• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 13
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Magnetic and Transport Properties of Colossal Magnetoresistance Manganites and Magnetic Semiconductors

Wanjun, Jiang 12 May 2010 (has links)
Transition metal and related compounds have been extensively studied over the past several decades. These investigations revealed a wide range of behavior, encompassing colossal magnetoresistance (CMR), high-TC superconductivity, and magnetic semiconductivity, all of which continue to present fundamental challenges to the understanding of such phenomena. There is, however, a close correlation between such characteristics and the appearance of magnetic order. This correlation underlies the present study, which focuses on the magnetic and transport behavior of various Manganese (Mn), Iron (Fe) and Cobalt (Co) containing materials, with particular emphasis on the nature of the magnetic order they display and the critical exponents that characterize the accompanying phase transition. The magnetic and transport properties of two specific systems will be covered: first various doped manganites from the series (La,Pr)1-x(Ca,Ba)xMnO3, and second the magnetic semiconductors Fe0.8Co0.2Si and Ga0.98Mn0.02As. In the manganites, the influence of doping on; (i) the evolution of the metal-insulator transition (MIT) with composition; (ii) the universality class of the magnetic critical behavior associated with the paramagnetic to ferromagnetic transition, which occurs in the vicinity of a MIT with which CMR is associated; (iii) the mechanisms underlying ferromagnetism across the MIT; (iv) the correlation between the appearance of a Griffiths-like phase and CMR, and (v) the origin of Griffiths-like phase have been investigated. Four different systems have been studied: La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27), La1-xBaxMnO3 (x ≤ 0.33), (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85), and Pr1-xCaxMnO3 (x = 0.27, 0.29). In Fe0.8Co0.2Si and Ga0.98Mn0.02As, the scaling between magnetization and conductivity has been the subject of ongoing debate. In bulk Fe0.8Co0.2Si, a novel scaling between the anomalous Hall effect (AHE) and the magnetization enables the anomalous Hall coefficient to be accurately determined. In turn, this enables the universality class for the transition to ferromagnetism to be established independently from the anomalous Hall conductivity. In an epitaxial (metallic) Ga0.98Mn0.02As microstructure, the magnetization has been indirectly determined from the AHE. Subsequent analysis yields magnetic critical exponents consistent with the Mean-Field model, direct support for which had previously been lacking.
22

Magnetic and Transport Properties of Colossal Magnetoresistance Manganites and Magnetic Semiconductors

Wanjun, Jiang 12 May 2010 (has links)
Transition metal and related compounds have been extensively studied over the past several decades. These investigations revealed a wide range of behavior, encompassing colossal magnetoresistance (CMR), high-TC superconductivity, and magnetic semiconductivity, all of which continue to present fundamental challenges to the understanding of such phenomena. There is, however, a close correlation between such characteristics and the appearance of magnetic order. This correlation underlies the present study, which focuses on the magnetic and transport behavior of various Manganese (Mn), Iron (Fe) and Cobalt (Co) containing materials, with particular emphasis on the nature of the magnetic order they display and the critical exponents that characterize the accompanying phase transition. The magnetic and transport properties of two specific systems will be covered: first various doped manganites from the series (La,Pr)1-x(Ca,Ba)xMnO3, and second the magnetic semiconductors Fe0.8Co0.2Si and Ga0.98Mn0.02As. In the manganites, the influence of doping on; (i) the evolution of the metal-insulator transition (MIT) with composition; (ii) the universality class of the magnetic critical behavior associated with the paramagnetic to ferromagnetic transition, which occurs in the vicinity of a MIT with which CMR is associated; (iii) the mechanisms underlying ferromagnetism across the MIT; (iv) the correlation between the appearance of a Griffiths-like phase and CMR, and (v) the origin of Griffiths-like phase have been investigated. Four different systems have been studied: La1-xCaxMnO3 (0.18 ≤ x ≤ 0.27), La1-xBaxMnO3 (x ≤ 0.33), (La1-yPry)0.7Ca0.3Mn16/18O3 (y ≤ 0.85), and Pr1-xCaxMnO3 (x = 0.27, 0.29). In Fe0.8Co0.2Si and Ga0.98Mn0.02As, the scaling between magnetization and conductivity has been the subject of ongoing debate. In bulk Fe0.8Co0.2Si, a novel scaling between the anomalous Hall effect (AHE) and the magnetization enables the anomalous Hall coefficient to be accurately determined. In turn, this enables the universality class for the transition to ferromagnetism to be established independently from the anomalous Hall conductivity. In an epitaxial (metallic) Ga0.98Mn0.02As microstructure, the magnetization has been indirectly determined from the AHE. Subsequent analysis yields magnetic critical exponents consistent with the Mean-Field model, direct support for which had previously been lacking.
23

Preparação e caracterização de manganitas (La,Pr)CaMnO / Preparation and characterization of La,Pr)CaMnO manganites

Sueli Hatsumi Masunaga 15 April 2005 (has links)
Amostras policristalinas de La(5/8-y)Pr(y)Ca(3/8)MnO(3); 0 y 0.625; foram produzidas pelo método da mistura estequiométrica de óxidos e tratadas termicamente ao ar a 1400 oC. As amostras foram caracterizadas através de medidas de difração de raios-X, resistividade elétrica rho(T), susceptibilidade magnética chi(T) e magnetorresistividade rho(T, H = 50 kOe). Os resultados das análises dos diagramas de raios-X indicaram que os materiais são de fase única e que houve uma substituição efetiva de La por Pr no sítio A ao longo da série. Medidas de rho(T) e chi(T) revelaram que a temperatura de transição de fase metal-isolante TMI e temperatura de Curie TC decrescem com o aumento da concentração y e que a resistividade residual rho0 (rho(T = 10 K)) é consideravelmente alta em amostras com y 0.35. Ainda, com o decréscimo de T, as amostras com y 0.35 transitam para uma fase de ordenamento de carga em TOC ~ 194 K e, em seguida, para uma fase metálica em TMI. Essas medidas também sugerem a coexistência de fases ferromagnética-metálica FMM e de ordenamento de carga isolante OCI nesses materiais. Nas propriedades físicas macroscópicas, a fase FMM mostrou ser a dominante para os compostos com pequenas concentrações de Pr (y 0.25) e a fase OCI dominante para os compostos com altas concentrações de Pr (y 0.40). As medidas de rho(T, H = 50 kOe) mostram que a magnitude da resistividade elétrica decresce drasticamente nas vizinhanças de TMI sob a aplicação de um campo magnético externo. A magnitude de MR (MR = (rho(H = 0)-rho(H = 50 kOe))/rho(H = 50 kOe)) entre os extremos da série (y = 0 e 0.625) varia até sete ordens de grandeza, sendo que o máximo valor de MR para amostras com y = 0 é de ~ 0.75 e naquelas com y = 0.625 é ~ 3.4x106 . O diagrama de fases deste composto evidencia uma região crítica (0.30 y 0.40) onde os valores de TMI, TC, MR e 0 variam abruptamente como função de y, sendo que em outras regiões tal variação é mais suave. A variação significativa desses quatro valores indica uma competição mais forte entre as fases coexistentes ocorre na região crítica. Algumas características marcantes podem ser observadas nas amostras da região crítica tais como: a presença de um segundo pico, abaixo de TMI, em ~ 90 K e ~ 72 K na curva de rho(T) de amostras com y = 0.30 e 0.35, histerese térmica mais pronunciada em rho(T) e chi(T), MR torna-se colossal, relaxação significativa da resistividade elétrica com o tempo, entre outras. Assim, as propriedades de transporte e magnéticas nessa região crítica são dominadas pela forte competição entre as fases coexistentes. / Polycrystalline samples of La(5/8-y)Pr(y)Ca(3/8)MnO(3); 0 y 0.625; were synthesized by the solid-state reaction method and sintered in air at 1400 oC. These compounds were studied by measurements of X-ray powder diffraction, magnetic susceptibility chi(T), and electrical resistivity rho(T, H). X-ray powder diffraction measurements indicated single phase materials and an effective substitution of La by Pr. Results from rho(T) and chi(T) revealed that increasing y in this series results in a rapid reduction of both the insulator to metal transition temperature TMI and the Curie temperature TC. Such a rapid decrease in TMI with increasing y is also accompanied by the occurrence of a new transition temperature, termed TCO, which is related to the transition to the charge ordered CO state. Such a temperature, which is essentially independent of y, occurs at TCO ~ 194 K and is mainly observed in samples with y 0.35. The other feature is the presence of a large residual resistivity electrical rho(0 = (10 K)) for large y (y 0.35) at low-T even though rho(T) suggests a metallic behavior below TMI. The temperature for the maximum magnetoresistance effect occurs near TMI, that shifts to higher T with increasing field. The MR is defined here as (rho(H = 0)-rho(H = 50 kOe))/rho(H = 50 kOe) and is enhanced by seven orders of magnitude from ~ 0.75 up to ~ 3.4x106 in samples with y = 0 and y = 0.625, respectively. Some features like the thermal hysteresis observed in both rho(T) and chi(T) curves indicate the coexistence of different phases in a range of y concentration, i. e., the ferromagnetic-metallic FMM and the charge ordered-insulating COI domains. The FMM is stable for y 0.25, but the COI state becomes dominant for y 0.40. There is a critical region in the phase diagram, ranging from y = 0.30 to 0.40, where the magnitude of the TMI, TC, MR, and 0 were found to display abrupt changes with increasing y. Some anomalous features like a second peak in rho(T) below TMI, a two-step increasing in chi(T), a colossal MR effect and others are observed for compositions belonging to this critical region. Our combined data suggest that the general physical properties of these compounds in such a critical region are dominated by the strong competition between coexisting ferromagnetic-metallic and charge ordered-insulating phases.
24

Magnetization, Magnetotransport And Electron Magnetic Resonance Studies Of Doped Praseodymium And Bismuth Based Charge Ordered Manganites

Anuradha, K N 05 1900 (has links)
Studies on perovskite rare earth manganites of general formula R1-xAxMnO3 (where R is a trivalent rare earth ion such as La3+, Pr3+ etc. and A is a divalent alkaline earth ion such as Ca2+, Sr2+, Ba2+, have been a very active research area in the last few years in condensed matter physics. Manganites have a distorted perovskite crystal structure with R and A ions situated at the cube corners, oxygen ions at the edge centers of the cube and Mn ions at the centres of the oxygen octahedra. In these manganites the Mn ions are found to be in mixed valence state i.e., in Mn3+ and Mn4+ states. In the octahedral crystal field of oxygen ions the single ion energy levels are split into t2g and eg levels. Mn3+ being a Jahn-Teller ion, the eg level is further split due to the Jahn-Teller effect. A strong Hund’s coupling between the spins in the t2g and eg levels renders the Mn3+ ions to be in the high spin state. The interplay of competing super exchange between Mn ions which determines the antiferromagnetism, orbital ordering and insulating behavior and double exchange between Mn ions which leads to ferromagnetism and metallicity gives rise to very complex phase diagrams of manganites as a function of composition, temperature and magnetic field. The strength of these interactions is determined by various factors such as the A-site cation radius and the Jahn-Teller distortion due to the presence of Mn3+ ions. The strongly coupled charge, spin, lattice and orbital degrees of freedom in manganites gives rise to complex phenomena such as colossal magnetoresistance (CMR), charge order (CO) and orbital order (OO) and phase separation (PS) etc. The properties of these materials are sensitive functions of external stimuli such as the doping, temperature and pressure [1-5] and have been extensively studied both experimentally and theoretically in single crystal, bulk polycrystalline and thin film forms of the samples [6-9]. Charge ordering is one of the fascinating properties exhibited by manganites. Charge ordering has historically been viewed as a precursor to the complex ordering of the Mn 3d orbitals, which in turn determine the magnetic interactions and these magnetic interactions are the driving force for charge localization and orbital order. This ordering of Mn3+ / Mn4+ charges can be destabilized by many methods. An external magnetic field can destabilize the charge ordered phase and drive the phase transition to the ferromagnetic metallic state [10-11]. Other than magnetic field, charge ordering can also be ‘melted’ by a variety of perturbations like electric field [12, 13], hydrostatic and chemical pressure [14-16], irradiation by X-rays [17], substitution at the Mn -site [18 -21] and A-site [22]. Of these, A-site substitution with bigger cations like barium is particularly of great interest since it does not interrupt the conduction path in the “MnO3” frame work Recently attention has been drawn towards the properties of nanoscale manganites. The nanoscale materials are expected to behave quite differently from extended solids due to quantum confinement effects and high surface/volume ratio. Nanoscale CMR manganites have been fabricated using diverse methods in the form of particles, wires, tubes and various other forms by different groups. It has been shown that the properties of CMR manganites can be tuned by reducing the particle size down to nanometer range and by changing the morphology [23-27]. As mentioned above, charge order is an interesting phase of manganites and these CO mangnites in the form of nanowires and nanoparticles show drastic changes in their properties compared to bulk. In contrast to the studies on the CMR compounds, there are very few reports on charge ordering nano manganites except on nanowires of Pr0.5Ca0..5MnO3 [28] and nanoparticles of Nd0.5Ca0.5MnO3 [29] and Pr0.5Sr0..5MnO3 [30]. This thesis is an effort in understanding certain aspects of charge order destabilization by two different methods, namely, doping bigger size cation (barium) in A-site (external perturbation) and by reducing the particle size to nano scale ( intrinsic). For this purpose we have selected the charge ordering system Pr1-xCaxMnO3 (PCMO) with composition x = 0.43. The reason behind choosing this composition is the observation [31] that CO is particularly weak for this value of x. We have prepared bulk, nanoparticles and nanowires of Pr0.57Ca0.41Ba0.02MnO3 manganite and have carried out microstructure, magnetic, magneto transport and EMR measurements to understand the nature of CO destabilization and also to understand other aspects such as magneto transport and magnetic anisotropy . Apart from destabilization of the charge order in PCMO we have also studied the bismuth based manganite Bi0.5Ca0.5MnO3. The reason behind choosing this system is the robust charge order of Bi0.5Ca0.5MnO3 compared to rare earth based manganites. So far no attempt has been made in comparing the electron paramagnetic resonance properties of bismuth based manganites with those of the rare earth based manganites. We have studied the magnetic, transport and electron paramagnetic resonance properties of Bi0.5Ca0.5MnO3 prepared by solid state reaction method and compared the results with those of Pr0.5Ca0.5MnO3 . In the following we present a chapter wise summary of the thesis. Chapter 1 of the thesis contains a brief introduction to the general features of manganites describing various interesting phenomena exhibited by them and the underlying interactions . Chapter 2 contains a detailed review of EPR studies on manganites describing the current level of understanding in the area. In this chapter we have also described the different experimental methodology adopted in this thesis. Chapter 3 reports the effect of a small amount (2%) of barium doped in the charge ordered antiferromagnetic insulating manganite Pr0.57Ca0.43MnO3. The samples were prepared by solid state synthesis and charecterized by various techniques like XRD, EDXA. The results of magnetization, magnetotransport and EPR/EMR experiments on both Pr0.57Ca0.43MnO3 and Pr0.57Ca0.41Ba0.02MnO3 are compared. The magnetization studies show that barium doping induces ferromagnetic phase in place of the CO-antiferromagnetic phase of the pristine sample at low temperatures as reported earlier by Zhu et al.,[31]. The transport studies show insulator to metal transition. The EPR parameters viz line width, intensity and ‘g’ value of Pr0.57Ca0.43MnO3 and Pr0.57Ca0.41Ba0.02MnO3 are compared. The magnetization and EPR studies reveal that the CO transition temperature TCO has shifted to a slightly lower value accompanied by a small decrease in the strength of the charge order. Thus a small amount of barium affects the CO phase of Pr0.57Ca0.43MnO3 and it also induces a ferromagnetic metallic phase at low temperature. Another most important and unexpected result of EMR experiment is the observation of high field signals, i.e. two EMR signals are observed at low temperatures in the ferromagnetic phase of Pr0.57Ca0.41Ba0.02MnO3. The appearance of the high field signals are understood in terms of the effects of magneto crystalline anisotropy. Chapter 4, reports the microstructure, magnetization and EMR studies of Pr0.57Ca0.41Ba0.02MnO3 nanoparticles prepared by sol-gel method. We have mainly focused on the effect of size on the charge ordered phase. The samples were characterized by different techniques like XRD, EDXA and TEM. The obtained particle size of the samples are 30, 60 and 100 nm respectively. We have compared the magnetic, magneto transport and EMR results of these nano samples with the bulk properties. The 30 nm particles do not show the CO phase whereas the 60 and 100 nm particles show CO signatures in DC- magnetization measurements. The EPR intensity also shows a similar trend. These results confirm that charge ordering can also be destabilized by reducing the particle size to nano scale. But the EPR linewidth which reflects the spin dynamics shows a change in the slope near the CO temperature and there by indicates the presence of premonitory charge ordering fluctuations in smaller particles. We also observed that the EMR linewidth increases with the decrease of particle size. Another striking result is the disappearance of high field signals in all the nanosamples. This is understood in terms of a decrease in the magnetic anisotropy in nanoparticles. Part of the result of this chapter is published [32]. Chapter 5, reports the morphological, magnetic and electron paramagnetic resonance studies of Pr0.57Ca0.41Ba0.02MnO3 nanowires. Recently our group has studied the nanowires of Pr0.5Ca0..5MnO3 [28]. In the nanowire sample of Pr0.5Ca0..5MnO3 only a partial suppression of CO is observed. This raises the question about the incomplete suppression of the CO in the nanowires: is this a consequence of the material being microscopic in one dimension and is it necessary to have a 3-dimensional nano material to have full suppression of the charge order ? In the present work we attempt to provide an answer to this question. PCBM nanowires of diameter 80-90 nm and length of ∼ 3.5 μm were synthesized by a low reaction temperature hydrothermal method. We have confirmed the single phase nature of the sample by XRD experiments. Scanning electron microscopy (SEM) and trasmission electron microscopy (TEM) were used to characterize the morphology and microstructures of the nanowires. The surface of nanowires was composed of particles of different grain size and interestingly some particles were hexagonal in shape. The bulk PCBM manganite exhibits charge order at 230 K along with a ferromagnetic transition at 110 K. However, SQUID measurements on PCBM nano-wires show a complete melting of the charge ordering and a ferromagnetic transition at 115 K. The magnetization observed in the nanowires was less compared to that in the bulk. EPR intensity measurements also support this result. Characteristic differences were observed in linewidth and ‘g’ factor behaviors of nanowires when compared with those of the bulk. EPR linewidth which reflects the spin dynamics shows a slope change near the CO temperature (like in nanoparticles) possibly due to charge order fluctuations in nanowires. The high field signals were absent in nanowires as well. Part of the result of this chapter is published [33]. Chapter 6 deals with the magnetic and electron paramagnetic resonance studies on Pr0.5Ca0.5MnO3 and Bi0.5Ca0.5MnO3. These manganites are prepared by solid state reaction method and characterized by different techniques like XRD and EDXA. Further, we have compared the results of magnetization and electron paramagnetic resonance properties of Pr0.5Ca0.5MnO3 with those of Bi0.5Ca0.5MnO3 manganite in the temperature range of 10- 300 K. The two charge ordered manganites show significant differences in their behavior. The temperature dependence of the EPR parameters i.e. line width, central field and intensity of Bi0.5Ca0.5MnO3 are quite different from the rare earth based manganite i.e. Pr0.5Ca0.5MnO3. Linewidth of BCMO is large compared to PCMO manganite and interestingly the temperature dependence of the central fields (CF) of PCMO and BCMO show opposite behavior. The CF of PCMO decreases with decrease in temperature as found in a large number of other CO systems, whereas CF of BCMO increases with decrease in temperature. This unusual behavior of resonance field is attributed to the different magnetic structure of BCMO system at low temperatures. Chapter 7 sums up the results reported in the thesis. The insight gained from the present work in understanding the destabilization of charge order by chemical doping and size reduction is discussed as well as the differences in the properties of bismuth and rare earth manganites. Further, we have indicated possible future directions of research in this area.
25

An Investigation Of The Ferromagnetic Insulating State Of Manganites

Jain, Himanshu 07 1900 (has links)
Electrical conductance in the ferromagnetic insulating (FMI) phase of manganites has been experimentally investigated. The investigations were performed on single crystals of compositions La0.82Ca0.18MnO3 and Nd0.7Pb0.3MnO3. The nature of electrical conductance is determined to be Shklovskii–Efros variable range hopping (SE–VRH). Further, at high bias levels, non–linear conductance (NLC) is observed. A “hot electron” model, that quantitatively explains the bias and temperature dependence of the NLC, consistent with the SE–VRH nature of electrical conductance, is presented. The limits of validity of the model are discussed.
26

Study of the magnetotransport behavior and electrical properties in the colossal magnetoresistance materials La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co)

Young, San-Lin 08 July 2002 (has links)
The hole-doped perovskite manganese oxide such as Ln1-xAxMnO3 (Ln = La, Nd, Pr, and A = Ca, Sr, Ba, Pb) is one of the most studied topics in the recent years due to the observation of colossal magnetoresistance (CMR). Basically, LaMnO3 has an almost insulating behavior and on antiferromagnetic arrangement. By substituting a divalent cation (A2+) in place of La3+, LaMnO3 can be driven into metallic and ferromagnetic state. Mixed valence of Mn 3+ / Mn4+ is needed for both metallic behavior and ferromagnetism in these materials. The CMR characteristic occurs in the ferromagnetic state. A systematic investigation of the structural, magnetic and electrical properties in the perovskite colossal magnetoresistance materials La0.7-xLnxPb0.3Mn1-yMeyO3 (Ln=Pr, Nd and Y, Me=Fe and Co) has presented in this thesis. By subatituting Nd, Pr, Y for the La and Co, Fe for the Mn, the substitution effects on the crystallographic deformation, magnetotransport behavior and electrical properties in these compounds have been studied. According to the results of this research, crystallographic distortion is induced by the substitution of smaller ions, Pr or Nd, onto the La-site. Powder $x$-ray diffraction patterns show a crystallographic transition from rhombohedral symmetry (R-3c) to orthorhombic (Pbnm) crystal structure as the doping content is increased. The increase of deformation from R-3c to Pbnm decreases the bond angle of Mn3+¡ÐO2-¡ÐMn4+ , increases the cant of Mn spin, weakens the double-exchange interaction and results in decrease of ferromagnetism, low ferromagnetic transition temperature Tc, eg electron bandwidth and conductivity. However, the great quantity of decrease in resistivity by an external field leads to the increase in the magnetoresistance ratio. We also find that the increase of saturation magnetization results from the contribution of magnetic ion of Pr or Nd. In addition. in contrast to substitution La by magnetic ion of Pr and Nd, the saturation magnetization is decreased as Y content is increased. The zero-field-cool (ZFC) and field-cool (FC) magnetic measurements indicate that the range of spin ordering for Y one is shorter than Pr one or Nd one with the same doping content. It is because of the small ionic radius of Y, which results in larger distortion, increases the bond angle of Mn3+¡ÐO2-¡ÐMn4+, and corresponds low ferromagnetic transition temperature. The distortion induced by Mn-site substitution is not obvious due to the similar radius of Mn, Co and Fe. Powder x-ray diffraction patterns show a single phase of rhombohedral symmetry (R-3c) for Co doped ststem and a slight crystallographic transition from rhombohedral (R-3c) to orthorhombic (Pbnm) symmetry for Fe doped system. Values of temperature dependence of magnetization indicate that the ferromagnetic double-exchange interaction is gradually substituted by the superexchange interaction. The ZFC-FC curves also indicate that long-range spin ordering is progressively substituted by the short-range spin ordering. The substitution of Mn by Co and Fe supresses the double-exchange interaction, decreases the ferromagnetism and the ferromagnetic transition temperature. Due to the synthesis of the substitution of Nd, Pr, Y for La and Co, Fe for Mn, the mechanism of substitution effects are proved different. The substitution of Nd, Pr and Y for La distorts the crystal, decreases the Mn3+¡ÐO2-¡ÐMn4+ bond angle, and results in the transition of properties, while the substitution of Co and Fe for Mn decrease the percentage of ferromagnetic Mn3+¡ÐO2-¡ÐMn4+. The purpose of this thesis is to clear up the role functions of all elements in these compounds and properties of these compounds. Based on the knowledge of these compounds, it would be helpful to control the physical mechanism and improve the characteristics on preparing their thin film devices.
27

Synthesis And Investigation Of Transition Metal Oxides Towards Realization Of Novel Materials Properties

Ramesha, K 07 1900 (has links)
Transition metal compounds, especially the oxides, containing dn (0 ≤ n ≤ 10) electronic configuration, constitute the backbone of solid state/materials chemistry aimed at realization of novel materials properties of technological importance. Some of the significant materials properties of current interest are spin-polarized metallic ferromagnetism, negative thermal expansion, second harmonic nonlinear optical (NLO) susceptibility, fast ionic and mixed electronic/ionic conductivity for application in solid state batteries, and last but not the least, high-temperature superconductivity. Typical examples for each one of these properties could be found among transition metal oxides. Thus, alkaline-earth metal (A) substituted rare-earth (Ln) manganites, Lnı.xAxMnΟ3, are currently important examples for spin-polarized magnetotransport, ZrV2O7 and ZrW2O8 for negative thermal expansion coefficient, KTiOPO4 and LiNbO3 for second harmonic NLO susceptibility, (Li, La) TiO3 and LiMn2O4 for fast-ionic and mixed electronic/ionic conductivity respectively, and the whole host of cuprates typified by YBa2Cu3O7 for high Tc superconductivity. Solid state chemists constantly endeavour to obtain structure-property relations of solids so as to be able to design better materials towards desired properties. Synthesis coupled with characterization of structure and measurement of relevant properties is a common strategy that chemists adopt for this task. The work described in this thesis is based on such a broad-based chemists' approach towards understanding and realization of novel materials properties among the family of metal oxides. A search for metallic ferro/ferrimagnetism among the transition metal perovskite oxides, metallicity and possibility of superconductivity among transition-metal substituted cuprates and second order NLO susceptibility among metal oxides containing d° cations such as Ti(IV), V(V) and Nb(V) - constitute the main focus of the present thesis. New synthetic strategies that combine the conventional ceramic approach with the chemistry-based 'soft1 methods have been employed wherever possible to prepare the materials. The structures and electronic properties of the new materials have been probed by state-of-the art techniques that include powder X-ray diffraction (XRD) together with Rietveld refinement, electron diffraction, thermogravimetry, measurement of magnetic susceptibility (including magnetoresistance), Mossbauer spectroscopy and SHG response (towards 1064 nm laser radiation), besides conventional analytical techniques for determination of chemical compositions. Some of the highlights of the present thesis are: (i) synthesis of new mixed valent [Mn(III)/Mn(IV)] perovskite-type manganites, ALaMn2O6-y (A = K, Rb) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr) that exhibit ferromagnetism and magnetoresistance; (ii) investigation of a variety of ferrimagnetic double-perovskites that include ALaMnRuO6 (A = Ca, Sr, Ba) and ALaFeVO6 (A = Ca, Sr) and A2FeReO6 (A = Ca, Sr, Ba) providing new insights into the occurrence of metallic and nonmetallic ferrimagnetic behaviour among this family of oxides; (iii) synthesis of new K2NiF4-type oxides, La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe, Ru) and investigation of Cu-O-M interaction in two dimension and (iv) identification of the structural rnotif(s) that gives rise to efficient second order NLO optical (SHG) response among d° oxides containing Ti(IV), V(V), Nb(V) etc., and synthesis of a new SHG material, Ba2-xVOSi2O7 having the fresnoite structure. The thesis consists of five chapters and an appendix, describing the results of the investigations carried out by the candidate. A brief introduction to transition metaloxides, perovskite oxides in particular, is presented in Chapter 1. Attention is focused on the structure and properties of these materials. Chapter 2 describes the synthesis and investigation of two series of anion-deficient perovskite oxides, ALaMn2O6-y (A = K, Rb, Cs) and ALaBMn3O9_y (A = Na, K; B = Ca, Sr). ALaMn2O6-y (A = K, Rb, Cs) series of oxides adopt 2 ap x 2 ap superstructure for K and Rb phases and √2 av x √2 ap x 2 ap superstructure (ap = perovskite subcell) for the Cs phase. Among ALaBMn3O9-y phases, the A = Na members adopt a new kind of perovskite superstructure, ap x 3 ap, while the A = K phases do not reveal an obvious superstructure of the perovskite. All these oxides are ferromagnetic (Tc ~ 260-325 K) and metallic exhibiting a giant magnetoresistance behaviour similar to alkaline earth metal substituted lanthanum manganites, Lai_xAxMnO3. However, unlike the latter, the resistivity peak temperature Tp for all the anion-deficient manganites is significantly lower than Tc. In Chapter 3, we have investigated structure and electronic properties of double-perovskite oxides, A2FeReO6 (A = Ca, Sr and Ba). The A = Sr, Ba phases are cubic (Fm3m) and metallic, while the A = Ca phase is monoclinic (P2yn) and nonmetallic. All the three oxides are ferrimagnetic with Tcs 315-385 K as reported earlier. A = Sr, Ba phases show a negative magnetoresistance (MR) (10-25 % at 5 T), while the Ca member does not show an MR effect. 57Fe Mossbauer spectroscopy shows that iron is present in the high-spin Fe3+ (S = 5/2) state in Ca compound, while it occurs in an intermediate state between high-spin Fe2+ and Fe3+ in the Ba compound. Monoclinic distortion and high covalency of Ca-O bonds appear to freeze the oxidation states at Fe+3/Re5+ in Ca2FeRe O6, while the symmetric structure and ionic Ba-O bonds render the FeReO6 array highly covalent and Ba2FeReO6 metallic. Mossbauer data for Sr2FeReO6 shows that the valence state of iron in this compound is intermediate between that in Ba and Ca compounds. It is likely that Sr2FeReO6 which lies at the boundary between metallic and insulating states is metastable, phase-seperating into a percolating mixture of different electronic states at the microscopic level. In an effort to understand the occurrence of metallicity and ferrimagnetism among double perovskites, we have synthesized several new members : ALaMnFeO6 (A = Ca, Sr, Ba), ALaMnRuO6 (A = Ca, Sr, Ba) and ALaVFeO6 (A = Ca, Sr) (Chapter 3). Electron diffraction reveals an ordering of Mn and Ru in ALaMnRuO6 showing a doubling of the primitive cubic perovskite cell, while ALaVFeO6 do not show an ordering. ALaMnRuOs are ferrimagnetic (Tcs ~ 200-250 K) semiconductors, but ALaVFeO6 oxides do not show a long range magnetic ordering . The present work together with the previous work on double perovskites shows that only a very few of them exhibit both metallicity and ferrimagnetism, although several of them are ferrimagnetic. For example, among the series Ba2MReO6 (M = Mn, Fe, Co, Ni), only the M = Fe oxide is both metallic and ferrimagnetic, while M = Mn and Ni oxides are ferrimagnetic semiconductors. Similarly, A2CrMoO6 (A = Ca, Sr), A2CrRe06 (A = Ca, Sr), and ALaMnRuO6 (A = Ca, Sr, Ba) are all ferrimagnetic but not metallic. While ferrimagnetism of double perovskites arise from an antiferromagnetic coupling of B and B' spins through the B-O-B' bridges, the occurrence of metallicity seems to require precise matching of the energies of d-states of B and B' cations and a high covalency in the BB'O6 array that allows a facile electron-transfer between B and B', Bn++B’m+↔B(n+1)++B’(m-1)+ without an energy cost, just as occurs in ReO3 and other metallic ABO3 perovskites. In an effort to understand the Cu-O-M (M = Ti, Mn, Fe, Ru) electronic interaction in two dimension, we have investigated K2N1F4 oxides of the general formula La2-2xSr2XCui.xMxO4 (M = Ti, Mn, Fe or Ru). These investigations are described in Chapter 4. For M = Ti, only the x = 0.5 member could be prepared, while for M = Mn and Fe, the composition range is 0 < x < 1.0, and for M = Ru, the composition range is 0 < x ≤ 0.5. There is no evidence for ordering of Cu(II) and M(IV) in the x = 0.5 members. While the members of the M = Ti, Mn and Ru series are semiconducting/insulating, the members of the M = Fe series are metallic, showing a broad metal-semiconductor transition around 100 K for 0 < x ≤ 0.15 that is possibly related to a Cu(II)-O-Fe(IV) < > Cu(III)-O-Fe(III) valence degeneracy. Increasing the strontium content at the expense of lanthanum in La2-2xSr2XCui.xFexO4 for x ≤ 0.20 renders the samples metallic but not superconducting. In a search for inorganic oxide materials showing second order nonlinear optical (NLO) susceptibility, we have investigated several borates, silicates and phosphates containing /ram-connected MO6 octahedral chains or MO5 square-pyramids, where M = d°: Ti(IV), Nb(V) or Ta(V). Our investigations, which are described in Chapter 5, have identified two new NLO structures: batisite, Na2Ba(TiO)2Si4O12, containing trans-connectd TiO6 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal T1O5. Investigation of two other materials containing square-pyramidal TiO5, viz., Cs2TiOP2O7 and Na4Ti2Si8O22. 4H2O, revealed that isolated TiO5 square-pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of T1O5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-0 distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite. Indeed, we have been able to prepare a new fresnoite type oxide, Ba2.xVOSi2O7 (x ~ 0.5) that shows a strong SHG response, confirming this hypothesis. In the Appendix, we have described three synthetic strategies that enabled us to prepare magnetic and NLO materials. We have shown that the reaction CrO3 + 2 NH4X > CrO2 + 2 NH3 + H2O + X2 (X = Br, I), which occurs quantitatively at 120-150 °C, provides a convenient method for the synthesis of CrO2. Unlike conventional methods, the method described here does not require the use of high pressure for the synthesis of this technologically important material. For the synthesis of magnetic double perovskites, we have developed a method that involves reaction of basic alkali metal carbonates with the acidic oxides (e.g. Re2O7) first, followed by reaction of this precursor oxide with the required transition metal/transition metal oxide (e.g. Fe/Fe2O3). By this method we have successfully prepared single-phase perovskite oxides, A2FeReO6, ACrMoO6 and ALaFeVO6. We have prepared the new NLO material Ba2_xV0Si207 from Ba2VOSi2O7 by a soft chemical redox reaction involving the oxidation of V(IV) to V(V) using Br2 in CH3CN/CHCI3. Ba2V0Si207 + 1/2 Br2 > Bai.5V0Si207 + 1/2 BaBr2. The work presented in this thesis was carried out by the candidate as part of the Ph.D. training programme. He hopes that the studies reported here will constitute a worthwhile contribution to the solid state chemistry of transition metal oxides and related materials.
28

Kationen-Ordnung in ferri/ferromagnetischen perowskitischen Dünnfilmen / Cation ordering in ferri/ferromagnetic perovskite thin films

Hühn, Sebastian 27 May 2015 (has links)
Ein großes Hindernis für die Anwendbarkeit von oxidischen Perowskiten in elektrotechnischen oder spintronischen Applikationen, ist die Größe der spezifischen Temperaturen, bei der die physikalischen Phänomene, wie Ferromagnetismus oder Hochtemperatur-Supraleitung, beobachtet werden können. Die physikalischen Eigenschaften der Perowskite zeigen eine Abhängigkeit von der Ordnung der verschiedenartigen Metallionen in mehrkomponentigen Systemen. Die Abhängigkeit ergibt sich durch den Einfluss der Metallionen auf die Elektronenkonfiguration und elastischen Verspannung innerhalb des Materials. Man spricht in diesem Zusammenhang auch von der Kontrolle der Füllung und der Bandbreite der elektronischen Bänder im Material durch die Wahl der Metallionen. Die Zielsetzung dieser Arbeit ist die Präparation und Charakterisierung von künstlich A-Platz geordneten schmal- und breitbandigen Manganat Dünnfilmen als auch von natürlich B-Platz geordneten ferro-/ferrimagnetischen doppelperowskitischen Dünnfilmen. Für die Präparation der dünnen Schichten wurde die unkonventionelle Metallorganischen Aerosol Deposition (MAD) verwendet. Es konnte gezeigt werden, dass diverse künstlich oder natürlich Kationengeordnete Perowskite mit der MAD Technologie präpariert werden können. Die lagenweise A-Platz Ordnung in Manganaten führt, über die Modulation der Gitterverspannung und der Elektronenbesetzung im eg-Band der Manganionen, zu modifizierten elektronischen und magnetischen Eigenschaften. In schmalbandigen CMR Manganaten wurde die PS und somit der CMR über die Ordnung beeinflusst, während in breitbandigen CMR Manganaten ein Weg aufgezeigt werden konnte, der zu Übergangstemperaturen TC > 370K führen kann. In geordneten, ferromagnetischen Doppelperowskiten wurde der Einfluss und die Anwesenheit von Antiphasen-Grenzen dargelegt. Über die Einführung einer aktiven Valenz-Kontrolle, konnte die Präparation von halbmetallischen, ferrimagnetischen Doppelperowskiten mit der MAD Technologie ermöglicht werden.
29

Spectroscopic study of transition metal compounds

Demeter, Mihaela Carmen 17 May 2001 (has links)
In the last few years a renewed interest has reappeared in materials that were highly investigated in the 50s-70s, like manganese perovskites, spinel chalcogenides and vanadium oxides. The first two classes of materials are nowadays intensively studied due to the colossal magnetoresistance effect, which is the magnetoresistance associated with a ferromagnetic-paramagnetic transition. Vanadium oxides are known to form many compounds and most of them undergo metal-to-insulator phase transitions, with a high increase in the electrical conductivity (MIT). Many technological applications derive from the variation of the physical properties around the phase transition temperature. Although many efforts have been done in order to understand their electronic structures and to elucidate the MIT mechanisms, the vanadium oxides are still matter of debate in science.The present study has been performed in order to understand the electronic structure of these very intriguing materials. The role of different dopants that induce strong changes in the electronic and magnetic properties has been investigated making use of two spectroscopic techniques, namely X-ray photoelectron and X-ray emission spectroscopy.
30

Investigation Of Electronic And Magnetic Structure Of Transition Metal Oxides With Emphasis On Magnetoresistive Systems

Topwal, Dinesh 06 1900 (has links)
Electronic structure of transition metal oxides has been a subject of intense research since decades due to the wide spectrum of properties that they exhibit, like high temperature superconductivity, metal-insulator transitions (MIT), phase separation etc. Among these, colossal magnetoresistance (CMR), i.e. a sharp drop in the electrical resistance by the application of an external magnetic field, is a property of fundamental and technological importance. In the present study we investigate several of these interesting properties ranging from colossal magnetoresistance, metal-insulator transitions and phase separation phenomena on a wide range of magnetoresistive systems. All these properties originate in transition metal oxides due to a competition between the strong inter-atomic Coulomb interaction strength within the transition metal d electrons and a large hopping interaction strength between the metal d and oxygen 2p states. In this thesis we report the investigation of the electronic and magnetic structures of some magnetoresistive oxides, including various double perovskites and manganites, using various high energy spectroscopies in conjunction with various theoretical approaches. The samples for the present experimental investigation were prepared by different synthetic routes, such as solid state reaction, nitrate method, d.c arc melting and float zone method, and were characterized by x-ray diffraction, four probe resistivity, magnetic susceptibility, optical absorption and energy dispersive analysis of x-rays while some of the samples were supplied by our collaborators. Various spectroscopic techniques like x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS) , bremsstrahlung isochromat spectroscopy (BIS), x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism spectroscopy (XMCD) , electron energy loss spectroscopy (EELS), spatially resolved photoelectron spectroscopy and M¨ ossbauer spectroscopy were used to probe the samples. Theoretical methods include configuration interaction cluster approach to fit the XAS and XMCD spectra while ab initio band structure calculations along with the least-square fitting procedure was used to fit some of the valence and conduction bands. Following a general introduction in Chapter 1, the details of various experimental and theoretical techniques are discussed in Chapter 2 of this thesis. Recently, a double perovskite, Sr2FeMoO6, belonging to a general family of halfmetallic ferromagnetic oxides, has shown a spectacularly large magnetoresistance even at the room temperature and at relatively small applied magnetic fields compared to the extensively investigated class of magnetoresistive manganites. Physical properties of this compound is strongly influenced by the Fe -Mo ordering. We hence synthesized Sr2FeMoO6 sample, both with high and low degree of Fe/Mo ordering. Spectroscopic investigations of these samples suggest the presence of Fe rich and Mo rich domains of the type Sr2Fe1+xMo1−xO6 in disordered Sr2FeMoO6 at times. This prompted us to prepare bulk samples of Sr2Fe1+xMo1−xO6. In Chapter 3 we address various issues related to Fe/Mo ordering like saturation magnetization, variation of TC, and CMR as well as oxidation state of Fe and Mo in Sr2FeMoO6using this new series, ”Sr2Fe1+xMo1−xO6” as it offers a better control on the Fe/Mo bonds by controlling x. On the basis of the electron spectroscopic studies in conjunction with a configuration interaction cluster calculation model coupled with the conduction band, we claim that Fe remains in 3+oxidation state throughout the series, where as Mo changes its valency to maintain the charge neutrality. An analysis of the magnetic momentas a function of x suggests that Fe at the ”wrong” crystallographic site is coupled anti-parallel to the Fe moments at the ”correct” site. Additionally, Mo depolarizes to the extend proportional to the number of Mo sites in the near-neighbor co-ordination shell. Continuing with the double perovskites in Chapter 4 we investigate the electronic and magnetic structure of Sr2FeMoO6, Ca2FeMoO6 and Ba2FeMoO6using XAS and XMCD studies. We find that the conventional XAS and XMCD calculations based on configuration interaction of a typical fragment, FeO6in this case, is insufficient to reproduce the experimental spectrum as the compounds considered here are metallic. In order to include the non local charge transfer, we coupled FeO6 octahedra to a conduction band which mimics the Mo band. Within this model we obtained a good fit to the experimental spectrum. Chapter 5 deals with another series of double perovskite (Sr1−yCay)2FeReO6which exhibits a rich phase diagram since it undergoes a metal insulator transition (MIT) with composition at low temperatures. This system becomes more interesting due to the presence of a temperature driven MIT for higher y compositions. We find that the MIT is not related to the change in valency of Fe and Re. Analysis of the near Fermi edge valence band spectra suggests opening up of a soft gap. The main reason for MIT in this system is most likely the presence of strong electron-electron correlation between multiple electrons at the Re site, which is caused by the mismatch of the Re ionic radius and change in the crystal structure across MIT. Another issue which has been extensively investigated in this thesis is phase separation in manganites presented in Chapter 6. We use a spatially resolved, direct spectroscopic probe for electronic structure with an additional unique sensitivity to chemical compositions, to investigate high quality single crystal samples of La1/4Pr3/8Ca3/8MnO3 in the first section. This unique probe establishes the formation of distinct insulating domains embedded in the metallic host at low temperatures, significantly in the absence of any perceptible chemical inhomogeneity, with the domain-size at least an order of magnitude larger than the previous largest estimate. We also provide compelling evidence of memory effects in such domain formation and morphology, suggesting an intimate connection between these electronic domains and long-range strains, often thought to be an important ingredient in the physics of doped manganites. In second part of this chapter we discuss another system namely Eu0.5Y0.5MnO3 which undergoes a chemical phase separation forming alternate stripes of Eu rich (Y deficient) orthorhombic phase and Y rich (Eu deficient) hexagonal phases. These stripes are amazingly straight and run parallel over millimeters. One more system that we investigated is a mixture of ferromagnetic La5/8Sr3/8MnO3and insulating ferroelectric LuMnO3 taken in ratio 3:7, here too the attempt to make a single crystal resulted into a chemical phase separation forming strips of metallic La5/8Sr3/8MnO3and insulating LuMnO3 throughout the sample surface. Preliminary studies suggests that strain between the chemically and crystallographically different species may result into such interesting morphology. In Chapter 7 we study pseudo-one dimensional compounds Sr3CuIrO6 and Sr3ZnIrO6 using photo electron spectroscopy. The experimental results were fitted using band structure calculations with Full Potential Linearized Augmented Plane Wave (FP-LAPW) method.

Page generated in 0.1251 seconds