61 |
A class of mixed finite element methods based on the Helmholtz decomposition in computational mechanicsSchedensack, Mira 26 June 2015 (has links)
Diese Dissertation verallgemeinert die nichtkonformen Finite-Elemente-Methoden (FEMn) nach Morley und Crouzeix und Raviart durch neue gemischte Formulierungen für das Poisson-Problem, die Stokes-Gleichungen, die Navier-Lamé-Gleichungen der linearen Elastizität und m-Laplace-Gleichungen der Form $(-1)^m\Delta^m u=f$ für beliebiges m=1,2,3,... Diese Formulierungen beruhen auf Helmholtz-Zerlegungen. Die neuen Formulierungen gestatten die Verwendung von Ansatzräumen beliebigen Polynomgrades und ihre Diskretisierungen stimmen für den niedrigsten Polynomgrad mit den genannten nicht-konformen FEMn überein. Auch für höhere Polynomgrade ergeben sich robuste Diskretisierungen für fast-inkompressible Materialien und Approximationen für die Lösungen der Stokes-Gleichungen, die punktweise die Masse erhalten. Dieser Ansatz erlaubt außerdem eine Verallgemeinerung der nichtkonformen FEMn von der Poisson- und der biharmonischen Gleichung auf m-Laplace-Gleichungen für beliebiges m>2. Ermöglicht wird dies durch eine neue Helmholtz-Zerlegung für tensorwertige Funktionen. Die neuen Diskretisierungen lassen sich nicht nur für beliebiges m einheitlich implementieren, sondern sie erlauben auch Ansatzräume niedrigster Ordnung, z.B. stückweise affine Polynome für beliebiges m. Hat eine Lösung der betrachteten Probleme Singularitäten, so beeinträchtigt dies in der Regel die Konvergenz so stark, dass höhere Polynomgrade in den Ansatzräumen auf uniformen Gittern dieselbe Konvergenzrate zeigen wie niedrigere Polynomgrade. Deshalb sind gerade für höhere Polynomgrade in den Ansatzräumen adaptiv generierte Gitter unabdingbar. Neben der A-priori- und der A-posteriori-Analysis werden in dieser Dissertation optimale Konvergenzraten für adaptive Algorithmen für die neuen Diskretisierungen des Poisson-Problems, der Stokes-Gleichungen und der m-Laplace-Gleichung bewiesen. Diese werden auch in den numerischen Beispielen dieser Dissertation empirisch nachgewiesen. / This thesis generalizes the non-conforming finite element methods (FEMs) of Morley and Crouzeix and Raviart by novel mixed formulations for the Poisson problem, the Stokes equations, the Navier-Lamé equations of linear elasticity, and mth-Laplace equations of the form $(-1)^m\Delta^m u=f$ for arbitrary m=1,2,3,... These formulations are based on Helmholtz decompositions. The new formulations allow for ansatz spaces of arbitrary polynomial degree and its discretizations coincide with the mentioned non-conforming FEMs for the lowest polynomial degree. Also for higher polynomial degrees, this results in robust discretizations for almost incompressible materials and approximations of the solution of the Stokes equations with pointwise mass conservation. Furthermore this approach also allows for a generalization of the non-conforming FEMs for the Poisson problem and the biharmonic equation to mth-Laplace equations for arbitrary m>2. A new Helmholtz decomposition for tensor-valued functions enables this. The new discretizations allow not only for a uniform implementation for arbitrary m, but they also allow for lowest-order ansatz spaces, e.g., piecewise affine polynomials for arbitrary m. The presence of singularities usually affects the convergence such that higher polynomial degrees in the ansatz spaces show the same convergence rate on uniform meshes as lower polynomial degrees. Therefore adaptive mesh-generation is indispensable especially for ansatz spaces of higher polynomial degree. Besides the a priori and a posteriori analysis, this thesis proves optimal convergence rates for adaptive algorithms for the new discretizations of the Poisson problem, the Stokes equations, and mth-Laplace equations. This is also demonstrated in the numerical experiments of this thesis.
|
62 |
A rate-pressure-dependent thermodynamically-consistent phase field model for the description of failure patterns in dynamic brittle fractureParrinello, Antonino January 2017 (has links)
The investigation of failure in brittle materials, subjected to dynamic transient loading conditions, represents one of the ongoing challenges in the mechanics community. Progresses on this front are required to support the design of engineering components which are employed in applications involving extreme operational regimes. To this purpose, this thesis is devoted to the development of a framework which provides the capabilities to model how crack patterns form and evolve in brittle materials and how they affect the quantitative description of failure. The proposed model is developed within the context of diffusive interfaces which are at the basis of a new class of theories named phase field models. In this work, a set of additional features is proposed to expand their domain of applicability to the modelling of (i) rate and (ii) pressure dependent effects. The path towards the achievement of the first goal has been traced on the desire to account for micro-inertia effects associated with high rates of loading. Pressure dependency has been addressed by postulating a mode-of-failure transition law whose scaling depends upon the local material triaxiality. The governing equations have been derived within a thermodynamically-consistent framework supplemented by the employment of a micro-forces balance approach. The numerical implementation has been carried out within an updated lagrangian finite element scheme with explicit time integration. A series of benchmarks will be provided to appraise the model capabilities in predicting rate-pressure-dependent crack initiation and propagation. Results will be compared against experimental evidences which closely resemble the boundary value problems examined in this work. Concurrently, the design and optimization of a complimentary, improved, experimental characterization platform, based on the split Hopkinson pressure bar, will be presented as a mean for further validation and calibration.
|
63 |
[en] AN ADAPTIVE MESHFREE ADVECTION METHOD FOR TWO-PHASE FLOW PROBLEMS OF INCOMPRESSIBLE AND IMMISCIBLE FLUIDS THROUGH THREEDIMENSIONAL HETEROGENEOUS POROUS MEDIA / [pt] UM MÉTODO MESHFREE ADAPTATIVO DE ADVECÇÃO PARA PROBLEMAS DE FLUXO BIFÁSICO DE FLUIDOS INCOMPRESSÍVEIS E IMISCÍVEIS EM MEIOS POROSOS HETEROGÊNEOS TRIDIMENSIONAISISMAEL ANDRADE PIMENTEL 13 April 2018 (has links)
[pt] Esta tese propõe um método meshfree adaptativo de advecção para problemas de fluxo bifásico de fluidos incompressíveis e imiscíveis em meios porosos heterogêneos tridimensionais. Este método se baseia principalmente na combinação do método Semi-Lagrangeano adaptativo com interpolação local meshfree usando splines poliharmônicas como funções de base radial. O método proposto é uma melhoria e uma extensão do método adaptativo meshfree AMMoC proposto por Iske e Kaser (2005) para modelagem 2D de reservatórios de petróleo. Inicialmente este trabalho propõe um modelo em duas dimensões, contribuindo com uma melhoria significativa no cálculo do Laplaciano, utilizando os métodos meshfree de Hermite e
Kansa. Depois, o método é ampliado para três dimensões (3D) e para um meio poroso heterogêneo. O método proposto é testado com o problema de five spot e os resultados são comparados com os obtidos por sistemas bem conhecidos na indústria de petróleo. / [en] This thesis proposes an adaptive meshfree advection method for two-phase flow problems of incompressible and immiscible fluids through three-dimensional heterogeneous porous media. This method is based mainly on a combination of adaptive semi-Lagrangian method with local meshfree interpolation using polyharmonic splines as radial basis functions. The proposed method is an improvement and extension of the adaptive meshfree advection scheme AMMoC proposed by Iske and Kaser (2005) for 2D oil reservoir modeling. Initially this work proposes a model in two dimensions, contributing to a significant improvement in the calculation of the Laplacian, using the meshfree methods of Hermite and Kansa. Then, the method is extended to three dimensions (3D) and a heterogeneous porous medium. The proposed method is tested with the five spot problem and the results are compared with those obtained by well-known systems in the oil industry.
|
64 |
CRYSTAL PLASTICITY OF PENTAERYTHRITOL TETRANITRATE (PETN)Jennifer Oai Lai (17677422) 24 April 2024 (has links)
<p dir="ltr">We investigate the crystal plasticity and shock response of single crystal and polycrystalline pentaerythritol tetranitrate (PETN) using mesoscale finite element simulations. The model includes the Mie-Grüneisen Equation of State and a single crystal plasticity model. Simulations with single crystals with different orientations are tested using our plasticity model under shock compression to explore shear stress and slip. Parameters regarding the Mie-Grüneisen Equation of State are also verified in various orientations from 0.50 to 1.75 km/s. A polycrystalline PETN sample with varying grain sizes and orientations are subjected to shock loading with impact velocities ranging from 0.25 to 0.75 km/s. We study how differences in shock orientation affect slip and stress in PETN at different shock strengths.</p>
|
Page generated in 0.1362 seconds