite number of particles so that all remaining particles must form a condensate in the ground state. This reasoning applies to thermal equilibrium. We investigate the fate of Bose condensation in nonisolated systems of noninteracting Bose gases driven far away from equilibrium. An example of such a driven-dissipative scenario is a Floquet system coupled to a heat bath. In these time-periodically driven systems, the particles are distributed among the Floquet states, which are the solutions of the Schrödinger equation that are time periodic up to a phase factor. The absence of the definition of a ground state in Floquet systems raises the question, whether Bose condensation survives far from equilibrium. We show that Bose condensation generalizes to an unambiguous selection of multiple states each acquiring a large occupation proportional to the total particle number. In contrast, the occupation numbers of nonselected states are bounded from above. We observe this phenomenon not only in various Floquet systems, i.a. time-periodically-driven quartic oscillators and tight-binding chains, but also in systems coupled to two baths where the population of one bath is inverted. In many cases, the occupation numbers of the selected states are macroscopic such that a fragmented condensation is formed according to the Penrose-Onsager criterion. We propose to control the heat conductivity through a chain by switching between a single and several selected states. Furthermore, the number of selected states is always odd except for fine-tuning. We provide a criterion, whether a single state (e.g., Bose condensation) or several states are selected. In open systems, which exchange also particles with their environment, the nonequilibrium steady state is determined by the interplay between the particle-number-conserving intermode kinetics and particle-number-changing pumping and loss processes. For a large class of model systems, we find the following generic sequence when increasing the pumping: For small pumping, no state is selected. The first threshold, where the stimulated emission from the gain medium exceeds the loss in a state, is equivalent to the classical lasing threshold. Due to the competition between gain, loss and intermode kinetics, further transitions may occur. At each transition, a single state becomes either selected or deselected. Counterintuitively, at sufficiently strong pumping, the set of selected states is independent of the details of the gain and loss. Instead, it is solely determined by the intermode kinetics like in closed systems. This implies equilibrium condensation when the intermode kinetics is caused by a thermal environment. These findings agree well with observations of exciton-polariton gases in microcavities. In a collaboration with experimentalists, we observe and explain the pump-power-driven mode switching in a bimodal quantum-dot micropillar cavity. / Die Bose-Einstein-Kondensation ist ein Quantenphänomen, bei dem eine makroskopische Zahl von Bosonen den tiefsten Quantenzustand besetzt. Die Teilchen kondensieren, wenn bei konstanter Temperatur die Teilchendichte einen kritischen Wert übersteigt. Da die Besetzungen von angeregten Zuständen nach der Bose-Einstein-Statistik begrenzt sind, bilden alle verbleibenden Teilchen ein Kondensat im Grundzustand. Diese Argumentation ist im thermischen Gleichgewicht gültig. In dieser Arbeit untersuchen wir, ob die Bose-Einstein-Kondensation in nicht wechselwirkenden Gasen fern des Gleichgewichtes überlebt. Diese Frage stellt sich beispielsweise in Floquet-Systemen, welche Energie mit einer thermischen Umgebung austauschen. In diesen zeitperiodisch getriebenen Systemen verteilen sich die Teilchen auf Floquet-Zustände, die bis auf einen Phasenfaktor zeitperiodischen Lösungen der Schrödinger-Gleichung. Die fehlende Definition eines Grundzustandes wirft die Frage nach der Existenz eines Bose-Kondensates auf. Wir finden eine Generalisierung der Bose-Kondensation in Form einer Selektion mehrerer Zustände. Die Besetzung in jedem selektierten Zustand ist proportional zur Gesamtteilchenzahl, während die Besetzung aller übrigen Zustände begrenzt bleibt. Wir beobachten diesen Effekt nicht nur in Floquet-Systemen, z.B. getriebenen quartischen Fallen, sondern auch in Systemen die an zwei Wärmebäder gekoppelt sind, wobei die Besetzung des einen invertiert ist. In vielen Fällen ist die Teilchenzahl in den selektierten Zuständen makroskopisch, sodass nach dem Penrose-Onsager Kriterium ein fragmentiertes Kondensat vorliegt. Die Wärmeleitfähigkeit des Systems kann durch den Wechsel zwischen einem und mehreren selektierten Zuständen kontrolliert werden. Die Anzahl der selektierten Zustände ist stets ungerade, außer im Falle von Feintuning. Wir beschreiben ein Kriterium, welches bestimmt, ob es nur einen selektierten Zustand (z.B. Bose-Kondensation) oder viele selektierte Zustände gibt. In offenen Systemen, die auch Teilchen mit der Umgebung austauschen, ist der stationäre Nichtgleichgewichtszustand durch ein Wechselspiel zwischen der (Teilchenzahl-erhaltenden) Intermodenkinetik und den (Teilchenzahl-ändernden) Pump- und Verlustprozessen bestimmt. Für eine Vielzahl an Modellsystemen zeigen wir folgendes typisches Verhalten mit steigender Pumpleistung: Zunächst ist kein Zustand selektiert. Die erste Schwelle tritt auf, wenn der Gewinn den Verlust in einer Mode ausgleicht und entspricht der klassischen Laserschwelle. Bei stärkerem Pumpen treten weitere Übergänge auf, an denen je ein einzelner Zustand entweder selektiert oder deselektiert wird. Schließlich ist die Selektion überraschenderweise unabhängig von der Charakteristik des Pumpens und der Verlustprozesse. Die Selektion ist vielmehr ausschließlich durch die Intermodenkinetik bestimmt und entspricht damit den oben beschriebenen geschlossenen Systemen. Ist die Kinetik durch ein thermisches Bad hervorgerufen, tritt wie im Gleichgewicht eine Grundzustands-Kondensation auf. Unsere Theorie ist in Übereinstimmung mit experimentellen Beobachtungen von Exziton-Polariton-Gasen in Mikrokavitäten. In einer Kooperation mit experimentellen Gruppen konnten wir den Modenwechsel in einem bimodalen Quantenpunkt-Mikrolaser erklären.

Page generated in 0.0591 seconds