• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 10
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 62
  • 15
  • 11
  • 10
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Porovnání produkční schopnosti vybraných odrůd brambor v ekologickém a konvenčním systému pěstování / Production capacity of selected potato varieties in organic and convention growing

HOŠKOVÁ, Jana January 2015 (has links)
The dissertation investigated on the base of smallparcelled land the production abilities of chosen varieties of potatoes with different lenght of vegetation period in conventional and ecological system. The aim was to evaluate the yield of the tubers, weight of tubers, number of tubers under bunch, number of tubers with a proportion of market value tubers, amount of starch and amount of nitrates on the base of reached results of one years field experiment based on ecological and conventional grown system. The chosen varieties were divided in germinated and non germinated variantions in small parcelled experiment. It was found out that content of nitrates was by both grown technologies under hygienic limit. The lower values were reached in ecological grown system. The determinated starch content of tubers did not prove the differencies between varieties and growing system and it was determinated by 14 %. The conventional technology was better evaluated by yielded elements. Very early variety Magda non germinated showed from chosen varieties enhanced yield of tubers in ecological grown system and it was defined to 87 % of conventional yield for determinated variety. The whole number of tubers in ecological system reached 82 % of conventional technology. Positive influence of germinated seedlings was proved by the yield of consuming tubers. Despite the ecological way of growing was less productive in all evaluated criteria it has very important position in potatoes offer in the market.
52

Atraktivita porostů pohanky pro včely / Atractivity of buckwheat for bees

KOSCHANT, Jan January 2017 (has links)
This diploma thesis ,,buckwheat attractivity for bees" deals mainly with native nectar plants for the processing of bees to honey. Work is folded in two parts. The theoretical part deals with the migration of colonies, both for nectar crops and plants with bee pollination needs. In ractical part of this thesis microscopic pollen analysis were performed and contents of pollen grains in honey from colonies, which were relocated to buckwheat growth was evaluated. Comparison of this honey with honey from the hives with similaar location, but without access to buckwheat growth was done.
53

Electron Beam Diagnostic at the ELBE Free Electron Laser

Evtushenko, Pavel 21 October 2004 (has links)
The radiation source ELBE is a scientific user facility able to generate electromagnetic radiation as well as beams of secondary particles. The figure below shows the layout of the facility. ELBE is based on a superconducting electron linac. The linac consists of two accelerating modules and uses TESLA type nine-cell niobium cavities, two cavities in each module. The cavities were developed at DESY in the framework of the TESLA linear collider project and the X-ray free electron laser (FEL) project. The ELBE linac is designed to operate with an accelerating field gradient of 10 MV/m so that the maximum design electron beam energy at the exit of the second module is 40 MeV. The essential difference of the ELBE linac from the future TESLA and X-ray FEL linacs is that ELBE operates in the continuous wave (CW) mode. ELBE delivers an electron beam with an average current of up to 1 mA. The electron source is a DC thermionic triode delivering beam with energy of 250 keV. The gun beam quality predefines the accelerated beam quality. One application of the electron beam is the generation of bremsstrahlung in the MeV energy range. The bremsstrahlung is used for nuclear spectroscopy experiments. Another application of the electron beam is the generation of quasi-monochromatic X-rays via channeling radiation in a single crystal. Thus X-rays with an energy from 10 keV through 100 keV can be generated. The channeling radiation is used for radio-biological and bio-medical experiments. In the future the ELBE electron beam will be used to produce monoenergetic positrons for material research. One more future application of the beam is the production of neutrons by bremsstrahlung via reactions. The neutrons will be used for material research oriented toward construction of future nuclear fusion reactors. In the author’s opinion, the most exciting and elegant application of the electron beam at ELBE is the infrared FEL. There are two FELs planned to run simultaneously at ELBE. The first one, with an undulator period of 27 mm, is going to operate in the wavelength range from 3 µm through 30 µm. The second one is in the design stage only but it will be built to work at longer wavelengths from 25 µm to 150 µm where the FEL has no competition from conventional quantum lasers. While an infrared FEL makes possible a great variety of experiments it is the device most sensitive to the electron beam quality. This dissertation is dedicated to the development of beam instrumentation and the measurement of electron beam parameters at ELBE. - In Chapter #1 we review fundamentals of FEL operation, discuss the importance of the electron beam quality for the FEL and lay down the requirements imposed by the FEL on the electron beam parameters. - Chapter #2 describes measurements of the transverse emittance we did at ELBE including an explanation of the experimental methods and the measurement error analysis. The transverse emittance was measured with the multislit method in the injector where the beam is space charge dominated. The transverse emittance of the accelerated beam was measured with the quadrupole scan method since the beam is emittance dominated. - Measurements of the electron bunch length, which is in the picosecond range, are described in Chapter #3. The bunch length was estimated from a frequency domain fit of a specially constructed analytical function to the measured power spectrum of the bunch. The power spectrum was obtained as a Fourier transform of the measured autocorrelation function of the coherent transition radiation (CTR). The CTR autocorrelation function was measured with the help of a Martin-Puplett interferometer. - A system of beam position monitors was designed, built, and commissioned in the framework of this effort. The design of our stripline BPM, the corresponding electronics and software is described in Chapter #4 along with the system performance as measured with the ELBE beam.
54

Design study of a Laser Plasma Wakefield Accelerator with an externally injected 10-MeV electron beam coming from a photoinjector / Étude d’un accélérateur à champ de sillage laser-plasma avec un faisceau d’électrons de 10 MeV injectés depuis un photoinjecteur

Wang, Ke 02 July 2019 (has links)
Nous étudions l’accélération d’un faisceau d’électrons provenant d’un photoinjecteur RF lorsque celui-ci est injecté dans le champ électrique à très fort gradient crée par un laser de forte puissance dans un plasma. Dans cette thèse la configuration d’une telle expérience est étudiée et des simulations du début à la fin sont présentées. Étant donné qu’un faisceau ultra-court d’électrons (quelques femto secondes) est nécessaire pour atteindre une faible dispersion en énergie dans le plasma, le faisceau d’électrons de 10 MeV provenant du photoinjecteur est comprimé en deux étapes. Le premier étage utilise une chicane coudée qui comprime le paquet d’électrons jusqu’à une durée de 69 fs, puis un deuxième étage qui utilise la méthode de regroupement par différence de célérité dans le plasma et qui comprime le paquet jusqu’à 4 fs avant qu’il ne soit accéléré. Le paquet d’électrons est comprimé transversalement avant d’être injecté dans le plasma. Le paquet d’électrons est focalisé transversalement avant d’être injecté dans le plasma. Une longue cellule plasma est utilisée pour créer le plasma en commençant plusieurs longueurs de Rayleigh avant le plan focal du laser, ce qui permet un regroupement par différence de célérité dans la première partie du plasma avec des contraintes relâchées sur la taille transverse du paquet d’électrons. La cellule plasma s’étend plusieurs longueurs de Rayleigh après le plan focal du laser pour supprimer la divergence angulaire du paquet d’électrons. Nous démontrons que le paquet d’électrons à la sortie du plasma a une énergie de plus d’une centaine de MeV avec une émittance plus petite que 1 µm, une charge plus grande que 7pC et une dispersion en énergie plus petite que 1,5% (largeur à mi-hauteur). Pour étendre la longueur d’accélération nous avons étudié le guidage du laser par un capillaire diélectrique creux et les résultats montrent que même dans le cas optimal le profile Gaussien usuel d’un laser n’est pas optimal, principalement à cause de la diffraction du laser sur les bords à l’entrée du capillaire. Un profile Gaussien aplatit est donc suggéré pour supprimer cette diffraction et il est montré que dans ce cas les électrons peuvent être accélérés sur plus de 10 longueurs de Rayleigh. / The acceleration of an externally injected 10MeV electron bunch coming from a RF photoinjector in a high gradient electric field excited in a plasma by a high power laser is studied. In this thesis, the configuration of such an experiment is studied and start to end simulations are presented. As an ultrashort electron bunch (several femtoseconds) is required to maintain a low energy spread beam in the plasma, the 10MeV electron bunch coming from the photoinjector is compressed in two stages. The first stage is realized using a dogleg chicane which compresses the electron bunch to 69fs, the second stage is realized with velocity bunching in the plasma that further compresses the electron bunch to 3fs before efficient acceleration. The electron bunch is transversely focused with a solenoid before being injected into the plasma. A long cell is used to create a plasma starting several Rayleigh lengths before the laser focal plane, allowing the velocity bunching in the first part of the plasma and relaxing constraints on the transverse bunch size. The cell extends several Rayleigh lengths after the laser focal plane to suppress the angular divergence of the electron bunch. We demonstrate that the electron bunch at the exit of the plasma has an energy of more than one hundred MeV, with an emittance smaller than 1 µm, a charge greater than 7pC and a FWHM energy spread smaller than 1.5%. To extend the acceleration section, the guiding of the laser beam with a hollow dielectric capillary is studied, the results show that even in the best matching conditions, the usual laser Gaussian transverse profile is not optimum, mainly because of the diffraction of the laser on the edges at the entrance of the capillary, a flattened Gaussian laser profile is then suggested to suppress this diffraction and the electrons can be accelerated over more than ten Rayleigh lengths.
55

Development of a prompt γ-ray timing system including a proton bunch monitor for range verification in proton therapy

Permatasari, Felicia Fibiani 19 June 2023 (has links)
Treatment verification is demanded to mitigate the range uncertainties in proton therapy and, hence, to enhance treatment precision and outcomes. As a non-invasive approach for range verification, the prompt γ-ray timing (PGT) measures the time distribution of the promptly produced γ-rays using fast uncollimated scintillation detectors. However, the measured time spectra of the prompt γ-rays (PGs) are sensitive to phase instabilities between the accelerator radiofrequency (RF) used as the reference time and the actual arrival time of the therapeutic particles at the patient and require online monitoring of the arrival time of the proton bunches. Within this thesis, the development of a PGT system including an appropriate proton bunch monitor (PBM) for range verification in proton therapy was studied. In the first part of the work, two PBM options were explored and characterized under near-to-clinical beam conditions to find a suitable PBM satisfying the prerequisites and constraints for the application in the PGT-based range verification. The selected PBM prototype comprises scintillating fibers read out on both ends with silicon photomultipliers (SiPMs). By placing the PBM at the beam halo, sufficient counting statistics and processable trigger rates could be achieved for the monitoring of the proton bunch periodicity with reasonable statistical precision, while minimizing the interference to the clinical beam delivery. In the second part of the work, a proof-of-principle experiment of the PGT-based range verification with a heterogeneous target was performed together with online monitoring of the proton bunch instabilities. The sensitivity and the overall uncertainty of the PGT technique were evaluated for two proton energies, different thicknesses of air cavity inserts, various tissue-equivalent material inserts, different selections of the PG energy window, and other PGT parameters. The experimental results confirmed that real-time monitoring of the proton range during treatment using the PGT technique is feasible with millimeter precision and submillimeter accuracy at close-to-clinical beam currents and clinically relevant proton energies. The integration of the PBM to the PGT-based range verification marks another important step toward the clinical application of the PGT technique for in vivo verification and qualitative assessment of the proton range during treatment.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography / Die Verifikation der Behandlung ist erforderlich, um die Reichweiteunsicherheiten in der Protonentherapie zu verringern und damit die Behandlungspräzision und die Behandlungsergebnisse zu verbessern. Das Prompt-γ-Ray-Timing (PGT) ist eine nicht-invasive Methode zur Reichweitenverifizierung, bei der die Zeitverteilung der prompt erzeugten γ-Strahlung mit schnellen, nicht-kollimierten Szintillationsdetektoren detektiert wird. Die gemessenen Zeitspektren der prompten γ-Strahlung (PGs) sind jedoch empfindlich gegenüber Phaseninstabilitäten zwischen der als Referenzzeit verwendeten Radiofrequenz (RF) des Beschleunigers und der tatsächlichen Ankunftszeit der therapeutischen Teilchen am Patienten und erfordern eine Online-Überwachung der Ankunftszeit der Protonenmikropulse. Im Rahmen dieser Arbeit wurde die Entwicklung eines PGT-Systems einschließlich eines geeigneten Proton-Bunch-Monitors (PBMs) für die Reichweitenverifikation in der Protonentherapie untersucht. Im ersten Teil der Arbeit wurden zwei PBM-Optionen untersucht und unter kliniknahen Strahlbedingungen charakterisiert, um einen PBM, der die Voraussetzungen und Einschränkungen für die Anwendung in der PGT-basierten Reichweitenverifikation erfüllt, auszuwählen. Der ausgewählte PBM-Prototyp besteht aus szintillierenden Fasern, die an beiden Enden mit Silizium-Photomultipliern (SiPMs) ausgelesen werden. Durch die Platzierung des PBMs im Strahlhalo konnten ausreichende Zählstatistiken und verarbeitbare Triggerraten für die Überwachung der Periodizität der Protonenmikropulse mit einer angemessenen statistischen Genauigkeit erreicht werden, während gleichzeitig die Beeinträchtigung der klinischen Strahlapplikation minimiert wird. Im zweiten Teil der Arbeit wurde der experimentelle Machbarkeitsnachweis für die PGT-basierte Reichweitenverifikation in einem heterogenen Target zusammen mit der Online-Überwachung der Instabilitäten der Protonenmikropulse erbracht. Die Empfindlichkeit und die Gesamtunsicherheit der PGT-Technik wurden für zwei Protonenenergien, unterschiedliche Dicken der Lufthohlraumeinsätze, verschiedene gewebeäquivalente Materialeinsätze, andere Auswahlen der PG-Energiefenster und weitere PGT-Parameter quantifiziert. Die experimentellen Ergebnisse bestätigten, dass die Echtzeitüberwachung der Protonenreichweite während der Behandlung mit Hilfe der PGT-Technik mit Millimeterpräzision und Submillimetergenauigkeit bei kliniknahen Strahlströmen und klinisch relevanten Protonenenergien möglich ist. Die Integration des PBMs in die PGT-basierten Reichweitenverifizierung ist ein weiterer wichtiger Schritt auf dem Weg zur klinischen Anwendung der PGT-Technik für die In-vivo-Reichweitenüberprüfung und die qualitative Bewertung der Protonenreichweite während der Behandlung.:List of figures List of tables List of abbreviations 1. Introduction 2. Background 2.1. Uncertainties in proton therapy 2.2. Treatment verification in proton therapy 2.3. Prompt γ-ray timing (PGT) 2.3.1. PGT principle 2.3.2. PGT detection system 2.3.3. Time instabilities in the PGT-based range verification 2.4. Aim of the work 3. Development of a proton bunch monitor 3.1. The IBA Proteus 235 System at OncoRay 3.2. General requirements 3.3. Coincidence detection of scattered protons 3.3.1. Detection principle 3.3.2. Motivation 3.3.3. Characterization and performance of the detector 3.4. Scintillating fiber detector 3.4.1. Detection principle 3.4.2. Motivation 3.4.3. Characterization of a single-sided PMT readout fiber 3.4.4. Characterization of a double-sided PMT readout fiber 3.4.5. Characterization of a double-sided SiPM readout fiber 3.5. Comparison of the two proton bunch monitors 3.6. Summary 4. PGT proof-of-principle with the proton bunch monitor 4.1. Materials and methods 4.1.1. Experimental setup 4.1.2. Measurement program 4.1.3. Data analysis 4.1.4. Evaluation of PGT spectra 4.2. Results 4.2.1. Characteristics of PGT spectra 4.2.2. Relative proton range verification 4.3. Discussion and conclusion 4.4. Summary 5. General discussion 5.1. Time instabilities 5.2. Toward clinical translation of the PGT technique 5.3. Conclusion 6. Summary / Zusammenfassung 6.1. Summary 6.2. Zusammenfassung Bibliography
56

Two-Dimensional Bunch-Resolved Optical Beam Diagnostics at BESSY II

Koopmans, Marten 05 April 2022 (has links)
BESSY II ist eine Strahlungsquelle der dritten Generation, die vom Helmholtz-Zentrum Berlin für Materialien und Energie GmbH für Experimente mit Synchrotronstrahlung betrieben wird. Mehrere Betriebsmodi werden am BESSY II Speicherring angeboten bzw. entwickelt, um die Anforderungen der vielfältigen Nutzergemeinde zu erfüllen. Dazu gehören nicht nur ein komplexes Füllmuster im Standardnutzerbetrieb, sondern auch spezielle Betriebsmodi mit kurzen Pulsen oder das sogenannte Transverse Resonant Island Buckets Separationsschema. Die Komplexität des Füllmusters erfordert eine pulsaufgelöste Strahldiagnose für die Inbetriebnahme und zur Sicherstellung der langfristigen Qualität des Beschleunigerbetriebs. Ferner werden für den Kurzpulsbetrieb Pulslängenmessungen mit ps Auflösung benötigt. Im Rahmen dieser Arbeit wird zu diesem Zweck eine neue Diagnoseplattform mit mehreren Strahlrohren aufgebaut. Jeweils ein Strahlrohr ist für transversale Strahlgrößenmessungen und für longitudinale Strahldiagnose vorgesehen. Beide Strahlrohre sind mit Messapperaturen für pulsaufgelöste Messungen ausgestattet. Hauptfokus dieser Arbeit liegen auf dem Design, der Installation und den Verbesserungen dieser Strahlrohre und den zugehörigen Meßgeräten in Kombination mit spezifischen Anwendungen in der Strahldiagnose an BESSY II. Im Allgemeinen erfordern Kopplungen zwischen Zeit- und Raumkoordinaten pulsselektive und korrelierte Detektionsmethoden mehrerer Parameter. Daher sind die longitudinale Diagnose sowie die Streak Kamera so optimiert worden, dass die direkte Abbildung des transversalen Strahlprofils möglich ist und sogar interferometrische Strahlgrößenmessungen durchführbar. Zusätzlich zur Zeitachse der Streak Kamera kann entweder die horizontale oder die vertikale Dimension des Strahls abgebildet werden und dadurch sind 2D-Messungen möglich. Mit dieser Methode wurden mehrere pulsaufgelöste 2D-Messungen durchgeführt und Analysemethoden entwickelt. / BESSY II is a third generation light source operated by the Helmholtz-Zentrum Berlin für Materialien und Energie GmbH for experiments with synchrotron radiation. Multiple operation modes are offered or are under development at the BESSY II storage ring to serve the needs of its diverse user community. This does not only include a complex fill pattern in standard operation, but also special operation modes featuring short pulses or the new transverse resonant island buckets separation scheme. The complexity of the fill pattern requires bunch-resolved diagnostics for commissioning and to ensure the long-term quality of accelerator operation. In addition, short pulse operation demands bunch length measurements with ps resolution. For this purpose a new diagnostics platform featuring multiple beamlines is set up. One beamline is dedicated for transverse beam size measurements and one for longitudinal diagnostics. Both beamlines are equipped with fast gated devices for bunch-resolved measurements. Design, installation and improvements of these beamlines and the measuring devices are the main focus of this work, together with specific BESSY II bunch diagnostics applications. In general, coupling between time- and space-coordinates do call for bunch-selective and correlated multi-parameter detection methods. Thus, the longitudinal diagnostics beamline and the streak camera have been made capable of direct transverse beam-profile imaging and even interferometric beam size measurements are feasible. Either the horizontal or vertical beam dimension can be imaged in addition to the time axis of the streak camera and 2D measurements are possible. Taking advantage of these capabilities, multiple bunch-resolved 2D measurements have been performed and analysis methods have been developed.
57

Brilliant radiation sources by laser-plasma accelerators and optical undulators

Debus, Alexander 17 July 2012 (has links) (PDF)
This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
58

Brilliant radiation sources by laser-plasma accelerators and optical undulators / Brilliante Strahlungsquellen durch Laser-Plasma Beschleuniger und optische Undulatoren

Debus, Alexander 15 October 2012 (has links) (PDF)
Die vorliegende Arbeit beschäftigt sich in Experiment und Theorie mit Laser-Plasma beschleunigten Elektronen und optischen Undulatoren zur Erzeugung von brillianter Synchrotronstrahlung. Zum ersten Mal wird experimentell nachgewießen, dass laserbeschleunigte Elektronenpulse kürzer als 30 fs sind. Ferner werden solche Elektronenpulse erstmalig in einem Demonstrationsexperiment durch einen magnetischen Undulator als Synchrotronstrahlenquelle genutzt. Aufbauend auf diesen experimentellen Erkenntnissen, sowie umfangreichen numerischen Simulationen zur Thomsonstreuung, werden die theoretischen Grundlagen einer neuartigen Interaktionsgeometrie für Laser-Materie Wechselwirkungen entwickelt. Diese neue, in der Anwendbarkeit sehr allgemeine Methode basiert auf raum-zeitlicher Laserpulsformung durch nichtlineare Winkeldispersion wie diese durch VLS- (varied-line spacing) Gitter erzeugt werden kann und hat den Vorteil nicht durch die Fokussierbarkeit des Lasers (Rayleighlänge) begrenzt zu sein. Zusammen mit laserbeschleunigten Elektronen ermöglicht dieser traveling-wave Thomson scattering (TWTS) benannte Ansatz neuartige, nur auf optischer Technologie basierende Synchrotronstrahlenquellen mit Zentimeter bis Meter langen optische Undulatoren. Die hierbei mit existierenden Lasern erzielbaren Brillianzen übersteigen diese bestehender Thomsonquellen-Designs um 2-3 Größenordnungen. Die hier vorgestellten Ergebnisse weisen weit über die Grenzen der vorliegenden Arbeit hinaus. Die Möglichkeit Laser als Teilchenbeschleuniger und auch optischen Undulator zu verwenden führt zu bauartbedingt sehr kompakten und energieeffizienten Synchrotronstrahlungsquellen. Die hieraus resultierende monochromatische Strahlung hoher Brillianz in einem Wellenlängenbereich von extremen ultraviolett (EUV) zu harten Röntgenstrahlen ist für die Grundlagenforschung, medizinische Anwendungen, Material- und Lebenswissenschaften von fundamentaler Bedeutung und wird maßgeblich zu einer neuen Generation ultrakurzer Strahlungsquellen und freien Elektronenlasern (FELs) beitragen. / This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
59

Brilliant radiation sources by laser-plasma accelerators and optical undulators

Debus, Alexander January 2012 (has links)
This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
60

Transverse Resonance Island Buckets at BESSY II / A new Bunch Separation Scheme

Armborst, Felix 03 February 2022 (has links)
Die steigende Nachfrage nach Synchrotronstrahlungsanlagen hat zu einem stetig wachsenden Angebot auf der ganzen Welt geführt. Die wissenschaftliche Nutzergemeinde der Speicherring-basierten Lichtquellen benötigt immer höhere Brightness und viele sind auch an speziellen Zeitstrukturen der Strahlung, wie kurzen Pulslängen und bestimmten Wiederholungsraten, interessiert. Dies hat zu einer kontinuierlichen Verbesserung bestehender und zum Bau vieler neuer Anlagen geführt. Das Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) betreibt den Berlin Electron Storage Ring Society for SYnchrotron Radiation (BESSY) II, eine Lichtquelle dritter Generation. Der Betrieb der Speicherring basierten Lichtquelle BESSY II nahe der transversalen, optischen Resonanz dritter Ordnung mit Transverse Resonance Island Buckets (TRIBs) Optik ermöglicht die Speicherung von Strom auf einer zweiten, stabilen Umlaufbahn. Der zweite Orbit windet sich im transversalen x-x′-Phasenraum über drei Umläufe um den Kernorbit und hat somit etwa den dreifachen Arbeitspunkt des Kernstrahls. Der stabile Inselorbit bietet die Möglichkeit, die Elektronen für jeden der 400, von der 500 MHz BESSY II Radio Frequency (RF) Kavität definierten, Buckets, fast beliebig zwischen dem Kern und den drei zugehörigen TRIBs zu verteilen. Dies eröffnet neue Möglichkeiten der Bunchtrennung. Durch Bevölkerung eines Orbits mit wenigen Elektronenpaketen, kann dieser dediziert für zeitaufgelöste Experimente genutzt werden. Es erhalten alle Strahlrohre mit hinreichender Akzeptanz die Möglichkeit, zeitaufgelöste Experimente durchzuführen. Die Bunchtrennung wird durch Ausrichtung der Strahlrohre auf den gewünschten Orbit erreicht. Somit stellt dieser Betriebsmodus eine Möglichkeit dar, die Timing-Fähigkeiten der BESSY II-Anlage und Speicherringbasierter Lichtquellen im Allgemeinen weiter auszubauen. / The increasing demand for synchrotron radiation facilities has led to a continuously increasing offer around the world. The scientific user community of storage-ring-based light sources requires ever-higher brightness and many are also interested in special time structures of the radiation such as short pulse lengths and certain repetition rates. This has led to continuous upgrades of existing and the construction of many new machines around the world. The Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) operates the third generation light source Berlin Electron Storage Ring Society for SYnchrotron Radiation (BESSY) II. Operation of the storage-ring-based light source BESSY II in proximity of the third-order, transverse, optical tune resonance with Transverse Resonance Island Buckets (TRIBs) optics enables storage of current on a second stable orbit winding around the core orbit in the transverse x-x′ -phase space. This second orbit closes after three revolutions, resulting in a tune approximately three times that of the core tune. The stable island orbit provides the possibility to populate each of the 400 Radio Frequency (RF) buckets, defined by the 500 MHz cavities at BESSY II not only on the core but also additionally or exclusively on one or all three of the corresponding transverse island buckets of the threefold island orbit. This provides unique bunch separation possibilities with the appropriate population of each orbit. The population of one orbit with single bunches enables dedicated utilisation of this orbit for timing experiments and gives all beamlines with sufficient acceptance access to time-resolved experiments. The bunch separation is realised by aligning each beamline with the desired orbit. Thus, this operation mode represents a possibility to enhance the timing capabilities at BESSY II and storage ring based light sources in general.

Page generated in 0.0359 seconds