• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the roles of auxin and gibberellin in Arabidopsis hypocotyl elongation

Collett, Clare E. January 2001 (has links)
No description available.
2

Aspects of root growth in cotton seedlings

Chachar, Qamaruddin I. January 1995 (has links)
No description available.
3

The role of adaptor proteins Crk and CrkL in lens development

Collins, Tamica N. 04 May 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cell shape changes and signaling pathways are essential for the development and function of the lens. During lens development proliferating epithelial cells will migrate down to the equator of the lens, differentiate into lens fiber cells, and begin to elongate along the lens capsule. The Fibroblast Growth Factor (FGF) signaling pathway has been extensively studied for its role in lens fiber cell differentiation and elongation. However, the main mediators of FGF stimulated lens fiber cell elongation have not been identified. Adaptor proteins Crk and CrkL are SH2- and SH3-containing proteins that transduce signals from upstream tyrosine phosphorylated proteins to downstream effectors, including Ras, Rac1 and Rap1, which are important for cell proliferation, adhesion and migration. Underlying their diverse function, these two adaptor proteins have been implicated in receptor tyrosine kinase signaling, focal adhesion assembly, and cell shape. To explore the role of Crk and CrkL in FGF signaling-dependent lens development and fiber elongation, we employed Cre/LoxP system to generate a lens specific knockout of Crk/CrkL. This led to extracellular matrix defects, disorganization of the lens fiber cells, and a defect in lens fiber cell elongation. Deletion of Crk and CrkL in the lens also mitigated the gain-of-function phenotype caused by overexpression of FGF3, indicating an epistatic relationship between Crk/CrkL and FGF signaling during lens fiber cell elongation. Further studies, revealed that the activity of Crk and CrkL in FGF signaling is controlled by the phosphatase Shp2 and the defect observed in lens fiber cell elongation can be rescued by constitutive activation of the GTPases Ras and Rac1 in the Crk and CrkL mutant lens. Interestingly, the deletion of the GTPases Rap1 in the lens showed no obvious phenotype pertaining to lens fiber cell elongation. These findings suggest that Crk and CrkL play an important role in integrating FGF signaling and mediating lens fiber cell elongation during lens development.
4

The Cloning and Characterization of Two ROP/RAC G-Proteins from Gossypium Hirsutum

Asprodites, Nicole 20 May 2005 (has links)
Rop/Rac proteins are plant-specific monomeric guanosine triphosphate-binding proteins (G-proteins) with important functions in plant development. Until recently, only three cotton (Gossypium hirsutum) Rop/Rac G-protein genes were sequenced, representing subfamilies III and IV of the plant monomeric Gprotein family. In this project, members of subfamilies II and I were cloned, sequenced, and named GhRac2 and GhRac3, respectively. Using real-time reverse transcription PCR, expression of GhRac2 was highest during fiber elongation, decreasing significantly when cellulose biosynthesis began. Transcript abundance of GhRac3 doubled between fiber elongation and secondary wall synthesis, remaining constant until 20 days post-anthesis. Expression of GhRac2 and GhRac3 was compared between the unfertilized ovules of Gossypium hirsutum, Texas Marker 1 and two near-isogenic fiber-impaired mutants. Expression of GhRac2 and GhRac3 was significantly higher in wild type ovules than in Ligon lintless, a mutant impaired in fiber elongation, but was not different in Naked Seed, a mutant impaired in fiber initiation.
5

Mise en évidence d’éléments de signalisation en aval du récepteur d’auxine ABP1 / Discovering of new signalling components downstream the auxin receptor ABP1

Paque, Sébastien 07 June 2013 (has links)
L’auxine est une hormone fondamentale dans le développement et la physiologie de la plante. L’obtention des plantes conditionnelles pour ABP1 a permis la mise en évidence de son importance dans la signalisation de l’auxine. Ainsi ABP1 agirait d’une part sur l’endocytose de vésicules à clathrine au niveau de la membrane plasmique et d’autre part sur la stabilité des Aux/IAAs. Ce dernier résultat suggère qu’une voie de signalisation en aval d’ABP1 permet de modifier l’homéostasie de la voie de régulation transcriptionnelle de l’auxine, la voie SCFTIR/AFBs.Mon travail de thèse a consisté à caractériser les plantes inactivées pour ABP1 lors de la croissance à l’obscurité dans la plante modèle Arabidopsis thaliana. Mon étude montre qu’ABP1 contrôle l’expansion cellulaire en jouant sur la plasticité pariétale. J’ai ainsi pu mettre en évidence une modification de la proportion de formes fucosylées des chaînes latérales des xyloglucanes, le principal hémicellulose de la paroi primaire chez Arabidopsis. Cette modification de la fucosylation des xyloglucanes requiert des changements d’expressions géniques médiés ce qui conforte l’existence d’une voie de signalisation reliant ABP1 à la voie SCFTIR/AFBs.En parallèle, j’ai mené une approche génétique de recherche de suppresseurs du phénotype lié à l’inactivation d’ABP1 à l’obscurité. Parmi les dix lignées validées, j’ai d’ores et déjà identifié le gène DCL3 comme étant impliqué dans la suppression du phénotype ss12k et mis en évidence l’implication de la voie d’extinction de gènes par l’intermédiaire de petits ARNs non codant (voie RdDM) dans le contrôle de l’expansion cellulaire. / Auxin is a key hormone concerning the control of plant physiology and the impact on plant development. Conditional plants for ABP1 allowed the post embryonic studies and have contributed to demonstrate the involvement of ABP1 in a broad range of cellular and developmental responses including the clathrin-dependent endocytosis and the regulation of Aux/IAAs homeostasis. These datas revealed that an ABP1-dependent pathway is acting on transcriptional regulation by modulating the SCFTIR/AFBs signaling pathway. I took advantage of the phenotype of dark grown seedlings to study cell expansion in ABP1 loss of function background. ABP1 knockdown induced modifications of fucosylated form of xyloglucan side chains that are the main hemicellulose in Arabidopsis primary cell wall. All data converge to show that this effect results from alterations of expression of cell wall related genes via the modulation of the SCFTIR/AFBs pathway. In parallel, I used a suppressor approach to discover new signaling components downstream of ABP1. Characterisation of one of the suppressor leads to the identification of a loss of function allele of DCL3. This data demonstrates the involvement of the RNA directed DNA methylation pathway downstream of ABP1.
6

Etude biochimique comparative des "Actin Depolymerizing Factors"(ADFs) d'Arabidopsis : activité inattendue de pontage des filaments d'actine pour les ADFs appartenant à la sous-classe III / Comparative biochemical analysis of Arabidopsis Actin-Depolymerizing Factors (ADFs) : unexpected actin-crosslinking activity for subclass III ADFs

Tholl, Stéphane 02 March 2012 (has links)
L'organisation et la dynamique du cytosquelette d'actine sont finement régulées par une multitude de "actin-binding proteins" (ABPs). Parmi ces dernières, les ADFs (actin-depolymerizing factors) jouent un rôle majeur dans le turnover des filaments d'actine en induisant leur découpage et en facilitant leur dépolymérisation. Arabidopsis thaliana possède 11 protéines ADFs fonctionnelles qui peuvent être classées en 4 sous-classes sur la base de leur profil d'expression et liens phylogénétiques. Nous démontrons que l’ADF5 et l’ADF9 de la sous-classe III sont des ADFs atypiques puisqu’elles n’induisent pas la dépolymérisation des filaments d’actine. Au contraire, elles montrent une forte capacité à stabiliser et ponter les filaments d’actine en longs câbles in vitro ainsi que in vivo. Nous décrivons la caractérisation d’un nouveau mutant knockout d’Arabidopsis. Les données suggèrent un rôle d’ADF9 dans l’élongation cellulaire. Ainsi, l’hypocotyle est significativement plus long dans les mutants adf9 que dans les plantules sauvages, et ce phénotype est amplifié par des conditions de croissance à l’obscurité dans lesquelles le gène ADF9 est normalement préférentiellement exprimé. L’analyse des cellules épidermiques d’hypocotyle indique que ce phénotype est essentiellement dut à une augmentation de l’élongation cellulaire. De manière surprenante, les plantules mutantes adf9 présentent également des racines plus courtes que les contrôles, suggérant un lien complexe entre l’organisation du cytosquelette d’actine et l’élongation cellulaire. Finalement, la capacité réduite du cal issue des plantules adf9 à proliférer suggère également un rôle d’ADF9 dans la division cellulaire. / Actin cytoskeleton organization and dynamics are tightly regulated by many actin-binding proteins (ABPs). Among ABPs, the actin-depolymerizing factors (ADFs) play a major role in actin filament turnover by promoting actin filament severing and facilitating pointed end depolymerization. Arabidopsis thaliana has 11 functional proteins that can be classified into four subclasses according to their expression profile and phylogenetic relationships. We provide evidence that subclass III ADF5 and ADF9 are unconventional ADFs since they do not display typical actin filament depolymerizing activities. Instead, they exhibit opposite activities with a surprisingly high ability to stabilize and crosslink actin filaments into long and thick actin bundles both in vitro and in live cells. Competition experiments with ADF1 support that ADF9 antagonizes the depolymerizing activity of conventional ADFs. We report the characterization of a not yet described knockout Arabidopsis mutant. Data strongly suggests a role for ADF9 in cell elongation. Indeed, hypocotyls are significantly longer in adf9 mutant than in wild- type seedlings, and this phenotype is enhanced in dark growth conditions in which the ADF9 gene is normally preferentially expressed. The analysis of hypocotyl epidermal cells indicates that this phenotype is essentially due to an increase of cell expansion. Surprisingly, adf9 seedlings exhibit shorter roots than control plants, suggesting a complex link between actin cytoskeleton organization and cell elongation. Finally, the reduced ability of adf9- derived calli to proliferate supports a role for ADF9 in cell division as well.
7

Los péptidos DEVIL: estudio de su papel en el control de la proliferación celular y la morfogénesis de las plantas

Alarcia García, Ana 19 February 2024 (has links)
[ES] Los péptidos DEVIL/ROTUNDIFOLIA (DVL/RTFL) constituyen una familia de péptidos de pequeño tamaño codificados por la familia génica DVL/RTFL de 24 miembros en A. thaliana. Estos genes fueron caracterizados por los fenotipos que confiere su sobreexpresión, que provoca cambios pronunciados en la morfología de la planta con hojas de roseta más redondeadas, plantas de menor estatura, peciolos cortos e inflorescencias compactas. Estos fenotipos afectan de un modo fascinante a la morfología de los frutos, que varía según qué miembro de la familia se sobreexprese, demostrando tener un papel en el desarrollo de múltiples órganos de la planta. Se ha visto que los péptidos DVL/RTFL se localizan en la membrana plasmática y que comparten homología en sus secuencias, con un dominio conservado en el extremo C-terminal, estando además ampliamente conservados en el mundo vegetal. Tanto su localización como dominio funcional conservado resultan ser esenciales para su actividad. Sin embargo y, a pesar de los fenotipos sorprendentes causados por la sobreexpresión de diferentes genes DVL/RTFL, las líneas de pérdida de función no aportan información sobre la función biológica de la familia DVL/RTFL. En el laboratorio donde se ha realizado este trabajo, se ha avanzado en los últimos años en la caracterización de estos péptidos, su modo de interacción con la membrana celular y la determinación de sus patrones de expresión, así como en la identificación de mutantes de pérdida de función. Para continuar en estas direcciones, en este proyecto se generaron combinaciones de mutantes múltiples estables en diferentes genes DVL/RTFL combinando mutantes de inserción de T-DNA con mutantes generados por CRISPR/Cas9 (dvl3dvl5dvl6dvl1dvl4rtfl9dvl8dvl11rtfl11dvl19). A pesar de que la pérdida de función de múltiples genes DVL/RTFL no mostró fenotipos morfológicos evidentes, análisis transcriptómicos y proteómicos apoyaron la hipótesis de la elevada redundancia génica entre los miembros de esta familia y de que podrían tener un papel en la regulación de procesos como el crecimiento y desarrollo del tubo polínico o el crecimiento distal de la célula. Experimentos donde analizamos la germinación de polen, el crecimiento de tubo polínico o el desarrollo de pelos radiculares no mostraron que los péptidos DVL/RTFL afectaran de un modo significativo estos procesos , pero sí sugirieron que tienen un rol generalizado aportando estabilidad o robustez al proceso de morfogénesis vía elongación celular. Adicionalmente se llevaron a cabo estudios de topología de membrana que permitieron confirmar su localización en la membrana plasmática, de tal manera que estos péptidos no se integraban en la membrana, sino que estarían asociados a su interfase. La posibilidad de que la asociación se llevase a cabo a través de otras proteínas hizo que se comprobasen in planta interacciones de los péptidos DVL1 y DVL11 con proteínas candidatas identificadas en un escrutinio de doble híbrido de levadura y relacionadas con procesos de tráfico intra e intercelular, división y elongación celular. Su interacción confirmada con proteínas como SRC2, BSK6 o CDC48 llevó a estudiar la posible relación funcional con éstas y en especial con CDC48 por su implicación en procesos de división, expansión y diferenciación celular, sin obtener resultados concluyentes. Los escasos resultados obtenidos en Arabidopsis nos condujo a estudiar el papel del único homólogo DVL/RTFL en M. polymorpha. Tras generar y caracterizar líneas de pérdida de función y sobreexpresoras MpDVL, hemos podido confirmar la conservación funcional de los péptidos DVL/RTFL en especies de plantas tan alejadas evolutivamente, así como determinar que no se trata de péptidos esenciales para el desarrollo de la planta pero que sí parecen tener un papel en los procesos de morfogénesis vía elongación celular aportando robustez al sistema. Este trabajo pone de manifiesto que la necesidad de profundizar en el estudio de los péptidos DVL/RTFL. / [CA] Els pèptids DEVIL/ROTUNDIFOLIA (DVL/DVL) constitueixen una família de pèptids de xicoteta grandària codificats per la família gènica DVL/RTFL de 24 membres en A. thaliana. Aquests gens van ser caracteritzats pels fenotips que confereix la seua sobreexpressió, que provoca canvis pronunciats en la morfologia de la planta amb fulles de roseta més arredonides, plantes de menor alçada, pecíols curts i inflorescències compactes. A més, aquests fenotips afecten d'una manera fascinant a la morfologia dels fruits, que varia segons quin membre de la família es sobreexprese, demostrant tindre un paper en el desenvolupament de múltiples òrgans de la planta. També s'ha vist que els pèptids DVL/RTFL es localitzen en la membrana plasmàtica i que comparteixen homologia en les seues seqüències, amb un domini conservat en l'extrem C-terminal, estant a més àmpliament conservats en el món vegetal. Tant la seua localització com domini funcional conservat resulten ser essencials per a la seua activitat gènica adequada. No obstant això i, malgrat els fenotips sorprenents observats en la sobreexpressió de diferents gens DVL/RTFL, les línies de pèrdua de funció no aporten informació sobre la funció biològica de la família DVL/RTFL. En el laboratori on s'ha fet aquest treball, s'ha avançat en els últims anys en la caracterització d'aquests pèptids, la seua manera d'interacció amb la membrana cel·lular i la determinació dels seus patrons d'expressió, així com en la identificació de mutants de pèrdua de funció. Per a continuar en aquestes direccions, en aquest projecte es van generar combinacions de mutants múltiples estables en diferents gens DVL/RTFL combinant mutants d'inserció de T-DNA amb mutants generats per CRISPR/Cas9 (dvl3dvl5dvl6dvl1dvl4rtfl9dvl8dvl11rtfl11dvl19). A pesar que la pèrdua de funció de múltiples gens DVL/RTFL no va mostrar fenotips morfològics evidents, anàlisis transcriptòmics i proteòmics van donar suport a la hipòtesi de l'elevada redundància gènica entre els membres d'aquesta família i que a més tenen un paper en la regulació de processos com són la morfogènesi, el creixement i desenvolupament del tub pol·línic o el creixement distal de la cèl·lula. Experiments de germinació de pol·len, creixement de tub pol·línic o desenvolupament de pèls radiculars duts a terme van demostrar que els pèptids DVL/RTFL no tenien un paper significatiu en aquests processos, però sí que van suggerir que tenen un rol generalitzat aportant estabilitat o robustesa al procés de morfogènesi via elongació cel·lular. Addicionalment es van dur a terme estudis de topologia de membrana que van permetre confirmar la seua localització en la membrana plasmàtica, de tal manera que aquests pèptids no s'integraven en la membrana si no que estarien associats a la seua interfase. La possibilitat que aquesta associació es duguera a terme a través d'altres proteïnes va fer que es comprovaren in planta interaccions dels pèptids DVL1 i DVL11 amb proteïnes candidates extretes d'un escrutini de doble híbrid de llevat i relacionades amb processos de trànsit intra i intercel·lular, divisió i elongació cel·lular. La seua interacció confirmada amb proteïnes com SRC2, BSK6 o CDC48 va portar a estudiar la possible relació funcional amb aquests i especialment amb CDC48 per la seua implicació en processos de divisió, expansió i diferenciació cel·lular, sense obtindre resultats concloents. Els escassos resultats obtinguts en Arabidopsis ens va conduir a estudiar el paper de l'únic homòleg DVL/RTFL en M. polymorpha. Després de generar i caracteritzar línies de pèrdua de funció i de sobreexpressió MpDVL, hem pogut confirmar la conservació funcional dels pèptids DVL/RTFL en espècies de plantes tan allunyades evolutivament, així com determinar que no es tracta de pèptids essencials per al desenvolupament de la planta però que sí que semblen tindre un paper en els processos de morfogènesis via elongació cel·lular aportant robustesa al sistema. / [EN] DEVIL/ROTUNDIFOLIA (DVL/DVL) peptides constitute a family of small peptides encoded by the 24-member DEVIL/ROTUNDIFOLIA (DVL/RTFL) gene family in Arabidopsis thaliana. These genes were characterized by the phenotypes conferred by their overexpression, which causes pronounced changes in plant morphology with round rosette leaves, shorter plants, short petioles, and compact inflorescences. In addition, these phenotypes dramatically affect fruit morphology, which varies depending on which family member is overexpressed, proving to play a role in the development of multiple plant organs. It has also been shown that DVL/RTFL peptides are located in the plasma membrane, that they share sequence homology, mostly in a conserved C-terminal domain, and that they are also widely conserved among land plants. Both the localization at the membrane and conserved functional domain are essential for proper gene activity. However, despite the surprising overexpression phenotypes observed, the loss-of-function mutants do not provide information on the DVL/RTFL biological function. In the lab where this work has been carried out, progress has been made in the characterization of these peptides, determining how they interact with the plasma membrane, how they are expressed and accumulated, as well as identifying loss-of-function mutants. To continue in these directions, in this project we have generated combinations of multiple stable DVL/RTFL mutants by combining T-DNA insertion mutants with mutants generated by CRISPR/Cas9 (dvl3 dvl5 dvl6 dvl1 dvl4 rtfl9 dvl8 dvl11 rtfl11 dvl19). Even though the loss of function of multiple DVL/RTFL genes did not show evident morphological phenotypes, transcriptomic and proteomic analyzes supported the hypothesis of a high gene redundancy among the members of this family and suggested that they might have a role in the regulation of processes such as pollen tube growth and development or cell tip growth. However, pollen germination, pollen tube growth or root hair development experiments did not demostrate that DVL/RTFL peptides had a significant role in these processes, but they suggested that they may have a general role in providing stability or robustness to the morphogenesis process via cell elongation. Additionally, membrane topology studies were carried out to confirm their location in the plasma membrane, in such a way that these peptides were not integrated but would be associated with the membrane interface. The possibility that this association was carried out through other proteins led to the in planta verification of DVL1 and DVL11 peptide interactions with candidate proteins identified in a previous yeast two-hybrid screening and related to intracellular and intercellular trafficking processes cell division and elongation. The confirmed interaction with proteins such as SRC2, BSK6 or CDC48 led us to study the possible functional relationship with these, and especially with CDC48 due to its involvement in cell division, expansion, and differentiation processes, but unfortunately, we did not obtain conclusive results. The unconclussive results obtained in Arabidopsis led us to study the role of the unique DVL/RTFL homologue in Marchantia polymorpha. After generating and characterizing MpDVL loss-of-function and overexpression lines, we have been able to confirm the functional conservation of the DVL/RTFL peptides in so evolutionarily distant plant species, as well as to determine that they are not essential for plant development, but they seem to have a role in the morphogenesis processes via cell elongation, providing robustness to the system. This work highlights the need of furthering the study of DVL/RTFL peptides to discover the mechanism by which they participate in plant development processes and to determine their biological function in depth. / Esta Tesis Doctoral ha sido financiada por la Generalitat Valenciana con una Subvención para la Contratación de Personal Investigador Predoctoral (ACIF/2018/260), el Ministerio de Ciencia e Innovación (proyectos BIO2015-64531-R y RTI2018-099239-B-I00), la Generalitat Valenciana (proyecto PROMETEU/2019/004) y el ExpoSeed H2020-MSCA-RISE-2015-691109 / Alarcia García, A. (2024). Los péptidos DEVIL: estudio de su papel en el control de la proliferación celular y la morfogénesis de las plantas [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/202903
8

Bases génétiques de la croissance hétérotrophe de l'hypocotyle en conditions optimales et sous stress abiotiques chez Medicago truncatula : contribution du nombre et de la longueur des cellules / Genetic bases of the heterotrophic growth of hypocotyl in optimal conditions and under abiotic stresses in Medicago truncatula : contribution of the number and length of the cells

Youssef, Chvan 15 October 2015 (has links)
La croissance hétérotrophe de l’hypocotyle est une étape clé pour la réussite de la levée. La présente étude est focalisée sur le déterminisme génétique de l’allongement de cet organe à l’obscurité chez Medicago truncatula en analysant le nombre et la longueur des cellules de l’épiderme, tissu gouvernant l’allongement des organes. Une grande variabilité génétique du nombre de cellules a été révélée dans les graines de 15 génotypes représentatifs de la diversité génétique de l’espèce. La stabilité de ce caractère dans des graines provenant de différentes productions suggère qu’il est sous contrôle génétique fort. Il a été montré que ce nombre de cellules, préétabli dans les graines, est le principal déterminant de la variation génotypique de la longueur de hypocotyle en conditions optimales de croissance. Par contre, l'élongation cellulaire devient le déterminant majeur des différences génotypiques observées sous stress abiotiques (basse température, déficit hydrique).Des loci contrôlant le nombre de cellules de l’épiderme et leur longueur maximale à basse température ont ensuite été identifiés dans une population de lignées recombinantes. Ceux ayant un impact sur l’élongation de l’hypocotyle à basse température ont été mis en évidence. Enfin, deux génotypes présentant un nombre de cellules similaire mais des capacités d’allongement cellulaire contrastées ont été plus finement comparés. Des protéines ayant un rôle dans la formation et l’organisation du cytosquelette et dans la modification des parois cellulaires ont été révélées en lien avec les différences d’allongeme / The heterotrophic growth of hypocotyl is a crucial process for successful seedling emergence. The present study is focused on the genetic determinism of its elongation in darkness in Medicago truncatula by analyzing the number and the length of cells of epidermis, the tissue controlling organ elongation.A large genetic variability of the epidermal cell number of the hypocotyl in seeds of 15 genotypes representative of the genetic diversity of the species was revealed. The stability of this trait in the seeds collected from different productions suggests it is under strong genetic control. This cell number was shown to be the main contributor of genotypic variation of hypocotyl length in optimal conditions. On the other hand, cell elongation becomes the major determinant of the genotypic differences observed under abiotic stresses (low temperature, water deficit).Quantitative Trait Loci (QTLs) controlling the number of epidermal cells and their maximal length at low temperature were then identified using a recombinant inbred lines population, and those impacting hypocotyl elongation at low temperature were highlighted.Finally, two genotypes sharing a similar cell number but contrasted capacities of cell elongation were compared more in detail. Proteins playing a role in the formation and organization of cytoskeleton and in the modification of the cell wall were revealed in connection with the differences in cellular elongation between genotypes. Moreover, differences in the cell wall sugar composition, in the degree of methylation of pectins and in a potential inhibito
9

Division et élongation cellulaire dans l'apex de la racine : diversité de réponses au déficit hydrique / Cell division and cell elongation in the growing root apex : diversity of drought-induced responses

Bizet, François 10 December 2014 (has links)
La capacité d’une plante à réguler sa croissance racinaire est une composante importante de l’acclimatation aux stress environnementaux. A l’échelle cellulaire, cette régulation est effectuée via le contrôle de la division et de l’élongation des cellules mais les rôles respectifs de chaque processus et leurs interactions sont peu connus. Notamment, l’activité de production de cellules du méristème apical racinaire (RAM) est trop souvent négligée. Dans cette thèse, l’analyse spatiale de la croissance le long de l’apex racinaire et l’analyse temporelle des trajectoires de croissance des cellules ont été couplées pour comprendre les liens existants entre division et élongation cellulaire. Pour cela, j’ai développé un système de phénotypage de la croissance à haute résolution spatio-temporelle qui a été appliqué à l’étude de racines d’un peuplier euraméricain (Populus deltoides × Populus nigra) en réponse à différents stress (stress osmotique, impédance mécanique). Une forte variabilité du taux de croissance racinaire entre individus ainsi que des variations individuelles cycliques de la croissance ont été observées malgré des conditions environnementales contrôlées. L’utilisation de cette variabilité couplée à la quantification de l’activité du RAM a mis en évidence l’importance du taux de production de cellules pour soutenir la croissance racinaire. Ces travaux analysent une nouvelle échelle de variations spatiales et temporelles de la croissance peu prise en compte jusqu’à présent. Hautement applicable à d’autres questions scientifiques, l’analyse du devenir des cellules une fois sortie du RAM est également discutée pour des conditions de croissance non stables / Regulation of root growth is a crucial capacity of plants for acclimatization to environmental stresses. At cell scale, this regulation is controlled through cell division and cell elongation but respective importance of these processes and interactions between them are still poorly known. Notably, the cell production activity of the root apical meristem (RAM) is often excluded. During this thesis, spatial analyses of growth along the root apex were coupled with temporal analyses of cell trajectories in order to decipher the links between cell division and cell elongation. This required the setup of a system for phenotyping root growth at a high spatiotemporal resolution which was applied to study the growth of roots from an euramerican poplar (Populus deltoides × Populus nigra) in response to different environmental stresses (osmotic stress or mechanical impedance). An important variability of root growth rate between individuals as well as individual cyclic variations of growth along time were observed despite tightly controlled environmental conditions. Use of this variability coupled with quantification of the RAM activity led us to a better understanding of the importance of the cell production rate for sustaining root growth. This work analyses a new spatiotemporal scale of growth variability poorly considered. Widely applicable to others scientific questioning, temporal analyses of cell fate once produced in the RAM is also discussed for non-steady growth conditions

Page generated in 0.0828 seconds