• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 15
  • 13
  • 11
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Klinische, biochemische und molekulargenetische Untersuchungen an Kindern mit Mitochondriopathien

Schülke-Gerstenfeld, Markus 26 March 2002 (has links)
Mitochondrien haben eine entscheidende Rolle im Zellmetabolismus, da sie den Hauptort der ATP-Produktion darstellen. Störungen des mitochondrialen Metabolismus sind mit einem weiten Spektrum von Erkrankungen assoziiert. Das Gehirn und die Muskulatur sind aufgrund ihres hohen Energiebedarfs dabei oft betroffen (Epilepsie, Ataxie, Myopathie). Diese Arbeit beschreibt die Klonierung von nukleären Genen des Komplexes I der mitochondrialen Atmungskette. Besonderes Augenmerk wird dabei auf die 51 kDa Untereinheit (NDUFV1) gerichtet, da sie mit ihrer Bindungsstelle für NADH2 die Eintrittspforte in den Komplex I darstellt. In dieser Untereinheit werden die ersten Mutationen beschrieben, die bei Kindern zu schwerer Entwicklungsretardierung, Leukenzephalopathie und Muskelhypotonie führen. Im weiteren werden Patienten mit isoliertem Komplex III Mangel molekulargenetisch untersucht und klassifiziert. Bei einem Patienten war ein isolierter Komplex III-Mangel und eine Mutation im mitochondrialen Cytochrom b-Gen mit einer septo-optischen Dysplasie vergesellschaftet. Am Ende beschreibt die Arbeit die Probleme der pränatalen Diagnostik mitochondrialer Erkrankungen und die Besonderheiten der genetischen Beratung betroffener Familien. / Mitochondria have a crucial role in the energy metabolism of the cell, since they constitute the main place for ATP-production. Defects in the mitochondrial metabolism are associated with a wide spectrum of diseases. Due to their high energy demand brain and muscles are regularly affected (epilepsy, ataxia, myopathy). This work describes the cloning of nuclear encoded genes of complex I of the mitochondrial respiratory chain. The main interest is directed towards the 51 kDa subunit (NDUFV1) since, due to its NADH2-binding domain, it constitutes the entry port into complex I. Therein the first mutations are described, which lead to severe developmental delay, leukencephalopathy and muscular hypotonia in infants. Additionally patients with isolated complex III-deficiency are examined molecularly and are classified according to their clinical symptoms. In one patient isolated complex III deficiency and a mutation in the mitochondrial cytochrome b-gene are associated with septo-optic dysplasia. At the end problems with prenatal diagnosis of mitochondrial diseases and the peculiarities of genetic counselling of affected families are discussed.
32

Probing the effect of conformational changes in protein complexes by vibrational spectroscopy : bioenergetics and allostery

Yegres, Michelle 24 April 2014 (has links) (PDF)
The mechanism of enzyme regulation through conformational changes is a key pattern in governing cell behavior. In this thesis the focus is on three protein complexes that reflect how protein activity can be regulated by different effectors. Different spectroscopic techniques, like IR and Raman spectroscopy, were used is order to follow the secondary and tertiary conformational changes in protein structure to identify their roles. The first protein of interest was PDZ1 from MAGI-1, involved in cellular signaling. This scaffold domain is known to interact with the E6 protein from HPV16. It was demonstrated that the different conformational states and their affinities to the C-terminus of the viral protein is regulated by the dynamics of the hydrogen bonding network formed by the connection of specific amino acids in three regions of the protein. Study of mutations around the C-terminal area of the protein and the βC strand were performed; demonstrating that both regions are crucial for assembly of the hydrogen bonding network to stabilize the substrate binding. These results leads to conclude that the pathogenicity and prevalence of a particular virus like HPV16 is in its ability to build a stronger hydrogen bonding network in comparison to the natural binder. The allosteric model and the "shift population" model agree that, upon binding, conformational changes distant from a carboxylate binding group might be the key to understanding the binding dynamics between the PDZ domains and the viral proteins.The second protein of interest was a model that constitutes a small scale prototype of the conformational changes observed in more complex proteins; it is a short Copper-binding peptide, the amyloid-beta peptide, known to beinvolved in Alzheimer's disease. The objective with this model was to describe the effect of histidine ligands in the metal centers upon Copper (Cu) reduction, a key electrochemical reaction in the development of Alzheimer's. FTIR difference spectroscopy showed two different spheres of coordination for Cu(II) and Cu(I). The major changes in the structure are dominated by the contribution of the imidazole ring of His residues (His6, His13 and His14), in addition to Asp1 and Tyr10 residues. Changes in the coordination geometry could be key to the pH-dependency of the aggregation observed in the presence of Cu(I). Accordingly, it can be suggested that the formation of the fibrils observed in Alzheimer's patients is not only triggered by the presence of Cu but it is strongly affected by its redox state. The last system of interest was a metalloprotein, the NADH:ubiquinone oxidoreductase (complex I), which plays a key role in the cellular bioenergetics. This protein bears several Fe-S clusters and one flavin and its activity is regulated by the energy produced by a bound substrate and the electron transfer of its cofactors. The metal ligand-vibrations of the cofactors are described in their oxidized and reduced states. Using electrochemistry coupled to FTIR, Resonance Raman and Fluorescence spectroscopies, the investigation of complex I led to the conclusion that the properties of the metal centers are dictated, to a large extent, by their surrounding environment. [...]
33

Transformation of a membrane protein from the respiratory chain into a sensor for the analysis of its interaction with substrates, inhibitors and lipids

Kriegel, Sébastien 11 December 2013 (has links) (PDF)
The field of bioenergetics deals with the flow and transformation of energy within and between living organisms and their environment. The work presented in this thesis report focuses on cellular respiration and more specifically on the first enzyme of the respiratory chain, NADH:ubiquinone oxidoreductase (Complex I). This was done to clarify details about its function and its implication in disease. First, the creation of a sensor involving the biomimetically immobilized enzyme is presented and probed through a combination of surface enhanced infrared absorption spectroscopy (SEIRAS) and electrochemistry. This sensor is then tested against different substrates and inhibitors. In a second part, the interaction of Complex I with lipids, inhibitors (Zn2+ and NADH-OH) and the role of a Tyrosine residue situated in the NADH binding pocket are investigated through electrochemically induced UV-Vis and FTIR difference spectroscopies. The results gathered through these experiments are then explored under a structural perspective and a coupling mechanism between quinone reduction and proton translocation by Complex I is proposed.
34

Evaluation of metallothionein involvement in the modulation of mitochondrial respiration in mice / Marianne Pretorius.

Pretorius, Marianne January 2011 (has links)
Metallothioneins (MTs) are small, non-enzymatic proteins that are involved in cellular detoxification and metal homeostasis because of their high cysteine content. MTs have also been identified as one of the vast number of adaptive responses to mitochondrial respiratory chain (RC) deficiencies. Aside from this, numerous other studies have linked MTs to several mitochondrion-linked components, including reactive oxygen species (ROS) and oxidative stress, apoptosis, glutathione, energy metabolism and nuclear- and mitochondrial DNA transcription regulation. However, most of the reports concerning the putative link between MTs and mitochondria are from in vitro studies and relatively little supportive in vivo evidence has been reported. Information on the involvement of MTs with respiratory chain function is especially limited. Is was therefore the aim of this study to investigate the involvement of MTs in mitochondrial respiration and respiratory chain enzyme function by using an MT knockout (MTKO) mouse model, which was treated with the irreversible complex I inhibiting reagent, rotenone. The aim was achieved by implementing three objectives: firstly, the RC function was investigated as a complete working unit; secondly, the functional and structural properties of single units (enzymes) of the RC were investigated utilising enzyme activity assays and BN- PAGE/western blot analysis; and thirdly, the possible effect of MTs on mtDNA copy number was investigated. While some tendencies of variation in RC enzyme activity and expression were identified, no significant effect on the overall mitochondrial respiratory function, or any significant differences in the relative mtDNA copy number of MTKO mice were observed. Thus it is concluded, while MTs have in this study revealed relatively small changes in respiratory chain function, which may still prove to have biological ignificance in vivo, the exact nature of the putative role of MTs in mitochondrial respiration or oxidative phosphorylation remains undefined. / Thesis (MSc (Biochemistry))--North-West University, Potchefstroom Campus, 2012.
35

Evaluation of metallothionein involvement in the modulation of mitochondrial respiration in mice / Marianne Pretorius.

Pretorius, Marianne January 2011 (has links)
Metallothioneins (MTs) are small, non-enzymatic proteins that are involved in cellular detoxification and metal homeostasis because of their high cysteine content. MTs have also been identified as one of the vast number of adaptive responses to mitochondrial respiratory chain (RC) deficiencies. Aside from this, numerous other studies have linked MTs to several mitochondrion-linked components, including reactive oxygen species (ROS) and oxidative stress, apoptosis, glutathione, energy metabolism and nuclear- and mitochondrial DNA transcription regulation. However, most of the reports concerning the putative link between MTs and mitochondria are from in vitro studies and relatively little supportive in vivo evidence has been reported. Information on the involvement of MTs with respiratory chain function is especially limited. Is was therefore the aim of this study to investigate the involvement of MTs in mitochondrial respiration and respiratory chain enzyme function by using an MT knockout (MTKO) mouse model, which was treated with the irreversible complex I inhibiting reagent, rotenone. The aim was achieved by implementing three objectives: firstly, the RC function was investigated as a complete working unit; secondly, the functional and structural properties of single units (enzymes) of the RC were investigated utilising enzyme activity assays and BN- PAGE/western blot analysis; and thirdly, the possible effect of MTs on mtDNA copy number was investigated. While some tendencies of variation in RC enzyme activity and expression were identified, no significant effect on the overall mitochondrial respiratory function, or any significant differences in the relative mtDNA copy number of MTKO mice were observed. Thus it is concluded, while MTs have in this study revealed relatively small changes in respiratory chain function, which may still prove to have biological ignificance in vivo, the exact nature of the putative role of MTs in mitochondrial respiration or oxidative phosphorylation remains undefined. / Thesis (MSc (Biochemistry))--North-West University, Potchefstroom Campus, 2012.
36

Intracellular dynamics of Alzheimer disease-related proteins /

Selivanova, Alexandra, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
37

Caracterização do estímulo da produção mitocondrial de H2O2 por inibição parcial do Complexo I da cadeia respiratória = Stimulatory effects of a partial respiratory Complex I inhibition on mitochondrial H2O2 generation / Stimulatory effects of a partial respiratory Complex I inhibition on

Michelini, Luiz Guilherme Bueno, 1983- 24 August 2018 (has links)
Orientador: Roger Frigério Castilho / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-24T17:18:02Z (GMT). No. of bitstreams: 1 Michelini_LuizGuilhermeBueno_M.pdf: 1602537 bytes, checksum: f58032fd3eaf359e8f094658a3612c02 (MD5) Previous issue date: 2014 / Resumo: A inibição parcial do Complexo I da cadeia respiratória mitocondrial em ratos tratados cronicamente com rotenona está associada com o desenvolvimento de características neuroquímicas, comportamentais e neuropatológicas da doença de Parkinson. Os objetivos deste trabalho foram (i) caracterizar os efeitos de uma inibição parcial do Complexo I por rotenona na produção de peróxido de hidrogênio (H2O2) por mitocôndrias de cérebro de ratos (MCR) em diferentes estados respiratórios e (ii) avaliar a suscetibilidade de MCR velhos (24 meses) à inibição do consumo de oxigênio (O2) e ao estímulo da produção de H2O2 por rotenona em comparação a MCR adultos (3-4 meses). A análise do potencial de membrana por citometria de fluxo em mitocôndrias isoladas indicou que a adição de rotenona promoveu uma inibição uniforme da respiração mitocondrial nestas organelas. Quando mitocôndrias foram incubadas na presença de uma baixa concentração de rotenona (10 nM) e de substratos geradores de NADH, o consumo de O2 foi reduzido de 45,9±1,0 para 26,4±2,6 nmol O2.mg-1.min-1 e de 7,8±0,3 para 6,3±0,3 nmol O2.mg-1.min-1 nos estados respiratórios 3 (respiração estimulada por ADP) e 4 (respiração de repouso), respectivamente. Nessas condições, a produção mitocondrial de H2O2 foi estimulada de 12,2±1,1 para 21,0±1,2 pmol H2O2.mg-1.min-1 e de 56,5±4,7 para 95,0±11,1 pmol H2O2.mg-1.min-1 nos estados respiratórios 3 e 4, respectivamente. Resultados similares foram observados ao comparar preparações mitocondriais enriquecidas com organelas sinápticas e não-sinápticas ou quando o íon 1-metil-4-fenilpiridina (MPP+) foi utilizado como inibidor de Complexo I mitocondrial. O estímulo da produção de H2O2 por rotenona nos estados respiratórios 3 e 4 foi associado a um aumento do estado reduzido de nucleotídeos de nicotinamida endógenos. Na respiração mitocondrial com succinato, onde a maior parte da produção de H2O2 se origina do fluxo reverso de elétrons do Complexo II para o I, baixas concentrações de rotenona inibiram a produção de H2O2. Rotenona não exerceu efeito sobre a eliminação mitocondrial de concentrações micromolares de H2O2. Em sinaptossomas intactos, observamos que rotenona 10 nM estimulou a liberação de H2O2 em 20,2±3,3% no estado respiratório basal. Ao compararmos MCR adultos e velhos, verificamos que o consumo de O2 no estado respiratório 3 e a atividade da citrato sintase foram 21,0±3,3% e 17,0±5,4% mais baixos em MCR velhos. Experimentos conduzidos na presença de diferentes concentrações de rotenona (5, 10 e 100 nM) demonstraram sensibilidade similar à inibição do consumo de O2 por rotenona no estado respiratório 3, com IC50 de 7,8±0,4 e 6,5±0,5 nM para MCR adultos e velhos, respectivamente. De acordo com esses resultados, o estímulo da produção de H2O2 observado foi similar em MCR adultos e velhos, tratadas com diferentes concentrações de rotenona. Concluímos que, uma inibição parcial do Complexo I pode resultar em uma crise energética e/ou estresse oxidativo mitocondrial, enquanto o primeiro evento predominaria numa situação de alta demanda de fosforilação oxidativa, o segundo ocorreria em condições de respiração de repouso. Em adição, os experimentos com ratos velhos indicaram que rotenona exerce efeitos similares no consumo de O2 e na produção de H2O2 em MCR adultos e velhos / Abstract: Partial inhibition of mitochondrial Complex I is associated with the development of neurochemical, behavioral, and neuropathological features of Parkinson's disease in rats chronically and systemically treated with rotenone. The aims of this work were (i) to characterize the effects of partial inhibition of respiratory Complex I by rotenone on H2O2 production by rat brain mitochondria in different respiratory states and (ii) to evaluate the susceptibility of brain mitochondria from old rats (24 month-old) to rotenone-induced inhibition of oxygen consumption and increased generation of H2O2 when compared with organelles from adult rats (3-4 month-old). Flow cytometric analysis of membrane potential in isolated mitochondria indicated that rotenone leads to uniform respiratory inhibition when added to a suspension of these organelles. When mitochondria were incubated in the presence of a low concentration of rotenone (10 nM) and NADH-linked substrates, oxygen consumption was reduced from 45.9±1.0 to 26.4±2.6 nmol O2.mg-1.min-1 and from 7.8±0.3 to 6.3±0.3 nmol O2.mg-1.min-1 in respiratory states 3 (ADP-stimulated respiration) and 4 (resting respiration), respectively. Under these conditions, mitochondrial H2O2 production was stimulated from 12.2±1.1 to 21.0±1.2 pmol H2O2.mg-1.min-1 and 56.5±4.7 to 95.0±11.1 pmol H2O2.mg-1.min-1 in respiratory states 3 and 4, respectively. Similar results were observed when comparing mitochondrial preparations enriched with synaptic or nonsynaptic organelles or when 1-methyl-4-phenylpyridinium (MPP+) ion was used as a respiratory Complex I inhibitor. Rotenone-stimulated H2O2 production in respiratory states 3 and 4 was associated with a high reduction state of endogenous nicotinamide nucleotides. In succinate-supported mitochondrial respiration, where most of the mitochondrial H2O2 production relies on electron backflow from Complex II to Complex I, low rotenone concentrations inhibited H2O2 production. Rotenone had no effect on mitochondrial elimination of micromolar concentrations of H2O2. In intact synaptosomes, we observed that 10 nM rotenone stimulated H2O2 release by 20.2 ± 3.3% under basal respiratory state. When comparing isolated brain mitochondria from adult and old rats we observed that oxygen consumption under respiratory state 3 and citrate synthase activity were 21.0±3.3% and 17.0±5.4% lower in mitochondria from old rats. Experiments conducted in the presence of different rotenone concentrations (5, 10 and 100 nM) showed that brain mitochondria from adult and old rats have similar sensitive to rotenone-induced inhibition of oxygen consumption in respiratory state 3, with IC50 of 7.8±0.4 and 6.5±0.5 nM for adult and old rats, respectively. In line with these results, similar stimulations in H2O2 production were observed in mitochondria from adult and old rats treated with different concentrations of rotenone. We conclude that partial Complex I inhibition may result in mitochondrial energy crisis and oxidative stress, the former being predominant under oxidative phosphorylation and the latter under resting respiration conditions. Rotenone exerts similar effects on oxygen consumption and H2O2 production by isolated brain mitochondria from adult and old rats / Mestrado / Biologia Estrutural, Celular, Molecular e do Desenvolvimento / Mestre em Ciências
38

Optimizing array processing on complex I/O stacks usingindices and data summarization

Xing, Haoyuan January 2021 (has links)
No description available.
39

Functional Genomics of Mammalian Innate Immunity

Kiritsy, Michael C. 31 August 2020 (has links)
The breadth of genetic diversity in the mammalian immune response stands out amongst the ubiquity of variation seen in the genome, evidence that microbial infections have been a major driver of evolution. As technology has facilitated an understanding of the etiology of immunological diversity, so too has it enabled the assessment of its varied functions. Functional genomics, with its ability to assess both cause and effect, has revolutionized our understanding of fundamental biological phenomena and recalibrated our hypotheses. We build upon the model of host immunity established by rare genetic variants that are causative of immunodeficiencies, but that incompletely consider the complexities of the genome. To expand our understanding, we performed a series of forward genetic screens to identify regulators of distinct functions of the innate immune system. Our studies discovered genes with novel functions in antigen presentation and immunoregulation, including several involved in central metabolism. Studies in macrophages and dendritic cells identified mitochondrial respiration as a positive regulator of the interferon-gamma response, and cells incapable of respiration failed to activate T cells. Notably, human mutations in several of these genes are responsible for immune dysfunction. In summary, this work uses new methods in genetic engineering to systematically assess the regulation of innate immunity. Our results suggest that variation in these regulatory pathways is likely to alter immunity in states of health and disease. Thus, our work validates a new approach to identify candidate genes relevant to immune dysfunction.
40

Etude de la dysfonction cellulaire et moléculaire du syndrome mitochondrial MELAS. / Study of cellular and molecular dysfunction of mitochondrial MELAS syndrom

Geffroy, Guillaume 29 September 2017 (has links)
Chaque mitochondrie contient son propre génome en de multiples copies d’ADN. Les mutations de l'ADN mitochondriales (ADNmt) sont responsables de sévères dysfonctions de la chaîne respiratoire. Le ratio entre la proportion de copies sauvages et mutantes, qualifiée d'hétéroplasmie, détermine la sévérité de la pathologie. Une des mutations les plus répandues de l'ADNmt est la mutation m.3243A>G, affectant l'ARN de transfert de la leucine. Ce variant est à l'origine du syndrome mitochondrial MELAS. Il n’existe à l’heure actuelle aucun traitement curatif pour ce syndrome. Nous avons développé une série de cybrides neuronaux porteurs de la mutation m.3243A>G a différents taux d’hétéroplasmie. Nous avons mis en évidence que de fort taux de mutations sont responsables de sévères dysfonctions de la chaîne respiratoire, d’un défaut d’assemblage précoce du complexe I ainsi qu’une réduction du renouvellement mitochondrial. Différentes stratégies métaboliques ont été employées pour compenser ces déficits. L’exposition des cellules a une restriction glucidique ou à la diète cétogène associant réduction glucidique et ajout de corps cétoniques, améliore significativement les fonctions mitochondriales après 4 semaines. Ces effets passent notamment par une restauration de l’assemblage et de l’activité du complexe I médiée ces interventions métaboliques. Par ailleurs, l’administration de la diète cétogène à un patient atteint du syndrome MELAS a déjà montré des résultats encourageants. De telles approches pourraient alors, constituées des stratégies thérapeutiques futures dans le traitement du syndrome MELAS et des maladies mitochondriales. / Each mitochondrion contains its own genome in multiple copies. Mitochondrial DNA (mtDNA) mutations are responsible for respiratory chain defects. The ratio of mutant to normal mtDNA, a condition known as heteroplasmy, may determine the disease severity. The m.3243A>G mutation, which affects the leucine tRNA, is one of the most common mtDNA mutation. This variant is responsible for the MELAS syndrome, a neurodegenerative disease, characterized by pseudostrokes. Unfortunately there are no curative treatments for MELAS syndrome. We have developed series of cybrid neuronal cells lines carrying the m.3243A>G mutation with different mutant loads, within the same nuclear background. High mutation load is associated to severe respiratory chain dysfunction, an early complex I assembly defect and a mitochondrial turn-over deficit. Different strategies were used to compensate the defects in the mutant cells. Cell exposure to low glucose or ketogenic diet, combining glucose reduction and the addition of ketone bodies, greatly improves mitochondrial functions after 4 weeks. Those effects are linked to a significant increase of complex I assembly and activity mediated by those metabolic interventions. In addition, a MELAS patient treated with ketogenic diet showed significant clinical improvement. Thus, metabolic approaches may constitute promising therapeutic strategies against MELAS syndrome and mitochondrial disorders.

Page generated in 0.0641 seconds