271 |
Extending the description logic E L with threshold concepts induced by concept measuresBaader, Franz, Fernández Gil, Oliver 03 December 2024 (has links)
In applications of AI systems where exact definitions of the important notions of the application domain are hard to come by, the use of traditional logic-based knowledge representation languages such as Description Logics may lead to very large and unintuitive definitions, and high complexity of reasoning. To overcome this problem, we define new concept constructors that allow us to define concepts in an approximate way. [... from the abstract]
|
272 |
The smallest hard treesBodirsky, Manuel, Bulín, Jakub, Starke, Florian, Wernthaler, Michael 08 November 2024 (has links)
We find an orientation of a tree with 20 vertices such that the corresponding fixed-template constraint satisfaction problem (CSP) is NP-complete, and prove that for every orientation of a tree with fewer vertices the corresponding CSP can be solved in polynomial time. We also compute the smallest tree that is NL-hard (assuming L≠NL), the smallest tree that cannot be solved by arc consistency, and the smallest tree that cannot be solved by Datalog. Our experimental results also support a conjecture of Bulín concerning a question of Hell, Nešetřil and Zhu, namely that ‘easy trees lack the ability to count’. Most proofs are computer-based and make use of the most recent universal-algebraic theory about the complexity of finite-domain CSPs. However, further ideas are required because of the huge number of orientations of trees. In particular, we use the well-known fact that it suffices to study orientations of trees that are cores and show how to efficiently decide whether a given orientation of a tree is a core using the arc-consistency procedure. Moreover, we present a method to generate orientations of trees that are cores that works well in practice. In this way we found interesting examples for the open research problem to classify finite-domain CSPs in NL.
|
273 |
Passive RFID Module with LSTM Recurrent Neural Network Activity Classification Algorithm for Ambient Assisted LivingOguntala, George A., Hu, Yim Fun, Alabdullah, Ali A.S., Abd-Alhameed, Raed, Ali, Muhammad, Luong, D.K. 23 March 2021 (has links)
Yes / Human activity recognition from sensor data is a critical research topic to achieve remote health monitoring and ambient assisted living (AAL). In AAL, sensors are integrated into conventional objects aimed to support targets capabilities through digital environments that are sensitive, responsive and adaptive to human activities. Emerging technological paradigms to support AAL within the home or community setting offers people the prospect of a more individually focused care and improved quality of living. In the present work, an ambient human activity classification framework that augments information from the received signal strength indicator (RSSI) of passive RFID tags to obtain detailed activity profiling is proposed. Key indices of position, orientation, mobility, and degree of activities which are critical to guide reliable clinical management decisions using 4 volunteers are employed to simulate the research objective. A two-layer, fully connected sequence long short-term memory recurrent neural network model (LSTM RNN) is employed. The LSTM RNN model extracts the feature of RSS from the sensor data and classifies the sampled activities using SoftMax. The performance of the LSTM model is evaluated for different data size and the hyper-parameters of the RNN are adjusted to optimal states, which results in an accuracy of 98.18%. The proposed framework suits well for smart health and smart homes which offers pervasive sensing environment for the elderly, persons with disability and chronic illness.
|
274 |
Changement de croyances dans des fragments de la logique propositionnelle / Belief change within fragments of propositional logicKtari, Raïda 27 May 2016 (has links)
Cette thèse s'inscrit dans le domaine de la représentation des connaissances et du raisonnement en Intelligence Artificielle. Elle traite divers aspects du changement de croyances dans le cadre de fragments de la logique propositionnelle.Dans un premier temps, nous nous intéressons à la complexité du problème de vérification de modèle pour des opérateurs de révision de bases de croyances dans le cadre général de la logique propositionnelle et dans le cadre restreint des formules de Horn et des formules de Krom.Notre contribution principale porte ensuite sur le raffinement des opérateurs de changement de croyances afin que ceux-ci opèrent dans des fragments de la logique propositionnelle. Nous examinons en particulier les opérations de révision, de mise-à-jour et de contraction. Cette approche permet, dans chacun des cas, d'obtenir des opérateurs concrets, dont nous étudions les propriétés logiques en terme de de satisfaction de postulats que doivent satisfaire les opérateurs de changement de croyances rationnels. Divers fragments de la logique propositionnelle sont considérés, notamment les fragment de Horn et de Krom. / This thesis takes place in the field of knowledge representation and reasoning in Artificial Intelligence.It deals with various issues of belief change within fragments of propositional logic.First we focus on the complexity of model-checking for different revision operators within the general framework of propositional logic and within the framework of Horn and Krom fragments.Second, our main contribution is the study of the refinement of belief change operators in such a way that they act within fragments of propositional logic. In particular, we address refinement of revision, update and contraction operators. In each case this approach allows us to define concrete operators, for which we study logical properties in terms of satisfaction of postulates that should hold for any rational belief change operator. Various propositional fragments of propositional logic are considered, such as Horn and Krom fragments.
|
275 |
Sur les limites empiriques du calcul : calculabilité, complexité et physique / On the empirical limitations on computation : computability, complexity and physicsPégny, Maël 05 December 2013 (has links)
Durant ces dernières décennies, la communauté informatique a montré un intérêt grandissant pour les modèles de calcul non-standard, inspirés par des phénomènes physiques, biologiques ou chimiques. Les propriétés exactes de ces modèles ont parfois été l'objet de controverses: que calculent-ils? Et à quelle vitesse? Les enjeux de ces questions sont renforcés par la possibilité que certains de ces modèles pourraient transgresser les limites acceptées du calcul, en violant soit la thèse de Church-Turing soit la thèse de Church-Turing étendue. La possibilité de réaliser physiquement ces modèles a notamment été au coeur des débats. Ainsi, des considérations empiriques semblent introduites dans les fondements même de la calculabilité et de la complexité computationnelle, deux théories qui auraient été précédemment considérées comme des parties purement a priori de la logique et de l'informatique. Par conséquent, ce travail est consacré à la question suivante : les limites du calcul reposent-elles sur des fondements empiriques? Et si oui, quels sont-ils? Pour ce faire, nous examinons tout d'abord la signification précise des limites du calcul, et articulons une conception épistémique du calcul, permettant la comparaison des modèles les plus variés. Nous répondrons à la première question par l'affirmative, grâce à un examen détaillé des débats entourant la faisabilité des modèles non-standard. Enfin, nous montrerons les incertitudes entourant la deuxième question dans l'état actuel de la recherche, en montrant les difficultés de la traduction des concepts computationnels en limites physiques. / Recent years have seen a surge in the interest for non-standard computational models, inspired by physical, biological or chemical phenomena. The exact properties of some of these models have been a topic of somewhat heated discussion: what do they compute? And how fast do they compute? The stakes of these questions were heightened by the claim that these models would violate the accepted limits of computation, by violating the Church-Turing Thesis or the Extended Church-Turing Thesis. To answer these questions, the physical realizability of some of those models - or lack thereof - has often been put at the center of the argument. It thus seems that empirical considerations have been introduced into the very foundations of computability and computational complexity theory, both subjects that would have been previously considered purely a priori parts of logic and computer science. Consequently, this dissertation is dedicated to the following question: do computability and computational complexity theory rest on empirical foundations? If yes, what are these foundations? We will first examine the precise meaning of those limits of computation, and articulate a philosophical conception of computation able to make sense of this variety of models. We then answer the first question by the affirmative, through a careful examination of current debates around non-standard models. We show the various difficulties surrounding the second question, and study how they stem from the complex translation of computational concepts into physical limitations.
|
276 |
The k-hop connected dominating set problem: approximation algorithms and hardness results / O problema do conjunto dominante conexo com k-saltos: aproximação e complexidadeCoelho, Rafael Santos 13 June 2017 (has links)
Let G be a connected graph and k be a positive integer. A vertex subset D of G is a k-hop connected dominating set if the subgraph of G induced by D is connected, and for every vertex v in G, there is a vertex u in D such that the distance between v and u in G is at most k. We study the problem of finding a minimum k-hop connected dominating set of a graph (Mink-CDS). We prove that Mink-CDS is NP-hard on planar bipartite graphs of maximum degree 4. We also prove that Mink-CDS is APX-complete on bipartite graphs of maximum degree 4. We present inapproximability thresholds for Mink-CDS on bipar- tite and on (1, 2)-split graphs. Interestingly, one of these thresholds is a parameter of the input graph which is not a function of its number of vertices. We also discuss the complex- ity of computing this graph parameter. On the positive side, we show an approximation algorithm for Mink-CDS. When k = 1, we present two new approximation algorithms for the weighted version of the problem, one of them restricted to graphs with a poly- nomially bounded number of minimal separators. Finally, also for the weighted variant of the problem where k = 1, we discuss an integer linear programming formulation and conduct a polyhedral study of its associated polytope. / Seja G um grafo conexo e k um inteiro positivo. Um subconjunto D de vértices de G é um conjunto dominante conexo de k-saltos se o subgrafo de G induzido por D é conexo e se, para todo vértice v em G, existe um vértice u em D a uma distância não maior do que k de v. Estudamos neste trabalho o problema de se encontrar um conjunto dominante conexo de k-saltos com cardinalidade mínima (Mink-CDS). Provamos que Mink-CDS é NP-difícil em grafos planares bipartidos com grau máximo 4. Mostramos que Mink-CDS é APX-completo em grafos bipartidos com grau máximo 4. Apresentamos limiares de inaproximabilidade para Mink-CDS para grafos bipartidos e (1, 2)-split, sendo que um desses é expresso em função de um parâmetro independente da ordem do grafo. Também discutimos a complexidade computacional do problema de se computar tal parâmetro. No lado positivo, propomos um algoritmo de aproximação para Mink-CDS cuja razão de aproximação é melhor do que a que se conhecia para esse problema. Finalmente, quando k = 1, apresentamos dois novos algoritmos de aproximação para a versão do problema com pesos nos vértices, sendo que um deles restrito a classes de grafos com um número polinomial de separadores minimais. Além disso, discutimos uma formulação de programação linear inteira para essa versão do problema e provamos resultados poliédricos a respeito de algumas das desigualdades que constituem o politopo associado à formulação.
|
277 |
Graph colorings and digraph subdivisions / Colorações de grafos e subdivisões de digrafosMoura, Phablo Fernando Soares 30 March 2017 (has links)
The vertex coloring problem is a classic problem in graph theory that asks for a partition of the vertex set into a minimum number of stable sets. This thesis presents our studies on three vertex (re)coloring problems on graphs and on a problem related to a long-standing conjecture on subdivision of digraphs. Firstly, we address the convex recoloring problem in which an arbitrarily colored graph G is given and one wishes to find a minimum weight recoloring such that each color class induces a connected subgraph of G. We show inapproximability results, introduce an integer linear programming (ILP) formulation that models the problem and present some computational experiments using a column generation approach. The k-fold coloring problem is a generalization of the classic vertex coloring problem and consists in covering the vertex set of a graph by a minimum number of stable sets in such a way that every vertex is covered by at least k (possibly identical) stable sets. We present an ILP formulation for this problem and show a detailed polyhedral study of the polytope associated with this formulation. The last coloring problem studied in this thesis is the proper orientation problem. It consists in orienting the edge set of a given graph so that adjacent vertices have different in-degrees and the maximum in-degree is minimized. Clearly, the in-degrees induce a partition of the vertex set into stable sets, that is, a coloring (in the conventional sense) of the vertices. Our contributions in this problem are on hardness and upper bounds for bipartite graphs. Finally, we study a problem related to a conjecture of Mader from the eighties on subdivision of digraphs. This conjecture states that, for every acyclic digraph H, there exists an integer f(H) such that every digraph with minimum out-degree at least f(H) contains a subdivision of H as a subdigraph. We show evidences for this conjecture by proving that it holds for some particular classes of acyclic digraphs. / O problema de coloração de grafos é um problema clássico em teoria dos grafos cujo objetivo é particionar o conjunto de vértices em um número mínimo de conjuntos estáveis. Nesta tese apresentamos nossas contribuições sobre três problemas de coloração de grafos e um problema relacionado a uma antiga conjectura sobre subdivisão de digrafos. Primeiramente, abordamos o problema de recoloração convexa no qual é dado um grafo arbitrariamente colorido G e deseja-se encontrar uma recoloração de peso mínimo tal que cada classe de cor induza um subgrafo conexo de G. Mostramos resultados sobre inaproximabilidade, introduzimos uma formulação linear inteira que modela esse problema, e apresentamos alguns resultados computacionais usando uma abordagem de geração de colunas. O problema de k-upla coloração é uma generalização do problema clássico de coloração de vértices e consiste em cobrir o conjunto de vértices de um grafo com uma quantidade mínima de conjuntos estáveis de tal forma que cada vértice seja coberto por pelo menos k conjuntos estáveis (possivelmente idênticos). Apresentamos uma formulação linear inteira para esse problema e fazemos um estudo detalhado do politopo associado a essa formulação. O último problema de coloração estudado nesta tese é o problema de orientação própria. Ele consiste em orientar o conjunto de arestas de um dado grafo de tal forma que vértices adjacentes possuam graus de entrada distintos e o maior grau de entrada seja minimizado. Claramente, os graus de entrada induzem uma partição do conjunto de vértices em conjuntos estáveis, ou seja, induzem uma coloração (no sentido convencional) dos vértices. Nossas contribuições nesse problema são em complexidade computacional e limitantes superiores para grafos bipartidos. Finalmente, estudamos um problema relacionado a uma conjectura de Mader, dos anos oitenta, sobre subdivisão de digrafos. Esta conjectura afirma que, para cada digrafo acíclico H, existe um inteiro f(H) tal que todo digrafo com grau mínimo de saída pelo menos f(H) contém uma subdivisão de H como subdigrafo. Damos evidências para essa conjectura mostrando que ela é válida para classes particulares de digrafos acíclicos.
|
278 |
Exploring complexity metrics for artifact- centric business process ModelsMarin, Mike Andy 02 1900 (has links)
This study explores complexity metrics for business artifact process models described by Case
Management Model and Notation (CMMN). Process models are usually described using
Business Process Management (BPM), which is a relatively mature discipline with a large
number of practitioners. Over the last few decades a new way of describing data intensive
business processes has emerged in BPM literature, for which traditional BPM is no longer
adequate. This emerging method, used to describe more flexible processes, is called business
artifacts with Guard-Stage-Milestone (GSM). The work on GSM influenced CMMN, which
was created to fill a market need for more flexible case management processes for knowledge
workers.
Complexity metrics have been developed for traditional BPM models, such as the Business
Process Model and Notation (BPMN). However, traditional BPM is not suitable for describing
GSM or CMMN process models. Therefore, complexity metrics developed for traditional
process models may not be applicable to business artifact process models such as CMMN.
This study addresses this gap by exploring complexity metrics for business artifact process
models using CMMN. The findings of this study have practical implications for the CMMN
standard and for the commercial products implementing CMMN. This research makes the
following contributions:
• The development of a formal description of CMMN using first-order logic.
• An exploration of the relationship between CMMN and GSM and the development of
transformation procedures between them.
• A comparison between the method complexity of CMMN and other popular process
methods, including BPMN, Unified Modeling Language (UML) Activity diagrams, and
Event-driven Process Charts (EPC).
• The creation of a systematic literature review of complexity metrics for process models,
which was conducted in order to inform the creation of CMMN metrics.
• The identification of a set of complexity metrics for the CMMN standard, which underwent
theoretical and empirical validation.
This research advances literature in the areas of method complexity, complexity metrics
for process models, declarative processes, and research on CMMN by characterizing CMMN
method complexity, identifying complexity metrics for CMMN, and exploring the relationship
between CMMN and GSM. / School of Computing / Ph. D. (Computer Science)
|
279 |
Problèmes de placement, de coloration et d'identificationValicov, Petru 09 July 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à trois problèmes issus de l'informatique théorique, à savoir le placement de formes rectangulaires dans un conteneur (OPP), la coloration dite "forte" d'arêtes des graphes et les codes identifiants dans les graphes. L'OPP consiste à décider si un ensemble d'items rectangulaires peut être placé sans chevauchement dans un conteneur rectangulaire et sans dépassement des bords de celui-ci. Une contrainte supplémentaire est prise en compte, à savoir l'interdiction de rotation des items. Le problème est NP-difficile même dans le cas où le conteneur et les formes sont des carrés. Nous présentons un algorithme de résolution efficace basé sur une caractérisation du problème par des graphes d'intervalles, proposée par Fekete et Schepers. L'algorithme est exact et utilise les MPQ-arbres - structures de données qui encodent ces graphes de manière compacte tout en capturant leurs propriétés remarquables. Nous montrons les résultats expérimentaux de notre approche en les comparant aux performances d'autres algorithmes existants. L'étude de la coloration forte d'arêtes et des codes identifiants porte sur les aspects structurels et de calculabilité de ces deux problèmes. Dans le cas de la coloration forte d'arêtes nous nous intéressons plus particulièrement aux familles des graphes planaires et des graphes subcubiques. Nous montrons des bornes optimales pour l'indice chromatique fort des graphes subcubiques en fonction du degré moyen maximum et montrons que tout graphe planaire subcubique sans cycles induits de longueur 4 et 5 est coloriable avec neuf couleurs. Enfin nous confirmons la difficulté du problème de décision associé, en prouvant qu'il est NP-complet dans des sous-classes restreintes des graphes planaires subcubiques. La troisième partie de la thèse est consacrée aux codes identifiants. Nous proposons une caractérisation des graphes identifiables dont la cardinalité du code identifiant minimum est n − 1, où n est l'ordre du graphe. Nous étudions la classe des graphes adjoints et nous prouvons des bornes inférieures et supérieures serrées pour la cardinalité du code identifiant minimum dans cette classe. Finalement, nous montrons qu'il existe un algorithme linéaire de calcul de ce paramètre dans la classe des graphes adjoints L(G) où G a une largeur arborescente bornée par une constante. En revanche nous nous apercevons que le problème est NP-complet dans des sous-classes très restreintes des graphes parfaits.
|
280 |
Tabu-NG : hybridation de programmation par contraintes et recherche locale pour la résolution de CSPDib, Mohammad 08 December 2010 (has links) (PDF)
Un très grand nombre de problèmes combinatoires appartient à la famille des problèmes de satisfaction de contraintes (Constraint Satisfaction Problem ou CSP) : configuration, ordonnancement, affectation de ressources... Ces problèmes partagent une description commune qui autorise en général une modélisation claire et intuitive. Dans cette thèse, nous avons proposé et étudié une nouvelle méthode de résolution hybride pour les CSPs. Nous avons nommé cette méthode Tabu-NG pour Tabu Search based on NoGood. Le nom est un peu réducteur car il s'agit d'une hybridation d'algorithme de filtrage, de propagation de contraintes, de Recherche Tabou et de gestion de nogoods. La méthode a été appliquée sur deux types de problèmes. Le premier est l'affectation des fréquences (FAP) dans les réseaux de radiocommunications militaires, en particulier les problèmes proposés de 1993 (instances du projet européen CALMA) jusqu'à 2010 (instances d'un projet DGA). Le deuxième est le problème académique de k-coloration de graphes sur les instances DIMACS. La méthode a amélioré quelques meilleurs scores connus actuellement. Dans les deux problèmes nous avons traité des contraintes unaires et binaires, ainsi que des contraintes n-aires et de l'optimisation de fonction sous contraintes pour le FAP. Les principes de Tabu-NG sont généraux et elle peut s'appliquer sur d'autres CSP. Elle peut par ailleurs accueillir des heuristiques spécifiques aux problèmes, nous l'avons pratiqué sur les problèmes cités, et en ce sens nous pensons pouvoir qualifier la méthode de métaheuristique sans abuser de cette définition.
|
Page generated in 0.0925 seconds