• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 11
  • 2
  • Tagged with
  • 37
  • 22
  • 19
  • 16
  • 13
  • 10
  • 9
  • 9
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Réparation des cassures double-brin chez la bactérie symbiotique Sinorhizobium meliloti : caractérisation du mécanisme de non-homologous end-joining / Double-strand breaks repair in the symbiotic bacterium Sinorhizobium meliloti : characterization of the non-homologous end-joining mechanism

Dupuy, Pierre 09 November 2016 (has links)
Les cassures double-brin (CDBs) de l'ADN sont décrites comme étant les lésions de l'ADN les plus délétères puisqu'elles conduisent systématiquement à la mort de la cellule si elles ne sont pas réparées. Les CDBs peuvent être réparées par différents mécanismes et notamment par Non-Homologous End-Joining (NHEJ). Chez les eucaryotes, les protéines centrales de la NHEJ, Ku70 et Ku80, forment un hétérodimère capable de se lier aux extrémités de l'ADN générées par la cassure. Par la suite, Ku70 et Ku80 recrutent de nombreuses autres protéines permettant la modification des extrémités et la réparation de la CDB par ligation. La NHEJ a également été caractérisée chez un nombre limité de bactéries chez qui le mécanisme semble moins complexe que chez les eucaryotes. Chez les bactéries, la NHEJ nécessite seulement deux protéines : un homodimère de Ku, et la protéine multifonctionnelle LigD capable de modifier les extrémités et d'effectuer la ligation. La majorité des études faites sur la NHEJ ont été menées chez des bactéries ne possédant qu'une seule paire des gènes ku/ligD. Cependant, de nombreux autres génomes bactériens possèdent plusieurs copies de ces deux gènes et le fonctionnement de la NHEJ chez ces organismes est inconnu. Le génome de la bactérie symbiotique Sinorhizobium meliloti code quatre Ku putatives (ku1-4) et quatre LigD putatives (ligD1-4). A ce jour, une seule étude a été menée chez ce modèle bactérien montrant que chacun des simples mutants ku est plus sensible que la souche sauvage à un traitement aux rayonnements ionisants, suggérant que chacune des Ku joue un rôle dans la réparation des CDBs par NHEJ. Par l'utilisation de différentes approches in vivo, nous avons mené une caractérisation génétique de la NHEJ chez S. meliloti permettant de clarifier les contributions relatives des gènes ku et ligD dans le mécanisme. Pour la première fois chez une bactérie, nous avons pu obtenir des résultats montrant la présence de plusieurs systèmes indépendants de NHEJ chez S. meliloti, et suggérant l'existence d'un possible hétérodimère de Ku. Nous avons également mis en évidence que la NHEJ est activée dans différentes conditions de stress, telles que le stress thermique et la carence nutritive, et qu'une partie de cette réparation est sous le contrôle du régulateur central de la réponse générale au stress RpoE2. Par ailleurs, nous avons montré que la NHEJ, et plus généralement les mécanismes de réparation des CDBs sont impliqués dans la résistance à la dessiccation chez S. meliloti. Enfin, nous avons généré la première preuve expérimentale d'une implication de la NHEJ dans le transfert horizontal de gène chez les bactéries. Dans leur ensemble, ces travaux enrichissent nos connaissances sur les mécanismes de réparation des CDBs chez les bactéries possédant plusieurs orthologues de Ku et LigD. Ils suggèrent également que la NHEJ pourrait contribuer à l'évolution des génomes, en particulier en condition de stress, non seulement en raison du caractère mutagène de ce type de réparation mais également en participant à l'acquisition d'ADN exogène originaire de bactéries distantes. / DNA double-strand breaks (DSBs) are described as the most deleterious DNA damages as they can lead to cell death if they are not repaired. DSBs can be repaired through several mechanisms, including Non-Homologous End-Joining (NHEJ). In eukaryotes, the main NHEJ proteins, Ku70 and Ku80, bind DNA ends as a heterodimer, and then recruit several additional proteins including enzymes which catalyze the processing and ligation of DNA ends. NHEJ has also been characterized in a limited number of bacteria, where the repair mechanism appears to be less complex than in eukaryotes. Indeed, only two proteins are required: a homodimeric Ku protein, and a multifunctional LigD enzyme able to process and ligate the DNA ends. However, most studies were performed on bacterial species encoding a single pair of ku/ligD. Actually, many bacterial species encode multiple copies of these genes, whose relative contributions to NHEJ in vivo are so far unknown. The Sinorhizobium meliloti genome encodes four putative Ku (ku1-4) and four putative LigD (ligD1-4). To date, a single study conducted on this model bacterium showed that every ku single mutant is more sensitive than the wild type strain to ionizing radiations showing that all ku genes are involved in NHEJ repair of DSBs in this organism. Here, using several in vivo approaches, we performed a comprehensive genetic characterization of NHEJ repair in S. meliloti, and clarified the respective contributions of the various ku and ligD genes. For the first time in bacteria, we obtained results showing the presence of several independent NHEJ systems in S. meliloti and suggesting the existence of a putative heterodimeric form of Ku. We also demonstrated that NHEJ repair is activated under various stress conditions, including heat and nutrient starvation, and that part of this repair is under the control of the general stress response regulator RpoE2. We showed that NHEJ and more generally DSB repair mechanisms are involved in desiccation resistance in S. meliloti. Finally, for the first time in bacteria, we provided evidence that NHEJ not only repairs DSBs, but can also erroneously integrate heterologous DNA molecules into the breaks. Altogether, our data provide new insights into the mechanisms of DSB repair in bacteria which encode multiple Ku and LigD orthologues. It also suggest that NHEJ might contribute to the evolution of bacterial genomes under adverse environmental conditions not only through error-prone repair of DSB by its mutagenesis repair characteristic but also by participating in the acquisition of foreign DNA from distantly related organisms during horizontal gene transfer events.
12

La formation des cassures double-brins méiotiques chez l’espèce modèle Arabidopsis thaliana / Meiotic double-strand breaks formation in the plant model Arabidopsis thaliana

Vrielynck, Nathalie 10 June 2016 (has links)
La méiose est essentielle pour tous les organismes à reproduction sexuée car cette division cellulaire spécialisée conduit à la formation de gamètes. Au cours de la méiose, la formation de bivalents est une étape clé dans la répartition équilibrée des chromosomes homologues. Dans la majorité des espèces, la formation de ces bivalents repose sur le mécanisme de la recombinaison homologue qui est un mécanisme de réparation des cassures double brin (CDB) de l’ADN. En méiose, la cassure est programmée et provoquée par l’action de Spo11. A.thaliana contient deux homologues SPO11-1 et SPO11-2 qui ne sont pas redondants dans la formation des CDB. Spo11 est une protéine apparentée à la sous-unité A des topoVI d’Archaea. Or, les topoVI d’Archaea fonctionnent en hétérotétramère composé de deux sous-unités A et deux sous-unités B pour former une cassure double brin (CDB) mais jusqu'à mon travail de thèse, aucun homologue méiotique de sous unité B n'avait été identifié. Au cours de ma thèse, j’ai caractérisé la fonction méiotique de la protéine MTOPVIB et montré que c’est un homologue structural de la sous-unité B des TopoVI d’Archaea. Par différentes approches, j’ai montré que MTOPVIB est nécessaire à l’hétérodimérisation de SPO11-1 avec SPO11-2 et je propose que chez A. thaliana, un complexe catalytique de type TopoVI composé de MTOPVIB, SPO11-1, et SPO11-2 est nécessaire à la formation des CDB méiotiques. Chez A. thaliana, en plus de SPO11-1, SPO11-2 et MTOPVIB, quatre autres protéines sont nécessaires à la formation des CDB : PRD1, PRD2, PRD3 et DFO. Par des approches double hybride, j’ai analysé le réseau d’interaction entre ces protéines de « cassure ». Les résultats suggèrent que ces protéines interagiraient au sein d’un « super » complexe essentiel à la formation des CDB méiotiques. / Meiosis is an essential step in sexual reproduction because it leads to the formation of haploid gametes. During meiosis, the formation of bivalents is a key step for the balanced chromosome distribution. In most species, the formation of bivalents lies on the mechanism of homologous recombination that is a repair mechanism for double stranded DNA breaks (DSB). In meiosis, DSB formation is programmed and provoked by the action of Spo11. A.thaliana contains two SPO11-1 and SPO11-2 counterparts which are not redundant in the formation of DSB. Spo11 is related to the A subunit of Archaea topoVI. However, Archaea topoVI operate through a heterotetramer composed of two A subunits and two B subunits but until my thesis work, no meiotic homolog of the B subunit had been identified. During my thesis, I characterized the meiotic function of the new protein MTOPVIB and showed that it shares structural similarities with the B subunit of Archaea TopoVI. Using different strategies, I also demonstrated that MTOPVIB is necessary to the SPO11-1/ SPO11-2 heterodimerization strongly suggesting that in A. thaliana, a catalytic TopoVI like complex is necessary for the formation of meiotic DSB. In addition to SPO11-1, SPO11-2, and MTOPVIB, four other proteins are necessary for the formation of meiotic DSB in A. thaliana : PRD1, PRD2, PRD3 and DFO. By yeast two hybrid approach, I analysed the interaction network between the "DSB" proteins. The results suggest that these proteins could act in a "super" complex which would be essential to the formation of DSBs.
13

Impact of nuclear organization and chromatin structure on DNA repair and genome stability / Impact de l'organisation du noyau et de la structure de la chromatine sur la réparation de l'ADN et la stabilité du génome

Batté, Amandine 29 June 2016 (has links)
L’organisation non-aléatoire du noyau des cellules eucaryotes et la compaction de l’ADN en chromatine plus ou dense peuvent influencer de nombreuses fonctions liées au métabolisme de l’ADN, y compris la stabilité du génome. Les cassures double-brin sont les dommages à l’ADN les plus néfastes pour la cellule. Pour préserver l’intégrité de leur génome, les cellules eucaryotes ont développé des mécanismes de réparation des cassures double-brin qui sont conservés de la levure à l’homme. Parmi ceux-ci, la recombinaison homologue utilise une séquence homologue intacte présente ailleurs dans le génome et peut se diviser en deux sous voies de réparation. La conversion génique transfère l’information génétique d’une molécule à son homologue, tandis que le Break Induced Replication (BIR) établit une fourche de réplication qui peut procéder jusqu’à la fin du chromosome.Mon travail de thèse s’est attaché à caractériser la contribution du statut chromatinien et de l’organisation tridimensionnelle du génome à la réparation des cassures double-brin. L’organisation du noyau de la levure S. cerevisiae ainsi que la propagation de l’hétérochromatine au niveau des régions subtélomériques peuvent être modifiées via la surexpression des protéines Sir3 et sir3A2Q. Nous avons montré que le groupement des télomères accroit la conversion génique entre deux séquences subtélomériques, soulignant le rôle clé de la proximité spatiale et de la recherche d’homologie. Nous avons également constaté que la présence d’hétérochromatine au niveau du site de cassure limite la résection, ce qui permet une disparition plus lente des extrémités, qui resteraient disponibles plus longtemps pour réaliser la recherche d’homologie et achever la réparation. Enfin, nous avons observé que la présence d’hétérochromatine au site donneur diminue l’efficacité de recombinaison et qu’elle doit moduler une étape commune aux deux voies de réparation, à savoir l’invasion de brin. Ces travaux nous ont permis de décrire de nouvelles voies de régulation de la réparation de l’ADN. / The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end.My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at subtelomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that heterochromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair.
14

Spécialisation de Ku80c dans le couplage entre coupure et réparation de l’ADN lors des réarrangements programmés du génome chez Paramecium tetraurelia / Specialization of Ku80c in the coupling between DNA break and repair during programmed genome rearrangements in Paramecium tetraurelia

Abello, Arthur 29 March 2019 (has links)
Au cours de son cycle sexuel, le cilié Paramecium tetraurelia procède à de massifs réarrangements programmés de son génome (RPG). Ils consistent, entre autres choses, en l’excision de 45 000 séquences précisément délimitées, appelées IES (Internal Eliminated Sequences). La transposase domestiquée Piggymac (Pgm) introduit les cassures double-brin (CDB) à l’extrémité des IES. La réparation très précise de ces dommages est réalisée par la voie de réparation des extrémités non-homologues (NHEJ). Un des acteurs de cette voie est l’hétérodimère Ku70/Ku80. Suite à des duplications globales du génome, la paramécie possède trois gènes KU80, Un seul de ces gènes est induit lors des RPG (KU80c) et une expérience d’ARN interférence (ARNi) contre KU80c montre une complète inhibition de l’introduction des CDB. De plus, des expériences de Co-IP en système hétérologue montrent que Ku70/Ku80c interagit avec Pgm. Ces résultats prouvent le rôle essentiel de Ku dans l’introduction des CDB lors des RPG et soulèvent la question du mécanisme impliqué. Au cours de ma thèse j’ai caractérisé le couplage entre Ku et Pgm en analysant des expériences d’immunofluorescence avec ou sans pré-extraction, permettant de déterminer les interdépendances de ces protéines pour leur localisation et pour leur stabilité nucléaire. Ces approches ont permis de démontrer que Pgm requiert la présence de Ku pour être stablement localisé dans les noyaux lors des RPG. Ku80c partage 74% de sa séquence protéique avec Ku80a. Des expériences de complémentations fonctionnelles surexprimant Ku80a lors des RPG ont montré que Ku80a n’est pas capable ni de se localiser stablement dans les noyaux ni de participer à la stabilisation nucléaire de Pgm. De plus, les RPG sont inhibés. Ces résultats montrent que Ku80c s’est spécialisé dans le couplage avec Pgm pour l’introduction des CDB lors des RPG. L’utilisation de protéines chimériques a permis de déterminer que la spécialisation de Ku80c est portée par son domaine N-terminal ∝-β. / During its sexual cycle, the ciliate Paramecium tetraurelia undergoes massive Programmed Genome Rearrangements (PGR). They consist, among others, in excision of 45,000 precisely delimited sequences, called IES (Internal Eliminated Sequences). A domesticated transposase, PiggyMac (Pgm), introduces double-strand DNA breaks (DSB) at IES ends. The Non Homologous End Joining pathway (NHEJ) handles highly precise repair of DSB. One of the actors of this pathway is the heterodimer Ku70/Ku80. In P. tetraurelia, the KU80 gene is present in three paralogous copies. Only KU80c is specifically expressed during PGR and RNA interferences against KU80c showed a complete inhibition of DNA cleavage. Furthermore, a Co-IP experiment in a heterologous system showed that both Ku70/Ku80c interact with Pgm. These results provide evidence that Ku is an essential partner of Pgm for DSB introduction; raising the question of the activating mechanism involved. During my PhD, I characterized the coupling between Ku and Pgm by analyzing immunofluorescence experiments, with or without pre-extraction, allowing the determination of inter-dependencies between those proteins for their nuclear localization and stability. Those methods demonstrated that Pgm requires the presence of Ku for a stable nuclear localization during the PGR. Ku80c shares 74% of the protein sequence with Ku80a. Functional complementation assays overexpressing Ku80a during the PGR showed that Ku80a is not capable to stably localize in nuclei nor to participate in Pgm nuclear stability. Furthermore, PGR are inhibited. Those results show that Ku80c has specialized for the DSB introduction during PGR. The use of chimeric proteins allowed to determine that Ku80c specialization was carried out by its N terminal domain.
15

Développement d'un outil de simulation multi-échelle adapté au calcul des dommages radio-induits précoces dans des cellules exposées à des irradiations d'ions légers (proton et alpha) / Development of a multi-scale simulation tool for early radio-induced damage assessment in cells exposed to light ions irradiations (proton and alpha)

Meylan, Sylvain 21 October 2016 (has links)
Ce travail de thèse, réalisé dans le cadre des projets de recherche ROSIRIS (IRSN) et Geant4-DNA, porte sur la construction d’une simulation multi-échelle dédiée au calcul des dommages radio-induits précoces à l’ADN qui peuvent apparaître suite à l’irradiation d’un noyau cellulaire. L’outil développé s’appuie sur une version modifiée du code de Monte Carlo Geant4-DNA et est capable de simuler dans le détail le transport et les interactions physiques entre l’irradiation ionisante et la matière biologique (étape physique), la création d’espèces chimiques (étape physico-chimique) et les réactions et processus de diffusion de ces dernières (étape chimique). Durant la simulation de ces trois étapes, un modèle géométrique de l’ADN, décrivant l’ensemble du génome humain avec une précision moléculaire, est généré avec un nouveau logiciel développé dans le cadre de cette thèse : DnaFabric. Les premiers résultats obtenus pour des irradiations avec des protons et des ions alpha sont détaillés et comparés à des données de la littérature. Un bon accord est observés avec ces dernières illustrant ainsi la cohérence de l’ensemble de la simulation. L’influence très significative du critère de sélection utilisé pour identifier les dommages à l’ADN est également démontrée. / This work was performed in the frame of the ROSIRIS (IRSN) and Geant4-DNA research projects and describes the development of a simulation tool to compute radioinduced early DNA damages in a cell nucleus. The modeling tool is based on a modified version of the Monte Carlo code Geant4-DNA and is able to simulate the physical interactions between ionizing particles and the biological target (physical stage), the creation of chemical species within the cell nucleus (physico-chemical stage) as well as the reactions and diffusion processes of these chemical species (chemical stage). During all the simulation, a geometrical model that describes the DNA content of a human diploid cell nucleus is taken into account. This model was generated with a new software (DnaFabric) developed in the frame of this work and has a molecular level of detail.The first results (in term of DNA strand breaks) obtained with this tool are detailed and compared with experimental data from the literature. The good agreement between the simulation results and those data shows the coherence of our modeling. The significant influence of the selection criteria used to identify the DNA damages is also demonstrated.
16

Recrutement de l'hélicase Pif1 par la protéine de réplication RPA durant la réplication et aux cassures double-brin de l'ADN : Etude fonctionnelle de l'Histone méthyltransférase Set1 dans la régulation de la taille des télomères chez Saccharomyces cerevisiae

Maestroni, Laetitia 14 December 2011 (has links)
Différents rôles de l'hélicase Pif1 ont été décrit dont le plus documenté est de décrocher la télomérase des télomères en déroulant les hybrides ARN/ADN formés entre l'ARN de la télomérase et l'ADN télomérique. Plus récemment, une nouvelle voie de signalisation des dommages à l'ADN a été mise en évidence, qui inhibe l'action de la télomérase au niveau d'une cassure de l'ADN via la phosphorylation de l'hélicase Pif1. Cette phosphorylation, dépendante de la kinase ATR (Mec1), inhibe la réparation aberrante de la cassure d'ADN par la télomérase. Nous étudions au sein de l’équipe la protéine RPA (Replication Protein A), affine de l'ADN simple-brin, qui recrute à la fois la protéine de recombinaison homologue Rad52 et la protéine Mec1 impliquée dans la cascade de signalisation des dommages de l'ADN. Lors de l'étude de différentes fonctions de l'hélicase Pif1, j'ai mis en évidence une interaction robuste entre Pif1 et RPA. J'ai identifié un allèle de RFA1, rfa1-D228Y, affectant l'interaction Pif1/RPA et montré, grâce à cet allèle, que cette interaction est impliquée dans le recrutement de Pif1 au niveau d'une cassure double-brins (CDB) induite de l'ADN. Enfin, il a été récemment mis en évidence un nouveau rôle de Pif1 dans la stabilité des G-Quadruplexes durant la réplication du brin avancé. En effet, les cellules pif1 présentent un taux d'instabilité du minisatellite CEB1 inséré sur le brin avancé d'environ 56%, correspondant à des réarrangements de l'ADN de type contractions ou expansions. Lors de l'étude de l'interaction Pif1/RPA, j'ai montré que la mutation rfa1-D228Y entraîne une instabilité du minisatellite CEB1 présent sur le brin avancé, similaire à celle observée avec la délétion pif1∆. Nous suggérons un modèle selon lequel RPA recruterait Pif1 au cours de différents processus cellulaires tels que la réponse des dommages à l'ADN ou la réplication des structures particulières de l'ADN telles que les G-Quadruplexes.En parallèle de cette étude, j’ai étudié le rôle de l'histone méthyltransférase Set1 spécifique de la lysine 4 de l'histone H3 dans la régulation de la taille des télomères. J’ai mis en évidence que le raccourcissement des télomères observé dans un mutant set1 est lié à l'absence de di- et tri-méthylation de H3K4 alors que la perte de monométhylation n'a aucun effet. Cependant, le défaut de la taille des télomères dans les cellules set1∆ n'est pas uniquement lié au défaut de méthylation de H3K4 mais semble impliquer une autre activité de Set1 qu’il reste à déterminer. Etonnamment, nous avons observé que la délétion de SET1 aggrave le raccourcissement des télomères des mutants dont les gènes sont impliqués dans la régulation positive de la taille des télomères et inversement, aggrave le rallongement des télomères de mutants dont les gènes sont impliqués dans la régulation négative des télomères. Nous postulons que l’inactivation de Set1 pourrait à la fois inhiber l’activation précoce des origines de réplication des régions subtélomériques et conduire à un sur-raccourcissement de la taille des télomères, à la fois affecter la synthèse du brin complémentaire dans un contexte où celle-ci est affectée (mutant rif1) et conduire à un sur-allongement des télomères. Une seconde hypothèse propose que Set1 régulerait la transcription deTERRA dans des cellules ayant les télomères déprotégés (mutant rif) entraînant le sur-allongement des télomères. / Different roles of Pif1 helicase have been described, the best documented being to remove telomerase from telomeres by unwinding the RNA/DNA hybrid between telomerase RNA and telomeric DNA. Recently, it was shown that the DNA damage signaling down-regulates telomerase action at a DNA break via Pif1 phosphorylation. Pif1 phosphorylation is dependent of the checkpoint kinase ATR (Mec1) and prevents the aberrant healing of broken DNA ends by telomerase. In our laboratory, we study RPA (Replication Protein A), a single-strand DNA binding protein which recruits the proteins involved in the DNA damage response and checkpoint regulation, such as the homologous recombination protein Rad52 and Mec1 involved in the DNA damage response. I have identified an allele of RFA1, rfa1-D228Y, that affects the Pif1/RPA interaction and showed using this allele that this interaction is implicated in the Pif1 recruitment at an induced double-strand break. Recently, a new role of Pif1 in the stability of G-quadruplex DNA during the leading strand replication has been described. pif1 cells show an instability about 56% of the human minisatellite CEB1 inserted on the leading strand. During my study of the Pif1/RPA interaction, I showed that the rfa1-D228Y mutant induced a similar instability of CEB1 minisatellite on the leading strand. We suggested that RPA would recruit Pif1 for many cellular processes such as DNA damage response or replication of secondary DNA structures such as G-Quadruplexes.In parallel, I have studied the role of the Set1 Histone methyltransferase which catalyse the methylation of the lysine 4 of histone H3, in the regulation of telomere length. I showed that the telomere shortening observed in set1 mutant is due to the loss of di- and tri-methylation of H3K4 while the loss of monomethylation has no effect. However, the short telomeres in set1∆ cells is not only due to the methylation defect shedding light on a new Set1 activity that remains to be fully characterized.. The SET1 deletion aggravates the telomere shortening of mutants which genes are involved in positive regulation of telomere length and conversely, aggravates the lengthening of mutants which genes are involved in negative regulation of telomere length. We postulated that inactivation of Set1 could affect at once activation of early-replication origins and leads to a telomere shortening, and affect synthesis of complementary strand in a context where this one is affected (mutant rif1) and leads to a telomere lengthening. A second hypothesis propose that Set1 would regulate TERRA transcription in cells with deprotected-telomere (rif mutant) leading to the lengthening of telomeres.
17

Etude du rôle de la protéine phosphatase de type 1 Glc7 dans l'inactivation des mécanismes de surveillance de l'ADN et analyse des interrégulations entre le mécanisme de surveillance de l'ADN et celui du fuseau mitotique chez la levure Saccharomyces cerevisiae.

Clemenson, Céline 04 May 2007 (has links) (PDF)
Chez les eucaryotes, la transmission correcte du patrimoine génétique au cours de la division cellulaire repose en partie sur l'existence de voies de surveillance ou « checkpoints » contrôlant d'une part l'intégrité de l'ADN et d'autre part la répartition équitable du génome dupliqué dans les cellules-filles au cours de la mitose. Des altérations dans la machinerie de ségrégation des chromosomes activent le checkpoint du fuseau mitotique, tandis que les checkpoints de l'ADN sont activés suite à des lésions de l'ADN ou à des défauts de la réplication. Ces systèmes de surveillance contrôlent de multiples réponses dont des arrêts de la progression du cycle de division cellulaire. Ces voies de surveillance sont très conservées chez les eucaryotes et des mutations affectant leurs composants sont fréquemment retrouvées dans des lignées tumorales humaines.<br />L'activation des checkpoints de l'ADN est, à ce jour, assez bien appréhendée et met en jeu de nombreux événements de phosphorylation. La reprise du cycle concomitante à la désactivation de ces checkpoints est moins bien comprise alors qu'elle constitue une étape tout aussi essentielle à la survie cellulaire. Nous avons montré que la surexpression de la protéine phosphatase de type 1 Glc7 facilitait l'inactivation des checkpoints de l'ADN en cas de cassures double-brin de l'ADN chez un eucaryote modèle, la levure Saccharomyces cerevisiae.<br />Les checkpoints de l'ADN et du fuseau étaient considérés comme des voies indépendantes, mais nos travaux ont montré qu'il existe des interconnections entre les deux. Nous avons observé que, d'une part, l'activité du checkpoint du fuseau et ses composants influencent la réponse au stress génotoxique, et que, d'autre part, l'état de phosphorylation de deux composants centraux des checkpoints de l'ADN, Rad53 et Rad9, était modifié en cas d'activation du checkpoint du fuseau. Nous présentons ici la caractérisation de ces modifications post-traductionnelles ainsi que la recherche de leurs significations physiologiques.
18

Détection, caractérisation et mesure d'un nouveau dommage radio-induit de l'ADN isolé et cellulaire

Regulus, Peggy 09 October 2006 (has links) (PDF)
L'acide désoxyribonucléique (ADN) est porteur de l'information génétique et les conséquences biologiques des lésions survenant sur cette molécule peuvent être importantes. Nous avons utilisé la chromatographie liquide haute performance couplée à la spectrométrie de masse en mode tandem (CLHP/SM-SM) pour mettre en évidence la formation de nouvelles lésions radio-induites de l'ADN. L'analyse par CLHP/SM-SM en mode « perte de neutre » utilise la perte de 116 unités de masse, spécifique de la fragmentation de la majorité des nucléosides. Ainsi, 4 nouvelles lésions radio-induites, dont la quantité formée est proportionnelle à la dose d'irradiation, ont été détectées dans l'ADN isolé. L'une d'elles, la dCyd341 est de plus formée dans l'ADN cellulaire. Il s'agit d'une modification de la 2'-désoxycytidine (dCyd) ayant un poids moléculaire de 341 uma. La synthèse chimique de ce nucléoside modifié nous a permis de le caractériser par résonance magnétique nucléaire (RMN) et de déterminer sa masse exacte. Un mécanisme de formation a été proposé, dans lequel l'évènement initiateur est l'arrachement de l'atome d'hydrogène en position 4 du 2-désoxyribose (dR) génèrant un intermédiaire aldéhydique capable de réagir sur une cytosine voisine. La dCyd341 peut être considérée comme un dommage complexe, sa formation impliquant une cassure de la chaîne d'ADN et un pontage entre un produit de modification du dR et une dCyd voisine. En plus de sa caractérisation, de premières études biologiques portant sur la réparation de la dCyd341 ont révélé que la lésion est excisée de l'ADN avec une certaine efficacité.
19

Comprendre le rôle de RecN dans la voie de réparation CDB chez Deinococcus radiodurans

Pellegrino, Simone 28 February 2012 (has links) (PDF)
Deinococcus radiodurans est une bactérie à gram-positive connue pour son extrême résistance à une grande variété d'agents endommageant l'ADN. Parmi ces derniers, les rayonnements ionisants et la dessiccation sont les plus nocifs pour la cellule, car ils introduisent des cassures dans le génome. Les cassures double brin (CDB) sont particulièrement dangereuses et doivent être réparées de façon très efficace, afin d'éviter l'apparition de mutations pouvant mener à la mort de la cellule ou de l'organisme. La recombinaison homologue (RH) est le mécanisme le plus efficace pour la réparation des CDBs. D. radiodurans est capable de restaurer entièrement son génome en à peine 3 heures, et elle accomplit la totalité du processus par la voie RecFOR. Afin d'être réparées, les CDBs doivent d'abord être reconnu. Cette étape importante, qui a lieu peu de temps après l'apparition du dommage dans la cellule, implique la protéine RecN. RecN est recrutée dès les premières étapes de la réparation de l'ADN et des études in vivo ont démontré qu'elle avait tendance à se localiser dans des foyers discrets. Des études in vitro suggèrent également que RecN favorise l'assemblage de fragments d'ADN, une fonction décrite précédemment pour les protéines SMC (telle que cohesin), qui sont structurellement similaires à RecN. De nombreuses études structurales ont été effectuées sur la protéine de type SMC, Rad50, alors qu'à présent aucune information structurale n'est disponible pour RecN. Le travail présenté ici a porté sur la caractérisation structurale de RecN et de ses domaines. Nous avons obtenu les structures cristallines de trois constructions (se chevauchant partiellement) de RecN et une étude de diffusions des rayons X aux petits angles a été effectuée sur les domaines séparés de RecN et sur la protéine entière. Les données obtenues en solution ont complété notre étude cristallographique et nous ont permis de construire un modèle atomique de la protéine entière. Des mutations ont été conçues et les protéines mutées ont été produites et utilisées pour la caractérisation de l'activité d'hydrolyse de l'ATP caractéristique de cette famille de protéines. Des études biochimiques approfondies ont été effectuées sur les différentes constructions et mutants de RecN afin de déterminer le rôle de chacun des ses domaines. Nos résultat nous ont permis de proposer un modèle qui explique comment RecN reconnaît les CDB, maintient les deux extrémités de l'ADN, et prépare l'ADN pour la réparation par les protéines RecFOR.
20

Comprendre le rôle de RecN dans la voie de réparation CDB chez Deinococcus radiodurans / Understanding the role of RecN in DSB repair pathway in Deinococcus radiodurans

Pellegrino, Simone 28 February 2012 (has links)
Deinococcus radiodurans est une bactérie à gram-positive connue pour son extrême résistance à une grande variété d'agents endommageant l'ADN. Parmi ces derniers, les rayonnements ionisants et la dessiccation sont les plus nocifs pour la cellule, car ils introduisent des cassures dans le génome. Les cassures double brin (CDB) sont particulièrement dangereuses et doivent être réparées de façon très efficace, afin d'éviter l'apparition de mutations pouvant mener à la mort de la cellule ou de l'organisme. La recombinaison homologue (RH) est le mécanisme le plus efficace pour la réparation des CDBs. D. radiodurans est capable de restaurer entièrement son génome en à peine 3 heures, et elle accomplit la totalité du processus par la voie RecFOR. Afin d'être réparées, les CDBs doivent d'abord être reconnu. Cette étape importante, qui a lieu peu de temps après l'apparition du dommage dans la cellule, implique la protéine RecN. RecN est recrutée dès les premières étapes de la réparation de l'ADN et des études in vivo ont démontré qu'elle avait tendance à se localiser dans des foyers discrets. Des études in vitro suggèrent également que RecN favorise l'assemblage de fragments d'ADN, une fonction décrite précédemment pour les protéines SMC (telle que cohesin), qui sont structurellement similaires à RecN. De nombreuses études structurales ont été effectuées sur la protéine de type SMC, Rad50, alors qu'à présent aucune information structurale n'est disponible pour RecN. Le travail présenté ici a porté sur la caractérisation structurale de RecN et de ses domaines. Nous avons obtenu les structures cristallines de trois constructions (se chevauchant partiellement) de RecN et une étude de diffusions des rayons X aux petits angles a été effectuée sur les domaines séparés de RecN et sur la protéine entière. Les données obtenues en solution ont complété notre étude cristallographique et nous ont permis de construire un modèle atomique de la protéine entière. Des mutations ont été conçues et les protéines mutées ont été produites et utilisées pour la caractérisation de l'activité d'hydrolyse de l'ATP caractéristique de cette famille de protéines. Des études biochimiques approfondies ont été effectuées sur les différentes constructions et mutants de RecN afin de déterminer le rôle de chacun des ses domaines. Nos résultat nous ont permis de proposer un modèle qui explique comment RecN reconnaît les CDB, maintient les deux extrémités de l'ADN, et prépare l'ADN pour la réparation par les protéines RecFOR. / Deinococcus radiodurans is a Gram-positive bacterium known for its extreme resistance to a broad variety of DNA damaging agents. Among these, Ionizing Radiations and desiccation are the most harmful for the cell, since they introduce breaks in the genome. Double Strand Breaks (DSB) are particularly hazardous for the cell and they need to be repaired very efficiently, in order to avoid mutations leading to altered, if not lethal, phenotypes. Homologous Recombination (HR) is the most efficient mechanism by which DSBs are repaired. D. radiodurans is able to completely restore its genome in only 3 hours, and it accomplishes the entire process through the RecFOR pathway. In order to be repaired, DSBs first need to be recognized. The protein believed to be responsible for this important step that takes place soon after the damage occurs in the cell, is RecN. RecN is recruited at the early stages of DNA repair and in vivo studies have demonstrated its propensity to localize to discrete foci. In vitro studies also suggest that RecN possesses a DNA end-joining activity previously observed for SMC proteins (such as cohesin), which are structurally related to RecN. Several structural studies have been carried out on the SMC-like protein, Rad50, but so far no structural information is available for RecN. The work presented here focused on the structural characterization of RecN and its constitutive domains. We obtained crystal structures of three partially overlapping constructs of RecN and Small Angle X-ray Scattering was performed on the individual domains and the full-length protein. The study of RecN in solution complemented our crystallographic study and enabled us to build a reliable, atomic model of the full-length protein. Mutations were designed and the mutant RecN proteins were produced in order to characterize the ATP hydrolysis activity of RecN, which is a conserved feature of this family of proteins. Extensive biochemical studies were carried out on wild-type and mutants of both the full-length protein and the single domains, in order to determine the role and function of each of the domains. Our results led us to propose a model for how RecN might recognize DSBs, tether two broken DNA ends and prepare the DNA for subsequent repair by the RecFOR machinery.

Page generated in 0.0578 seconds