• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 79
  • 79
  • 54
  • 43
  • 25
  • 19
  • 17
  • 16
  • 15
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Campos hipoelíticos no plano / Hypoelliptic planar vector fields

Campana, Camilo 21 February 2013 (has links)
Seja L um campo vetorial complexo não singular definido em um aberto do plano. Treves provou que se L é localmente resolúvel então L é localmente integrável. Para campos planares hipoelíticos, vale uma propriedade adicional, a saber, toda integral primeira (restrita a um aberto suficientemente pequeno) é uma aplicação injetiva (e aberta); isto, por sua vez, implica que toda solução da equação homogênea Lu = 0 é localmente da forma u = h 0 Z, com h holomorfa, sendo Z uma integral primeira do campo. O problema central de interesse desta dissertação é a questão global correspondente, ou seja, a exisatência de integrais primeiras globais injetoras e a representação dde soluções globais por composições da integral primeira com uma função holomorfa / Let L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function
62

Design de campos vetoriais em volumes usando RBF / Design of Vector Fields in Volumes using RBF

Toratti, Luiz Otávio 05 June 2018 (has links)
Em Computação Gráfica, campos vetoriais possuem diversas aplicações desde a síntese e mapeamento de texturas à animações de fluidos, produzindo efeitos amplamente utilizados na indústria do entretenimento. Para produzir tais campos, é preferível o uso de ferramentas de design em vez de simulações numéricas não só devido ao menor custo computacional mas, principalmente, por prover liberdade ao artista ao sintetizar o campo de acordo com a sua necessidade. Atualmente, na literatura, existem bons métodos de design de campos vetoriais em superfícies de objetos tridimensionais porém, o design no interior desses objetos ainda é pouco estudado, principalmente quando o campo de interesse possui propriedades específicas. O objetivo deste trabalho é desenvolver uma técnica para sintetizar campos vetoriais, com características do movimento de fluidos incompressíveis, no interior de domínios. Em uma primeira etapa, o método consiste na interpolação dos vetores de controle, com uma certa propriedade desejada, em todo o domínio. Posteriormente, o campo obtido é modificado para respeitar a geometria do contorno. / Vector fields are important to an wide range of applications on the field of Computer Graphics, from the synthesis and mapping of textures to fluid animation, producing effects widely used on the entertainment industry. To produce such fields, design tools are prefered over numerical simulations not only for its lower computational cost, but mainly by providing freedom to the artist in the creation process. Nowadays, good methods of vector field design over surfaces exist in literature, however there is only a few studies on the synthesis of vector fields of the interior of objects and even fewer when specific properties of the field are required. This work presents a technique to synthesize vector fields with properties of imcompressible fluids motion in the interior of objects. On a first step, the method consists in interpolating control vectors with a certain desired property throughout the whole domain and later the resulting field is modified to properly fit the boundary geometry of the object.
63

Aspectos topológicos na teoria geométrica de folheações / Topological aspects in the geometric theory of foliations

Gonçalves, Icaro 09 December 2016 (has links)
Neste trabalho calculamos a classe de Euler de uma folheação umbílica em um ambiente com forma de curvatura apropriada. Combinamos o teorema de Hopf-Milnor e o número de Euler de uma folheação, definido por Connes, para mostrar como a geometria da folheação influencia na topologia da variedade folheada, bem como na topologia da folheação. Além disso, exibimos uma lista de invariantes topológicos para campos vetoriais unitários em hipersuperfícies fechadas do espaço Euclidiano, e mostramos como estes invariantes podem ser empregados como obstruções a certas folheações com geometria prescrita. / In this work we compute the Euler class of an umbilic foliation on a manifold with suitable curvature form. We combine the Hopf-Milnor theorem and the Euler number of a foliation, defined by Connes, in order to show how the geometry of the foliation influences the topology of the foliated space as well as the topology of the foliation. Besides, we exhibit a list of topological invariants for unit vector fields on closed Euclidean hypersurfaces, and show how these invariants may be employed as obstructions to certain foliations with prescribed geometry.
64

Equações com impasse e problemas de perturbação singular /

Cardin, Pedro Toniol. January 2011 (has links)
Orientador: Paulo Ricardo da Silva / Banca: João Carlos da Rocha Medrado / Banca: Fernando de Osório Mello / Banca: Claudio Aguinaldo Buzzi / Banca: Vanderlei Minori Horita / Resumo: Neste trabalho estudamos sistemas diferenciais forçados, também conhecidos como sistemas de equações com impasse. Estudamos os casos onde tais sistemas são suaves e os casos onde são possivelmente descontínuos. Usando técnicas de perturbação singular obtemos alguns resultados sobre a dinâmica destes sistemas em vizinhanças dos conjuntos de impasse. No caso suave, a Teoria de Fenichel clássica e crucial para o desenvolvimento dos principais resultados. Para o caso com descontinuidades, uma teoria similar a Teoria de Fenichel 'e desenvolvida. Além disso, estudamos a bifurcação de ciclos limites das órbitas periódicas de um centro diferencial linear quando perturbamos tal centro dentro de uma classe de sistemas diferenciais lineares por partes com impasse / Abstract: In this work we study constrained differential systems, also known as systems of equations with impasse. We study the cases where such systems are smo oth and the cases where they are p ossibly discontinuous. Using singular p erturbation techniques we obtain some results on the dynamic of these systems in neighb orho o ds of the impasse sets. In smo oth case, the classical Fenichel's Theory is crucial for the development of the main results. For the case with discontinuity, a similar theory to Fenichel's Theory is develop ed. Moreover, we study the bifurcation of limit cycles from the p erio dic orbits of a linear differential center when we p erturb such center inside a class of piecewise linear differential systems with impasse / Doutor
65

Equações com impasse e problemas de perturbação singular

Cardin, Pedro Toniol [UNESP] 18 March 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-03-18Bitstream added on 2014-06-13T18:07:15Z : No. of bitstreams: 1 cardin_pt_dr_sjrp.pdf: 479456 bytes, checksum: 52785d20631e0d11a14a241fde1ae7c9 (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Neste trabalho estudamos sistemas diferenciais forçados, também conhecidos como sistemas de equações com impasse. Estudamos os casos onde tais sistemas são suaves e os casos onde são possivelmente descontínuos. Usando técnicas de perturbação singular obtemos alguns resultados sobre a dinâmica destes sistemas em vizinhanças dos conjuntos de impasse. No caso suave, a Teoria de Fenichel clássica e crucial para o desenvolvimento dos principais resultados. Para o caso com descontinuidades, uma teoria similar a Teoria de Fenichel ´e desenvolvida. Além disso, estudamos a bifurcação de ciclos limites das órbitas periódicas de um centro diferencial linear quando perturbamos tal centro dentro de uma classe de sistemas diferenciais lineares por partes com impasse / In this work we study constrained differential systems, also known as systems of equations with impasse. We study the cases where such systems are smo oth and the cases where they are p ossibly discontinuous. Using singular p erturbation techniques we obtain some results on the dynamic of these systems in neighb orho o ds of the impasse sets. In smo oth case, the classical Fenichel’s Theory is crucial for the development of the main results. For the case with discontinuity, a similar theory to Fenichel’s Theory is develop ed. Moreover, we study the bifurcation of limit cycles from the p erio dic orbits of a linear differential center when we p erturb such center inside a class of piecewise linear differential systems with impasse
66

Ciclos limites e a equação de van der Pol /

Cardin, Pedro Toniol. January 2008 (has links)
Orientador: Paulo Ricardo da Silva / Banca: Luis Fernando Mello / Banca: João Carlos Ferreira Costa / Resumo: Nesta dissertação estudamos critérios para determinar a existência, a não existência e a unicidade de ciclos limites de campos de vetores planares. Mais especificamente, estudamos equações de Lienard Äx + f(x; _ x) _ x + g(x) = 0; onde f e g satisfazem determinadas hip¶oteses. Em particular estudamos a equa»c~ao de van der Pol Äx + "(x2 ¡ 1) _ x + x = 0; a qual é conhecida da teoria dos circuitos elétricos. Provamos a existência e a unicidade de ciclos limites para estas equações. Por fim estudamos a equação de van der Pol com o parâmetro" " 1 e o fenômeno canard que ocorre ao considerarmos um parâmetro adicional ®: As técnicas utilizadas s~ao as usuais de Análise Assintótica. / Abstract: In this work we study the existence, the non existence and the uniqueness of limit cycles of planar vector felds. More specifically, we study Lienard equations Äx+f(x; _ x) _ x+g(x) = 0; where f and g satisfy some hypothesis. In particular we study the van der Pol equation Äx + "(x2 ¡ 1) _ x + x = 0; which is knew of the circuit theory. We prove the existence and the uniqueness of limit cycles for these equations. In the last part we study the van der Pol equation with the parameter " " 1 and the canard phenomenon which appears when we consider an additional parameter ®: The techniques employed are the usual in the Asymptotic Analysis. / Mestre
67

A estrutura hamiltoniana dos campos reversiveis em 4D / The hamiltonian structure of the reversible vector fields in 4D

Martins, Ricardo Miranda, 1983- 25 February 2008 (has links)
Orientadores: Marco Antonio Teixeira, Ketty Abaroa de Rezende / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T14:10:31Z (GMT). No. of bitstreams: 1 Martins_RicardoMiranda_M.pdf: 921623 bytes, checksum: 8098f5c4875b6b586865b92ec6e474a0 (MD5) Previous issue date: 2008 / Resumo: A semelhança entre sistemas reversíveis e Hamiltonianos foi detectada nos primórdios do século passado por Birkhoff. Neste trabalho realizamos uma análise geométrica-qualitativa da dinâmica de um campo de vetores reversível em torno de um ponto de equilíbrio elíptico em R4. Especificamente, estudamos quando um campo reversível com tal tipo de equilíbrio é "equivalente" a um sistema Hamiltoniano. Como resultado, obtemos que tal sistema é Hamiltoniano, a menos de uma seqüência de mudanças de coordenadas e reescalonamentos do tempo. Prosseguindo a análise, impomos outra simetria ao campo e passamos a considerar sistemas bireversíveis. Classificamos completamente as possíveis simetrias que tornam um sistema bireversível por involuções gerando um grupo isomorfo a D4. Para tais sistemas, obtemos resultados um pouco mais fortes que os obtidos para sistemas reversíveis / Abstract: The similarity between reversible and Hamiltonian systems has been detected at the beginning of the past century by Birkhoff. In this project, we describe a geometrical-qualitative analysis of the dynamics of a reversible vector field around a elliptical singularity in R4. Specifically, we study when such a reversible vector field is "equivalent" to a Hamiltonian system. As a result, we obtain that such systems are always Hamiltonian, up to a sequence of changes of coordinates and time rescaling. Imposing another symmetry to the vector field, we work with bireversible systems. We completely classify all the possible symmetries which makes such systems bireversible by involutions generating a group isomorphic to D4. For these systems, we have obtained stronger results than in the reversible case / Mestrado / Sistemas Dinamicos / Mestre em Matemática
68

A coexistência de quatro ciclos limite em campos vetoriais seccionalmente lineares em R3 / The coexistence of four limit cycles in piecewise linear vector fields on R3

ANDRADE, Kamila da Silva 30 July 2012 (has links)
Made available in DSpace on 2014-07-29T16:02:20Z (GMT). No. of bitstreams: 1 Dissertacao Kamila - A coexistencia de quatro ciclos limite.pdf: 385468 bytes, checksum: 7bfc558e3fb5ab2755c2afa480f819c8 (MD5) Previous issue date: 2012-07-30 / In this work we study continuous, symmetric and piecewise linear vector fields on R3, we investigate the existence of limit cycles using the closing equations method. More specifically, we study a two parameters family of this vector fields and we show the coexistence of four limit cycles and too, its realization on Chua s circuit. / Neste trabalho estudamos campos vetoriais seccionalmente lineares, contínuos e simétricos, com três zonas em R3, investigamos a existência de ciclos limite utilizando o método das closing equations. Mais especificamente, estudamos uma família a dois parâmetros e mostramos a coexistência de quatro ciclos limites para esta família e também sua realização no circuito de Chua.
69

Aspectos topológicos na teoria geométrica de folheações / Topological aspects in the geometric theory of foliations

Icaro Gonçalves 09 December 2016 (has links)
Neste trabalho calculamos a classe de Euler de uma folheação umbílica em um ambiente com forma de curvatura apropriada. Combinamos o teorema de Hopf-Milnor e o número de Euler de uma folheação, definido por Connes, para mostrar como a geometria da folheação influencia na topologia da variedade folheada, bem como na topologia da folheação. Além disso, exibimos uma lista de invariantes topológicos para campos vetoriais unitários em hipersuperfícies fechadas do espaço Euclidiano, e mostramos como estes invariantes podem ser empregados como obstruções a certas folheações com geometria prescrita. / In this work we compute the Euler class of an umbilic foliation on a manifold with suitable curvature form. We combine the Hopf-Milnor theorem and the Euler number of a foliation, defined by Connes, in order to show how the geometry of the foliation influences the topology of the foliated space as well as the topology of the foliation. Besides, we exhibit a list of topological invariants for unit vector fields on closed Euclidean hypersurfaces, and show how these invariants may be employed as obstructions to certain foliations with prescribed geometry.
70

Campos hipoelíticos no plano / Hypoelliptic planar vector fields

Camilo Campana 21 February 2013 (has links)
Seja L um campo vetorial complexo não singular definido em um aberto do plano. Treves provou que se L é localmente resolúvel então L é localmente integrável. Para campos planares hipoelíticos, vale uma propriedade adicional, a saber, toda integral primeira (restrita a um aberto suficientemente pequeno) é uma aplicação injetiva (e aberta); isto, por sua vez, implica que toda solução da equação homogênea Lu = 0 é localmente da forma u = h 0 Z, com h holomorfa, sendo Z uma integral primeira do campo. O problema central de interesse desta dissertação é a questão global correspondente, ou seja, a exisatência de integrais primeiras globais injetoras e a representação dde soluções globais por composições da integral primeira com uma função holomorfa / Let L be a nonsingular complex vector field defined on an open subset of the plane. Treves proved that if L is locally solvable then L is locally integrable. For hypoelliptic planar vector fields an additional property holds, namely, every first integral (restricted to a sufficiently small open set) is an injective (and open) mapping; this, on its turn, implies that each solution of the homogeneous equation Lu = 0 is locally of the form u = h Z, where h is holomorphic and Z is a first integral of the vector eld. The central problem of interest in this work is the corresponding global question, that is, the existence of global, injective first integrals and the representation of global solutions as compositions of the first integral with a holomorphic function

Page generated in 0.0931 seconds