• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 18
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 11
  • 11
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Assessing the Role of Silica Gel as a Fault Weakening Mechanism in the Tuscarora Sandstone

Borhara, Krishna 28 April 2015 (has links)
No description available.
42

Estudo das contaminações provenientes do processo de cominuição de amostras geológicas / A study of contaminations derived from comminution processes of geologic samples

Sertek, Jose Paulo 17 September 2010 (has links)
A cominuição de amostras geológicas envolve etapas para reduzir seus grãos garantindo sua representatividade, com o auxílio de vários equipamentos de moagem de amostras. São duas as contaminações que podem ser causadas durante o uso desses equipamentos. A primeira é a contaminação primária, pelo contato face a face entre a amostra e os componentes do sistema de moagem, e a segunda é a contaminação cruzada, derivada do material de outras amostras, previamente tratadas, que esteja depositado na superfície dos equipamentos de moagem. São limitadas as informações encontradas na literatura acerca das contaminações primárias, a maioria dos autores presumindo que a mesma seja maior na etapa final dos processos de tratamento. Ainda assim, se faz necessário um estudo sistemático sobre as possibilidades de contaminação primária, durante as diversas etapas de tratamento das amostras. Para esta pesquisa foram utilizadas amostras de quartzo puro, coletado na Fazenda Batatal, em Diamantina, Minas Gerais, com o exame da contaminação primária causada pelo uso dos equipamentos de fragmentação (britador de mandíbulas primário de aço manganês, britador de mandíbulas secundário de carbeto de tungstênio e prensa hidráulica com acessórios de fragmentação em aço) e, a seguir, os de pulverização (moinho de anéis de ágata, carbeto de tungstênio e aço-Cr). O quartzo, um dos materiais mais puros encontrados na natureza, é o que apresenta dureza suficientemente alta para promover intensos processos de interação e contaminação mais extrema. Posteriormente, avaliou-se a possibilidade da contaminação cruzada em quartzo causada pelo tratamento prévio de amostras de basalto (o RS132, da Formação Serra Geral, Rio Grande do Sul) e de granito (o ITU-06.04A, da intrusão Salto, Salto, São Paulo), utilizadas como padrões nos laboratórios do Instituto de Geociências da Universidade de São Paulo, IGc-USP, com composições determinadas por fluorescência de raios X (FRX), no Laboratório de FRX do IGc-USP. As determinações químicas em soluções convenientemente preparadas de amostras de quartzo, utilizadas nas etapas de contaminação primária e cruzada, foram realizadas por espectrometria óptica com plasma indutivo acoplado (ICP-OES) e espectrometria de massa com plasma indutivo acoplado (ICP-MS) no Laboratório de Química e ICP-OES/MS do IGc-USP. Para estudos da contaminação primária foram geradas alíquotas Q1A, Q1B, Q1C, Q2A, Q2B, Q2C, Q3A, Q3B e Q3C (1 identifica tratamento por britador primário de ferro fundido, 2 o britador secundário de CW, 3 a prensa de aço-carbono; e A, B e C identificam os moinhos de anéis na moagem final: ágata, CW e aço-cromo). Nos estudos da contaminação cruzada foram geradas quatro alíquotas, Q4A-Gcc e Q4B-Gcc (quartzo pulverizado, respectivamente, em moinho de anéis de ágata e de CW, após pulverização do granito), e Q4A-Bcc e Q4B-Bcc (quartzo pulverizado nos mesmos moinhos, após tratamento do basalto). A única contaminação registrada foi causada pelos equipamentos durante cominuição primária do quartzo. A ambientação dos moinhos realizada após a moagem de granito ou basalto foi efetuada mediante limpeza rotineira, seguida de moagem com areia quartzosa (a seguir descartada), procedimento efetivo para evitar contaminação cruzada, por remover o material (basáltico ou granítico) aderido às superfícies dos equipamentos. O britador primário de aço manganês colabora com contaminações por Fe e Mn e elementos Cr, Mo, Cu, Sc e Nb, em teores menores. O britador de mandíbulas secundário de CW contaminou com W, provavelmente também com C (determinado por programa Total-Quant), e com algo de Al. A prensa em aço carbono contamina em níveis de 50 ppm de Fe, e teores menores de Cr e Mn. Moinhos pulverizadores de aço temperado contaminaram principalmente com Fe e Cr e, em teores menores, com Mn, W, Ni, Zn, Mo, e V. Cu e Sc aparecem também em níveis extremamente baixos nas amostras tratadas, e podem ser adicionados por estes moinhos. O moinho de anéis de CW contaminou com W (1000 ppm) e Co (70 ppm), aparecendo ainda C com teores apreciáveis; também contamina com Ta e Nb (em torno de 2 e 0,6 ppm, respectivamente). As determinações de vários elementos-traço no quartzo pulverizado em moinho de anéis de ágata ficaram muito próximas, ou abaixo, do limite de detecção das técnicas utilizadas, não se documentando nenhuma contaminação por efeito da utilização deste equipamento. / The grinding of geologic samples is performed to reduce grain size of the constituting minerals and to preserve a representative sample of the original material, with the help of several grinding and milling equipments. The primary and a secondary or crossed contamination are the possible effects that can be produced during these processes. The first is caused by the interaction between the components of the grinding equipments and the sample, the second derives from contamination by other geologic materials previously ground in those equipments. The information found in the previous literature on the subject is relatively limited, most authors assuming that the main contamination may be produced during the final stages of comminution, the one leading to the generation of fine powders. Thus, there is a need to conduct a systematic survey about extent and possibility of primary contaminations. The materials used are samples of pure quartz crystals from the Fazenda Batatal, city of Diamantina, Minas Gerais state, with research initially centered on the examination of primary contamination caused by the fragmentation equipment (manganese steel primary crusher, W carbide secondary crusher, hydraulic press with steel anvil) and then grinding to fine powder (ring grinders equipped with agate, W carbide or chrome-steel rings). Quartz, one of the purest substances found in nature, is a hard mineral that interacts vigorously with the grinding equipment, therefore causing more extreme contamination. A second round was performed testing crossed contamination in quartz caused by previous grinding of basalt (RS 132, Serra Geral Formation, Rio Grande do Sul state) and granite (ITU-06.04A, from the Salto intrusion, city of Salto, São Paulo state), used as standards at the chemistry laboratories of the Instituto de Geociências, Universidade de São Paulo (IGc-USP), with their compositions determined by XRF at Igc-USP. The other chemical determinations, performed on samples of quartz solutions, for checking primary as well as crossed contamination, were performed on ICP-OES and ICPMS equipments, at the Chemistry and ICP-OES/MS Laboratory of Igc-USP. For the testing of primary contamination, the quartz aliquots Q1A, Q1B, Q1C, Q2A, Q2B, Q2C, Q3A, Q3B, and Q3C were prepared (1, 2 and 3 identify, respectively, primary jaw crusher with iron jaws, the secondary crusher with W carbide jaws and the hydraulic press with carbon steel anvil; A, B and C stand for the three used ring grinders, respectively equipped with agate, W carbide and chrome steel rings). Crossed contamination was tested with the aliquots Q4A-Gcc and Q4B-Gcc (quartz samples powdered, respectively, in the agate ring grinder and the CW ring grinder, after grinding of granite), and Q4A-Bcc and Q4B-Bcc (the same procedures as before, now with previous grinding of basalt). The only contamination registered in this study was caused during primary crushing and grinding of the quartz samples. Cleansing of equipment performed after grinding of basalt or granite using conventional cleaning techniques followed by grinding of quartzose sand (later discarded), is a procedure that erases the previous (basaltic or granitic) material from the used equipment; no significant crossed contamination was registered. The primary manganese steel crusher adds principally Fe and Mn to quartz, and elements as Cr, Mo, Cu, Sc and Nb, in lesser amounts. The secondary W carbide jaw crusher contaminates with W, probably also with C (determined with the TotalQuant program), and also with some Al. The carbon steel press contributes with contamination of about 50 ppm Fe, and lesser amounts of Cr and Mn. Powdering mills with tempered steel add mainly Fe and Cr and, to lesser extents, also Mn, W, Ni, Zn, Mo, and V to the quartz; Cu and Sc are present as possible contaminants in very low levels. The W carbide ring mill contaminates quartz with W (around 1000 ppm) and Co (around 70 ppm), adding significant levels of C. This mill contributes also with Ta and Nb additions (2 and 0.6 ppm, respectively). The determination of trace elements in quartz powdered with the agate ring mills does not register significant increases in the analyzed amounts, with levels that remain close to, or below, the respective detection limits, thus possibly precluding any contamination with the use of these mills.
43

Estudo das contaminações provenientes do processo de cominuição de amostras geológicas / A study of contaminations derived from comminution processes of geologic samples

Jose Paulo Sertek 17 September 2010 (has links)
A cominuição de amostras geológicas envolve etapas para reduzir seus grãos garantindo sua representatividade, com o auxílio de vários equipamentos de moagem de amostras. São duas as contaminações que podem ser causadas durante o uso desses equipamentos. A primeira é a contaminação primária, pelo contato face a face entre a amostra e os componentes do sistema de moagem, e a segunda é a contaminação cruzada, derivada do material de outras amostras, previamente tratadas, que esteja depositado na superfície dos equipamentos de moagem. São limitadas as informações encontradas na literatura acerca das contaminações primárias, a maioria dos autores presumindo que a mesma seja maior na etapa final dos processos de tratamento. Ainda assim, se faz necessário um estudo sistemático sobre as possibilidades de contaminação primária, durante as diversas etapas de tratamento das amostras. Para esta pesquisa foram utilizadas amostras de quartzo puro, coletado na Fazenda Batatal, em Diamantina, Minas Gerais, com o exame da contaminação primária causada pelo uso dos equipamentos de fragmentação (britador de mandíbulas primário de aço manganês, britador de mandíbulas secundário de carbeto de tungstênio e prensa hidráulica com acessórios de fragmentação em aço) e, a seguir, os de pulverização (moinho de anéis de ágata, carbeto de tungstênio e aço-Cr). O quartzo, um dos materiais mais puros encontrados na natureza, é o que apresenta dureza suficientemente alta para promover intensos processos de interação e contaminação mais extrema. Posteriormente, avaliou-se a possibilidade da contaminação cruzada em quartzo causada pelo tratamento prévio de amostras de basalto (o RS132, da Formação Serra Geral, Rio Grande do Sul) e de granito (o ITU-06.04A, da intrusão Salto, Salto, São Paulo), utilizadas como padrões nos laboratórios do Instituto de Geociências da Universidade de São Paulo, IGc-USP, com composições determinadas por fluorescência de raios X (FRX), no Laboratório de FRX do IGc-USP. As determinações químicas em soluções convenientemente preparadas de amostras de quartzo, utilizadas nas etapas de contaminação primária e cruzada, foram realizadas por espectrometria óptica com plasma indutivo acoplado (ICP-OES) e espectrometria de massa com plasma indutivo acoplado (ICP-MS) no Laboratório de Química e ICP-OES/MS do IGc-USP. Para estudos da contaminação primária foram geradas alíquotas Q1A, Q1B, Q1C, Q2A, Q2B, Q2C, Q3A, Q3B e Q3C (1 identifica tratamento por britador primário de ferro fundido, 2 o britador secundário de CW, 3 a prensa de aço-carbono; e A, B e C identificam os moinhos de anéis na moagem final: ágata, CW e aço-cromo). Nos estudos da contaminação cruzada foram geradas quatro alíquotas, Q4A-Gcc e Q4B-Gcc (quartzo pulverizado, respectivamente, em moinho de anéis de ágata e de CW, após pulverização do granito), e Q4A-Bcc e Q4B-Bcc (quartzo pulverizado nos mesmos moinhos, após tratamento do basalto). A única contaminação registrada foi causada pelos equipamentos durante cominuição primária do quartzo. A ambientação dos moinhos realizada após a moagem de granito ou basalto foi efetuada mediante limpeza rotineira, seguida de moagem com areia quartzosa (a seguir descartada), procedimento efetivo para evitar contaminação cruzada, por remover o material (basáltico ou granítico) aderido às superfícies dos equipamentos. O britador primário de aço manganês colabora com contaminações por Fe e Mn e elementos Cr, Mo, Cu, Sc e Nb, em teores menores. O britador de mandíbulas secundário de CW contaminou com W, provavelmente também com C (determinado por programa Total-Quant), e com algo de Al. A prensa em aço carbono contamina em níveis de 50 ppm de Fe, e teores menores de Cr e Mn. Moinhos pulverizadores de aço temperado contaminaram principalmente com Fe e Cr e, em teores menores, com Mn, W, Ni, Zn, Mo, e V. Cu e Sc aparecem também em níveis extremamente baixos nas amostras tratadas, e podem ser adicionados por estes moinhos. O moinho de anéis de CW contaminou com W (1000 ppm) e Co (70 ppm), aparecendo ainda C com teores apreciáveis; também contamina com Ta e Nb (em torno de 2 e 0,6 ppm, respectivamente). As determinações de vários elementos-traço no quartzo pulverizado em moinho de anéis de ágata ficaram muito próximas, ou abaixo, do limite de detecção das técnicas utilizadas, não se documentando nenhuma contaminação por efeito da utilização deste equipamento. / The grinding of geologic samples is performed to reduce grain size of the constituting minerals and to preserve a representative sample of the original material, with the help of several grinding and milling equipments. The primary and a secondary or crossed contamination are the possible effects that can be produced during these processes. The first is caused by the interaction between the components of the grinding equipments and the sample, the second derives from contamination by other geologic materials previously ground in those equipments. The information found in the previous literature on the subject is relatively limited, most authors assuming that the main contamination may be produced during the final stages of comminution, the one leading to the generation of fine powders. Thus, there is a need to conduct a systematic survey about extent and possibility of primary contaminations. The materials used are samples of pure quartz crystals from the Fazenda Batatal, city of Diamantina, Minas Gerais state, with research initially centered on the examination of primary contamination caused by the fragmentation equipment (manganese steel primary crusher, W carbide secondary crusher, hydraulic press with steel anvil) and then grinding to fine powder (ring grinders equipped with agate, W carbide or chrome-steel rings). Quartz, one of the purest substances found in nature, is a hard mineral that interacts vigorously with the grinding equipment, therefore causing more extreme contamination. A second round was performed testing crossed contamination in quartz caused by previous grinding of basalt (RS 132, Serra Geral Formation, Rio Grande do Sul state) and granite (ITU-06.04A, from the Salto intrusion, city of Salto, São Paulo state), used as standards at the chemistry laboratories of the Instituto de Geociências, Universidade de São Paulo (IGc-USP), with their compositions determined by XRF at Igc-USP. The other chemical determinations, performed on samples of quartz solutions, for checking primary as well as crossed contamination, were performed on ICP-OES and ICPMS equipments, at the Chemistry and ICP-OES/MS Laboratory of Igc-USP. For the testing of primary contamination, the quartz aliquots Q1A, Q1B, Q1C, Q2A, Q2B, Q2C, Q3A, Q3B, and Q3C were prepared (1, 2 and 3 identify, respectively, primary jaw crusher with iron jaws, the secondary crusher with W carbide jaws and the hydraulic press with carbon steel anvil; A, B and C stand for the three used ring grinders, respectively equipped with agate, W carbide and chrome steel rings). Crossed contamination was tested with the aliquots Q4A-Gcc and Q4B-Gcc (quartz samples powdered, respectively, in the agate ring grinder and the CW ring grinder, after grinding of granite), and Q4A-Bcc and Q4B-Bcc (the same procedures as before, now with previous grinding of basalt). The only contamination registered in this study was caused during primary crushing and grinding of the quartz samples. Cleansing of equipment performed after grinding of basalt or granite using conventional cleaning techniques followed by grinding of quartzose sand (later discarded), is a procedure that erases the previous (basaltic or granitic) material from the used equipment; no significant crossed contamination was registered. The primary manganese steel crusher adds principally Fe and Mn to quartz, and elements as Cr, Mo, Cu, Sc and Nb, in lesser amounts. The secondary W carbide jaw crusher contaminates with W, probably also with C (determined with the TotalQuant program), and also with some Al. The carbon steel press contributes with contamination of about 50 ppm Fe, and lesser amounts of Cr and Mn. Powdering mills with tempered steel add mainly Fe and Cr and, to lesser extents, also Mn, W, Ni, Zn, Mo, and V to the quartz; Cu and Sc are present as possible contaminants in very low levels. The W carbide ring mill contaminates quartz with W (around 1000 ppm) and Co (around 70 ppm), adding significant levels of C. This mill contributes also with Ta and Nb additions (2 and 0.6 ppm, respectively). The determination of trace elements in quartz powdered with the agate ring mills does not register significant increases in the analyzed amounts, with levels that remain close to, or below, the respective detection limits, thus possibly precluding any contamination with the use of these mills.
44

Rock Avalanches on Glaciers: Processes and Implications

Reznichenko, Natalya January 2012 (has links)
This thesis examines the role of rock avalanches in tectonically active terrains including the effects of the deposits on glacier behaviour and their contribution to moraine formation. The chronologies of mountain glacier fluctuations, based on moraine ages, are widely used to infer regional climate change and are often correlated globally. In actively uplifting mountain ranges rock avalanches that travel onto the ablation zone of a glacier can reduce ice-surface melting by insulating the ice. This can cause buried ice to thicken due to slower ablation and can significantly alter the overall glacier mass balance. This glacier response to supraglacial rock avalanche deposits can confound apparent climatic signals extracted from moraine chronologies. This thesis investigates the processes through which rock avalanche deposits may affect glaciers and develops a new technique to identify the presence of rock avalanche debris in glacial moraines. From laboratory experiments on the effects of debris on ice ablation it is demonstrated that the rate of underlying ice ablation is controlled by diurnal cyclicity and is amplified at high altitude and in lower latitudes. The relatively low permeability of rock avalanche sediment in comparison with non-rock avalanche supraglacial debris cover contributes to the suppression of ablation, at least partly because it greatly reduces the advection of heat from rain water to the underlying ice. The laboratory findings are supplemented by field investigations of two recent rock avalanche deposits on glaciers in the Southern Alps of New Zealand. This work demonstrates that the rock avalanche deposits are very thick (10 m at Aoraki/Mt. Cook and 7m at Mt. Beatrice) and almost stopped the ablation of the overlying ice. This resulted in the formation of an ice-platform more than 30 m high. This led to a reduction of the existing negative mass balance of the affected Tasman and Hooker Glaciers. There was little noticeable alteration of the overall glacial regime due to the small scale of the debris covered area (4 and 1% of the ablation zones for the Tasman and Hooker Glaciers, respectively) but there is a significant contribution to supraglacial debris, which is passively transported toward the terminus. A conceptual model of the response of mountain valley glaciers to emplacement of extensive rock avalanche debris on the ablation zone has been proposed for the effect of this type of debris on terminal moraine formation based on enhanced ‘dumping’ of supraglacial sediments. A new technique has been developed to distinguish rock-avalanche-derived sediment from sediment of glacial origin, based on the sedimentary characteristics of the finest fraction. Examination of rock avalanche sediment under the Scanning Electron Microscope showed that finer particles tend to form strong clumps, which comprise many smaller (down to nanometre-scale) clasts, named here ‘agglomerates’. These agglomerates are present in the fine fraction of all examined rock avalanche deposits and absent in known non-rock-avalanche-derived glacial sediments. The agglomerates are characteristics of sediment produced under the high-stress conditions of rock avalanche emplacement and contrast with lower-stress process sub- and en-glacial environments. It is demonstrated that these agglomerates are present in some moraines in the Southern Alps of New Zealand that have been attributed to climate fluctuation. Consequently, this technique has the potential to resolve long-standing arguments about the role of rock avalanches in moraine formation, and to enhance the use of moraines in palaeoclimatological studies.
45

CONTRIBUTION A L'ETUDE DE LA RUPTURE DES GRAINS DANS LES MATERIAUX GRANULAIRES

Ovalle, Carlos 20 June 2013 (has links) (PDF)
Ce travail est consacré à l'étude des effets de la rupture des grains dans les matériaux granulaires sous chargement quasi-statique. Les données expérimentales montrent que plus il y a de ruptures, plus le matériau est compressible et plus la résistance au cisaillement au pic diminue. La source de ce phénomène se trouve dans la mécanique de la fracture des particules individuelles, associée aux conditions de chargement sur ces particules. A partir de ces propriétés, des travaux récents ont cherché à modéliser les liens multi-échelle afin de prédire le comportement de l'assemblage. Pourtant, le sujet est encore ouvert et dans cette thèse, on se propose de fournir davantage de preuves empiriques, de tester la validité de certains modèles et de développer des nouvelles méthodes prédictives. Les liens multi-échelles se font ici en décrivant, premièrement, les propriétés mécaniques des grains par la théorie de la rupture fragile de Weibull. Deuxièmement, des hypothèses sur le réseau des forces de contact intergranulaires permettent de changer d'échelle et de prédire la granulométrie finale après ruptures et la diminution de la résistance au cisaillement à cause des effets d'échelle. On a aussi étudié l'influence de l'eau et du temps (fluage-relaxation) dans des matériaux avec des ruptures des grains sous divers chemins de contraintes, en montrant que la relation entre le taux de ruptures, ou granulométrie finale, et le travail plastique ne dépend que des propriétés intrinsèques du matériau. Des perspectives de ce travail sont le couplage des méthodes prédictives développées avec des modèles constitutifs, afin de prendre en compte les propriétés micromécaniques et les prédictions de la granulométrie dans des modèles continus.
46

Estudo da hidrogenação para pulverização de ligas à base de terras raras com Nb para eletrodos de hidreto metálico / Study of hydrogenation for pulverization of rare earth alloys with nb for metal hydride electrodes

FERREIRA, ELINER A. 22 June 2016 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2016-06-22T13:51:24Z No. of bitstreams: 0 / Made available in DSpace on 2016-06-22T13:51:24Z (GMT). No. of bitstreams: 0 / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
47

Estudo da hidrogenação para pulverização de ligas à base de terras raras com Nb para eletrodos de hidreto metálico / Study of hydrogenation for pulverization of rare earth alloys with nb for metal hydride electrodes

FERREIRA, ELINER A. 22 June 2016 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2016-06-22T13:51:24Z No. of bitstreams: 0 / Made available in DSpace on 2016-06-22T13:51:24Z (GMT). No. of bitstreams: 0 / Neste trabalho foram estudadas as series de ligas La0,7Mg0,3Al0,3Mn0,4Co(0,5-x)NbxNi3,8 (x =0 a 0,5) e La0,7Mg0,3Al0,3Mn0,4Nb(0,5-x)Ni(3,8-x) (x =0,3; 0,5 e 1,3), como eletrodo negativo de baterias de Níquel Hidreto Metálico. A pulverização das ligas foi realizada com duas pressões de H2 (2 bar e 9 bar). A capacidade de descarga das baterias de níquel hidreto metálico foi analisada pelo equipamento de testes elétricos Arbin BT-4. As ligas, no estado bruto de fusão, foram analisadas por microscopia eletrônica de varredura (MEV), espectroscopia de energia dispersiva (EDS) e difração de raios-X. Com o aumento da concentração de nióbio nas ligas nota-se a diminuição da estabilidade cíclica das baterias e da capacidade máxima de descarga. A capacidade de descarga máxima obtida foi para a liga La0,7Mg0,3Al0,3Mn0,4Co0,5Ni3,8 (45,36 mAh) e a bateria que apresentou a melhor performance foi a liga La0,7Mg0,3Al0,3Mn0,4Co0,4Nb0,1Ni3,8 (44,94 mAh). / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
48

Dry fine grinding of Norway spruce (<em>Picea abies</em>) wood in impact-based fine grinding mills

Karinkanta, P. (Pasi) 13 January 2015 (has links)
Abstract Wood powders are used in numerous applications such as thermoplastics and filters, and a lot of research effort has been put into developing novel ways of utilising them. The mechanical processing of wood powders, especially at particle sizes below 100 µm, has been reported in several studies, but they lack information on the effect of fine grinding conditions on the particle morphology and cellulose crystallinity, both of which are important parameters in the further processing of wood powders and in their various applications. This makes it very difficult to design and optimise fine grinding processes with different applications in mind. The aim of this thesis was to study the dry fine grinding of wood in several impact-based fine grinding mills in order to find out their effect on the properties of the wood and to study the energy required for the mechanical processing of the resulting powders. The effect of the main operational parameters on the properties of dried Norway spruce wood and the energy consumption was studied using three impact-based fine grinding mills that were capable of pulverising the wood down to a median particle size of less than 25 µm. It was found that the impact events occurring in media mills can be used for the production of very fine wood powders with lower cellulose crystallinity and rounder shaped particles having more uniform shape distribution than powders pulverised to a similar size range by means of impact events in non-media mills. A practical estimate was obtained for the minimum specific energy consumption in fine grinding in mills involving grinding media that could be utilised as a target for optimisation. Impact-based media milling under cryogenic conditions can be used to obtain different Norway spruce wood powders from those produced under ambient grinding conditions, i.e. without the freezing effect of nitrogen liquid. The energy efficiency of fine grinding can be enhanced by choosing cryogenic rather than ambient conditions. The moisture content of the wood has greater influence on the size and shape of the particles when milling is accomplished under ambient conditions. Torrefaction can reduce the energy consumption in impact-based media mills for median particle sizes over 17.4 µm (± 0.2 µm), while the shape and cellulose crystallinity of the particles are not significantly affected by torrefaction pretreatment as a function of energy consumption. / Tiivistelmä Puujauheita käytetään laajalti erilaisissa sovelluksissa, kuten esimerkiksi biokomposiiteissa ja suodattimissa. Tämän lisäksi on olemassa paljon tutkimustietoa siitä, kuinka puujauheita voitaisiin hyödyntää laajemminkin. Puu voidaan mekaanisesti prosessoida alle 100 µm:n kokoluokkaan, mutta yksityiskohtaista tietoa kuivahienojauhatuksen olosuhteiden vaikutuksesta jauheiden morfologiaan ja selluloosan kiteisyyteen ei ole saatavilla. Puujauheen morfologialla ja selluloosan kiteisyydellä on kuitenkin merkittävä vaikutus sovelluksia ja jatkojalostusta ajatellen. Puun kuivahienojauhatuksen tiedon puute hankaloittaa merkittävästi prosessin suunnittelua ja optimointia erilaisia sovelluksia varten. Tämän väitöskirjan tavoitteena on selvittää iskuihin perustuvien hienojauhimien vaikutukset puun ominaisuuksiin ja tutkia mekaanisen prosessoinnin energiatehokkuutta hienojauhatuksessa. Tutkimuksessa selvitettiin kolmen erilaisen iskuun perustuvan hienojauhatusmyllyn pääasiallisten operointiparametrien vaikutusta kuivatun metsäkuusen ominaisuuksiin ja energiankulutukseen. Jokaisella hienojauhimella onnistuttiin tuottamaan puujauhoja, joiden mediaanikoko oli alle 25 µm. Iskuihin perustuvalla jauhinkappalemyllyllä saatiin tuotettua puujauhoa, jonka selluloosan kiteisyys on alhaisempi ja partikkelimuodot pyöreämpiä verrattuna samankokoisiin puujauhoihin, jotka on tuotettu iskuihin perustuvilla jauhinkappaleettomilla hienojauhatusmyllyillä. Työssä saatiin käytännöllinen arvio kuivatun metsäkuusen hienojauhatuksen minimienergiankulutukselle iskuihin perustuville jauhinkappalemyllyille, mitä voidaan käyttää kyseisten myllytyyppien optimoinnin tavoitteena. Työssä havaittiin lisäksi, että kryogeenisiä jauhatusolosuhteita käyttämällä voidaan tuottaa erilaisia puujauhoja verrattuna puujauhoihin, jotka prosessoidaan ilman nestetyppijäädytystä, kun jauhatus suoritetaan iskuihin perustuvalla jauhinkappalemyllyllä. Ilman nestetyppijäädytystä puun kosteuspitoisuudella on merkittävämpi vaikutus puujauhojen ominaisuuksiin kuin kryogeenisissä olosuhteissa jauhetuilla. Kryogeenisillä jauhatusolosuhteilla voidaan parantaa myös jauhatuksen energiatehokkuutta. Torrefioinnilla voidaan vähentää hienojauhatuksen energiankulutusta iskuihin perustuvilla jauhinkappalemyllyillä, kun tavoitekoon mediaani on yli 17,4 µm (± 0,2 µm). Torrefioinnilla ei ole vaikutusta selluloosan kiteisyyteen tai partikkeleiden muotoon energiankulutuksen funktiona.
49

Modellierung der Zerkleinerung in Profilwalzenbrechern

Schmidt, Marko 25 March 2011 (has links)
Für die Weich- und Mittelhartzerkleinerung von Primär- und Sekundärrohstoffen werden zunehmend Profilwalzenbrecher eingesetzt. Trotz relativ geringer Zerkleinerungsgrade zeichnen sie sich durch einen geringen spezifischen Leistungsbedarf, hohe Durchsätze, eine einfache Konstruktion und Instandhaltung sowie eine störungsfreie Betriebsweise aus und sind auch bei adhäsivem Aufgabematerial anwendbar. Trotz der Bedeutung dieser Maschinen gibt es bisher nur unzureichende Auslegungsmethoden. Die theoretisch begründete Modellierung der Zerkleinerung in markant profilierten Walzenbrechern ist deshalb Gegenstand dieser Arbeit, um dadurch die Dimensionierungsgrundlagen zu verbessern und Einsatzmöglichkeiten in der Hartzerkleinerung abzuschätzen. Dazu werden im Rahmen einer Systembetrachtung zunächst die wesentlichen Prozessparameter der Zerkleinerung ermittelt und die Bauarten von Profilwalzenbrechern klassifiziert (Kapitel 2). Die Darstellung der bekannten Berechnungsmodelle für die Hauptzielgrößen „Grenzdurchsatz“, „Produktgranulometrie“ und „Leistungsbedarf“ ist Gegenstand von Kapitel 3. Darauf aufbauend wird in Kapitel 4 ein neues, physikalisch begründetes Auslegungsmodell vorgestellt und das Untersuchungsfeld hinsichtlich der zu analysierenden Aufgabestoffart und Maschinengeometrie eingegrenzt. Die für dieses Modell erforderlichen Zerkleinerungstest- und Simulationsergebnisse werden in Kapitel 5 und 6 dargestellt, bevor die Arbeit in Kapitel 7 mit einer Zusammenfassung und einem Ausblick abschließt.:Symbolverzeichnis III Tabellenverzeichnis XX Abbildungsverzeichnis XXI 1 Einleitung und Problemstellung 1 2 Systemanalyse von Profilwalzenbrechern 3 2.1 Einfluss- und Zielgrößen von Profilwalzenbrechern 3 2.2 Systematisierung und Einordnung von Profilwalzenbrechern 7 2.2.1 Klassifizierung von Profilwalzenbrechern 8 2.2.1.1 Klassifizierung nach konstruktiven Maschinenparametern 9 2.2.1.2 Klassifizierung nach der Belastungsart 18 2.2.2 Abgrenzung von Profilwalzenbrechern 25 3 Erkenntnisstand zur Zerkleinerung in Profilwalzenbrechern 29 3.1 Wertebereiche der Einfluss- und Zielgrößen von Profilwalzenbrechern 29 3.2 Auslegungsmodelle von Profilwalzenbrechern 32 3.2.1 Ermittlung des Grenzdurchsatzes 32 3.2.1.1 Einzugsbedingung für das Einzelkorn 32 3.2.1.2 Theoretisch begründete Ansätze für den Grenzdurchsatz 38 3.2.1.3 Empirische Ansätze für den Grenzdurchsatz 47 3.2.2 Ermittlung der Produktkorngrößenverteilung 49 3.2.3 Ermittlung des Leistungsbedarfs 54 3.2.3.1 Theoretisch begründete Ansätze für den Leistungsbedarf 57 3.2.3.2 Empirische Ansätze für den Leistungsbedarf 68 3.3 Wertung des Erkenntnisstandes und Präzisierung der Aufgabenstellung 75 4 Neues Auslegungsmodell für Profilwalzenbrecher 77 4.1 Aufbau des Modells 77 4.2 Voruntersuchungen zu den Einflussgrößen des Modells 78 4.2.1 Analyse maschinenbezogener Parameter 78 4.2.1.1 Primäroptimierung der Profilwalzengeometrie 79 4.2.1.2 Sekundäroptimierung der Profilwalzengeometrie 86 4.2.2 Analyse aufgabestoffbezogener Parameter 95 4.2.3 Analyse systembezogener Parameter 99 4.3 Bestimmung der Zielgrößen des Modells 101 4.3.1 Simulation der Einzelkornzerkleinerung in einem Modellwalzenbrecher 101 4.3.2 Aggregation der Simulationsergebnisse auf die Massestromzerkleinerung 102 4.3.3 Skalierung der Simulationsergebnisse auf den Originalwalzenbrecher 110 5 Zerkleinerungsversuche für das neue Auslegungsmodell 115 5.1 Grundlagen zur Einzelkorndruckzerkleinerung 115 5.1.1 Physikalische Beschreibung von Deformations- und Bruchprozessen 115 5.1.2 Empirische Analyse von Deformations- und Bruchprozessen 121 5.1.2.1 Einfluss- und Zielgrößen der Einzelkorndruckzerkleinerung 121 5.1.2.2 Korngrößeneffekt der Einzelkorndruckzerkleinerung 124 5.1.2.2.1 Versuchsergebnisse zum Korngrößeneffekt 124 5.1.2.2.2 Mathematisch-statistische Ansätze zum Korngrößeneffekt 128 5.2 Experimentelle Untersuchungen zur Einzelkorndruckzerkleinerung 132 5.2.1 Aufbau der Versuchsapparaturen 132 5.2.2 Durchführung der Versuche 134 5.2.3 Auswertung der Versuche 136 6 DEM-Simulationen für das neue Auslegungsmodell 141 6.1 Grundlagen zur DEM-Simulation 141 6.1.1 Beschreibung der DEM 141 6.1.2 Bisherige DEM-Simulationen von Zerkleinerungsprozessen 151 6.2 Kalibrierung des DEM-Gesteinsmodells 154 6.2.1 Statistische Simulationsplanung 156 6.2.2 Simulationsdurchführung 159 6.2.3 Voroptimierung 161 6.2.4 Nachoptimierung 164 6.3 Walzenbrechersimulationen mit dem kalibrierten DEM-Gesteinsmodell 166 6.3.1 Aufbau des Walzenbrechersimulationsprogramms 166 6.3.2 Ergebnisse der Walzenbrechersimulationen 169 6.3.2.1 Simulationsergebnisse zum Massedurchsatz des Walzenbrechers 169 6.3.2.2 Simulationsergebnisse zur Produktkorngrößenverteilung des Walzenbrechers 171 6.3.2.3 Simulationsergebnisse zum Leistungsbedarf des Walzenbrechers 174 7 Zusammenfassung und Ausblick 178 Literaturverzeichnis XXIV Anlagenverzeichnis XXXV
50

Modeling of realistic microstructures on the basis of quantitative mineralogical analyses

Klichowicz, Michael 30 November 2020 (has links)
Diese Forschung zielt darauf ab, den Einsatz realistischer Mineralmikrostrukturen in Mineralverarbeitungssimulationen Simulationen von Aufbereitungsprozessen zu ermöglichen. Insbesondere Zerkleinerungsprozesse, wie z.B. das Brechen und Mahlen von mineralischen Rohmaterialien, werden stark von der mineralischen Mikrostruktur beeinflusst, da die Textur und die Struktur der vielen Körner und ihre mikromechanischen Eigenschaften das makroskopische Bruchverhalten bestimmen. Ein Beispiel: Stellen wir uns vor, wir haben ein mineralisches Material, das im Wesentlichen aus Körnern zweier verschiedener Mineralphasen, wie Quarz und Feldspat, besteht. Wenn die mikromechanischen Eigenschaften dieser beiden Phasen unterschiedlich sind, wird sich dies wahrscheinlich auf das makroskopische Bruchverhalten auswirken. Unter der Annahme, dass die Körner eines der Minerale bei geringeren Belastungen brechen, ist es wahrscheinlich, dass sich ein Riss durch einen Stein dieses Materials durch die schwächeren Körner ausbreitet. Tatsächlich ist dies eine wichtige Eigenschaft für die Erzaufbereitung. Um wertvolle Mineralien aus einem Erz zu gewinnen, ist es wichtig, sie aus dem kommerziell wertlosen Material, in dem sie vorkommen, zu befreien. Dazu ist es wichtig zu wissen und zu verstehen, wie das Material auf Korngrößenebene bricht. Um diesen Bruch simulieren zu können, ist es wichtig, realistische Modelle der mineralischen Mikrostrukturen zu verwenden. Diese Studie zeigt, wie solche realistischen zweidimensionalen Mikrostrukturen auf der Grundlage der quantitativen Mikrostrukturanalyse am Computer erzeugt werden können. Darüber hinaus zeigt die Studie, wie diese synthetischen Mikrostrukturen dann in die gut etablierte Diskrete-Elemente-Methode integriert werden können, bei der der Bruch von mineralischem Material auf Korngrößenebene simuliert werden kann.:List of Acronyms VII List of Latin Symbols IX List of Greek Symbols XV 1 Introduction 1 1.1 Motivation for using realistic microstructures in Discrete Element Method (DEM) 1 1.2 Possibilities for using realistic mineral microstructures in DEM simulations . 4 1.3 Objective and disposition of the thesis . . . . . . . . . . . . . . . . . . . . 7 2 Background 9 2.1 Discrete Element Method (DEM) . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Fundamentals of the Discrete Element Method (DEM) . . . . . . . . 9 2.1.2 Applications of DEM in comminution science . . . . . . . . . . . . . 21 2.1.3 Limitations of DEM in comminution science . . . . . . . . . . . . . . 26 2.2 Quantitative Microstructural Analysis . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Fundamentals of the Quantitative Microstructural Analysis . . . . . . 29 2.2.2 Applied QMA in mineral processing . . . . . . . . . . . . . . . . . . 49 2.2.3 Applicability of the QMA for the synthesis of realistic microstructures 49 3 Synthesis of realistic mineral microstructures for DEM simulations 51 3.1 Development of a computer-assisted QMA for the analysis of real and synthetic mineral microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Fundamentals of the computer-assisted QMA . . . . . . . . . . . . 53 3.1.2 The requirements for the false-color image. . . . . . . . . . . . . . 54 3.1.3 The conversion of a given real mineral microstructure into a false-color image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.4 Implementation of the point, line, and area analysis . . . . . . . . . 59 3.1.5 Selection of appropriate QMA parameters for analyzing two-dimensional microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.6 Summary of the principles of the adapted Quantitative Microstructural Analysis (QMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Analysis of possible strategies for the microstructure synthesis . . . . . . . . 71 3.3 Implementation of the drawing method . . . . . . . . . . . . . . . . . . . . 76 3.3.1 Drawing of a single grain . . . . . . . . . . . . . . . . . . . . . . . 77 XVIII List of Greek Symbols 3.3.2 Drawing of multiple grains, which form a synthetic microstructure . . 81 3.3.3 Synthesizing mineral microstructures consisting of multiple phases . 85 3.4 The final program for microstructure analysis and synthesis . . . . . . . . . 89 3.4.1 Synthesis and analysis of an example microstructure . . . . . . . . . 90 3.4.2 Procedure for generating a realistic synthetic microstructure of a given real microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4 Validation of the synthesis approach 103 4.1 Methodical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.1 The basic idea of the validation procedure . . . . . . . . . . . . . . 103 4.1.2 The experimental realizations . . . . . . . . . . . . . . . . . . . . . 108 4.2 Basic indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.1 Considerations for the basic indenter test . . . . . . . . . . . . . . . 109 4.2.2 Realization and evaluation of the real basic indenter test . . . . . . . 114 4.2.3 Realization and evaluation of the simulated basic indenter test . . . 127 4.2.4 Conclusions on the basic indenter test . . . . . . . . . . . . . . . . . 138 4.3 Extended indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3.1 Basic considerations for the extended indenter test . . . . . . . . . . 139 4.3.2 Realization and evaluation of the real extended indenter test . . . . 142 4.3.3 Realization and evaluation of the simulated extended indenter test . 154 4.3.4 Conclusions on the extended indenter test . . . . . . . . . . . . . . 171 4.4 Particle bed test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.4.1 Basic considerations for the particle bed test . . . . . . . . . . . . . 173 4.4.2 Realization and evaluation of the real particle bed test . . . . . . . . 176 4.4.3 Realization and evaluation of the simulated particle bed test . . . . . 188 4.4.4 Conclusions on the particle bed test . . . . . . . . . . . . . . . . . . 203 5 Conclusions and directions for future development 205 6 References 211 List of Figures 229 List of Tables 235 Appendix 237 / This research aims to make it possible to use realistic mineral microstructures in simulations of mineral processing. In particular, comminution processes, such as the crushing and grinding of raw mineral materials, are highly aff ected by the mineral microstructure, since the texture and structure of the many grains and their micromechanical properties determine the macroscopic fracture behavior. To illustrate this, consider a mineral material that essentially consists of grains of two diff erent mineral phases, such as quartz and feldspar. If the micromechanical properties of these two phases are diff erent, this will likely have an impact on the macroscopic fracture behavior. Assuming that the grains of one of the minerals break at lower loads, it is likely that a crack through a stone of that material will spread through the weaker grains. In fact, this is an important property for ore processing. In order to extract valuable minerals from an ore, it is important to liberate them from the commercially worthless material in which they are found. For this, it is essential to know and understand how the material breaks at grain-size level. To be able to simulate this breakage, it is important to use realistic models of the mineral microstructures. This study demonstrates how such realistic two-dimensional microstructures can be generated on the computer based on quantitative microstructural analysis. Furthermore, the study shows how these synthetic microstructures can then be incorporated into the well-established discrete element method, where the breakage of mineral material can be simulated at grain-size level.:List of Acronyms VII List of Latin Symbols IX List of Greek Symbols XV 1 Introduction 1 1.1 Motivation for using realistic microstructures in Discrete Element Method (DEM) 1 1.2 Possibilities for using realistic mineral microstructures in DEM simulations . 4 1.3 Objective and disposition of the thesis . . . . . . . . . . . . . . . . . . . . 7 2 Background 9 2.1 Discrete Element Method (DEM) . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Fundamentals of the Discrete Element Method (DEM) . . . . . . . . 9 2.1.2 Applications of DEM in comminution science . . . . . . . . . . . . . 21 2.1.3 Limitations of DEM in comminution science . . . . . . . . . . . . . . 26 2.2 Quantitative Microstructural Analysis . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Fundamentals of the Quantitative Microstructural Analysis . . . . . . 29 2.2.2 Applied QMA in mineral processing . . . . . . . . . . . . . . . . . . 49 2.2.3 Applicability of the QMA for the synthesis of realistic microstructures 49 3 Synthesis of realistic mineral microstructures for DEM simulations 51 3.1 Development of a computer-assisted QMA for the analysis of real and synthetic mineral microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Fundamentals of the computer-assisted QMA . . . . . . . . . . . . 53 3.1.2 The requirements for the false-color image. . . . . . . . . . . . . . 54 3.1.3 The conversion of a given real mineral microstructure into a false-color image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.4 Implementation of the point, line, and area analysis . . . . . . . . . 59 3.1.5 Selection of appropriate QMA parameters for analyzing two-dimensional microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.1.6 Summary of the principles of the adapted Quantitative Microstructural Analysis (QMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2 Analysis of possible strategies for the microstructure synthesis . . . . . . . . 71 3.3 Implementation of the drawing method . . . . . . . . . . . . . . . . . . . . 76 3.3.1 Drawing of a single grain . . . . . . . . . . . . . . . . . . . . . . . 77 XVIII List of Greek Symbols 3.3.2 Drawing of multiple grains, which form a synthetic microstructure . . 81 3.3.3 Synthesizing mineral microstructures consisting of multiple phases . 85 3.4 The final program for microstructure analysis and synthesis . . . . . . . . . 89 3.4.1 Synthesis and analysis of an example microstructure . . . . . . . . . 90 3.4.2 Procedure for generating a realistic synthetic microstructure of a given real microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4 Validation of the synthesis approach 103 4.1 Methodical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.1 The basic idea of the validation procedure . . . . . . . . . . . . . . 103 4.1.2 The experimental realizations . . . . . . . . . . . . . . . . . . . . . 108 4.2 Basic indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.1 Considerations for the basic indenter test . . . . . . . . . . . . . . . 109 4.2.2 Realization and evaluation of the real basic indenter test . . . . . . . 114 4.2.3 Realization and evaluation of the simulated basic indenter test . . . 127 4.2.4 Conclusions on the basic indenter test . . . . . . . . . . . . . . . . . 138 4.3 Extended indenter test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 4.3.1 Basic considerations for the extended indenter test . . . . . . . . . . 139 4.3.2 Realization and evaluation of the real extended indenter test . . . . 142 4.3.3 Realization and evaluation of the simulated extended indenter test . 154 4.3.4 Conclusions on the extended indenter test . . . . . . . . . . . . . . 171 4.4 Particle bed test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.4.1 Basic considerations for the particle bed test . . . . . . . . . . . . . 173 4.4.2 Realization and evaluation of the real particle bed test . . . . . . . . 176 4.4.3 Realization and evaluation of the simulated particle bed test . . . . . 188 4.4.4 Conclusions on the particle bed test . . . . . . . . . . . . . . . . . . 203 5 Conclusions and directions for future development 205 6 References 211 List of Figures 229 List of Tables 235 Appendix 237

Page generated in 0.4842 seconds