• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 30
  • 12
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 105
  • 44
  • 27
  • 22
  • 21
  • 20
  • 17
  • 16
  • 15
  • 15
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Improved mine cooling system performance through the control of auxiliary systems / W. Bornman

Bornman, Waldo January 2012 (has links)
Industrial and mining sectors are amongst the largest single energy consumers in South Africa, making them a primary focus for implementing energy saving initiatives. Refrigeration systems on mines are responsible for consuming up to25 % of the electrical energy consumption on a typical South African deep level mine. Ample opportunities to reduce the energy consumption of these systems exists, as many of the current systems rely on old technology and function under partial or inadequate control management. In compiling this thesis, various energy saving strategies on deep level mines were investigated. In specific, the effects of controlling and improving the cooling auxiliaries. Scenarios were investigated and simulated, where after an optimum solution was implemented. Implementations, such as the ones covered in this dissertation, form part of the IDM (Integrated Demand Management) energy efficiency incentive introduced by Eskom, where funding is made available based on actual power saving; ensuring that the projects will be financially viable to the clients. Reduced electrical energy consumption realised from the abovementioned projects were measured, captured and compared to the consumption before project implementation to determine the achieved savings. Savings of up to 30 % of the plant installed capacity were realised, providing average savings of up to 2.3 MW per day. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
42

Výpočet tepelné bilance využití latentního tepla spalin pomocí kondenzátoru / Calculation of the heat balance of latent heat utilization of flue gases by means of a condenser

Toman, Filip January 2018 (has links)
Thesis is focused on calculation of the condenser of flue gas, which is created by burning of natural gas. In the first part is theoretical overview of equations describing film condensation and physical properties of the flue gas. The second part deals with practical thermal calculation of the specified condenser. In third part parametric study is done in which a tempature of cooling water at inlet and the coefficient of excess air are changed. The last part of the thesis is dedicated to geometric design of the flue gas condenser whose required power is 8 MW.
43

Možnosti aplikace systémů s akumulací tepla v jaderné energetice / Application possibilities of systems with heat accumulation in nuclear power

Sklenářová, Lenka January 2013 (has links)
This dissertation covers the application of heat accumulation systems in nuclear power engineering, namely in nuclear power plants. It is mainly a case of passive emergency systems, whose task is to accumulate the heat produced in the reactor’s active zone and in spent fuel pools during DBA (design-basis accidents) or beyond DBA. A particular example of heat accumulation is steam condensation after LOCA (loss of coolant accident). The primary circuit steam leakage increases containment pressure and has to be decreased by the steam condensation. This thesis deals with a theoretical substitute for ice condensers, which are used as a passive safety measure in some nuclear power plants. The substitute involves a choice of an alternative material, whose melting temperature (for heat accumulation) is closer to nuclear power plant operating temperatures. The other part of the dissertation discusses heat accumulation in spent fuel pools in case of all cooling systems failure.
44

Performance trends of a large air-cooled steam condenser during windy conditions

Louw, Francois G. 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2011. / Please refer to full text to view abstract.
45

Investigation of Thermal Performance of Cylindrical Heatpipes Operated with Nanofluids

Ghanbarpourgeravi, Morteza January 2017 (has links)
Nanofluids as an innovative class of heat transfer fluids created by dispersing nanometre-sizedmetallic or non-metallic particles in conventional heat transfer fluids displayed the potential toimprove the thermophysical properties of the heat transfer fluids. The main purpose of this study is toinvestigate the influence of the use of nanofluids on two-phase heat transfer, particularly on thethermal performance of the heat pipes. In the first stage, the properties of the nanofluids were studied,then, these nanofluids were used as the working fluids of the heat pipes. The thermal performance ofthe heat pipes when using different nanofluids was investigated under different operating conditionsexperimentally and analytically. The influences of the concentration of the nanofluids, inclinationangles and heat loads on the thermal performance and maximum heat flux of the heat pipes wereinvestigated.This study shows that the thermal performance of the heat pipes depends not only on thermophysicalproperties of the nanofluids but also on the characteristics of the wick structure through forming aporous coated layer on the heated surface. Forming the porous layer on the surface of the wick at theevaporator section increases the wettability and capillarity and also the heat transfer area at theevaporator of the heat pipes.The thermal performance of the heat pipes increases with increasing particle concentration in all cases,except for the heat pipe using 10 wt.% water/Al2O3 nanofluid. For the inclined heat pipe, irrespectiveof the type of the fluid used as the working fluid, the thermal resistance of the inclined heat pipes waslower than that of the heat pipes in a horizontal state, and the best performance was observed at theinclination angle of 60o, which is in agreement with the results reported in the literature. Otheradvantages of the use of nanofluids as the working fluids of the heat pipes which were investigated inthis study were the increase of the maximum heat flux and also the reduction of the entropy generationof the heat pipes when using a nanofluid.These findings revealed the potential for nanofluids to be used instead of conventional fluids as theworking fluid of the heat pipes, but the commercialization of the heat pipes using nanofluids for largescale industrial applications is still a challenging question, as there are many parameters related to thenanofluids which are not well understood. / <p>QC 20170228</p>
46

Modelling and methodology apllied to evaluate multi-infeed performance of HVDC transmission systems. / Modelagem e metodologia aplicadas a avaliação da performance de sistemas mult-infeed de transmissão HVDC.

Pedroso, Felipe Rocha Velloso de Almeida 30 August 2017 (has links)
The Brazilian transmission system covers a large area, with a high concentration of consumer centres in the Southeast region and abundant hydro generation in the North. To connect these regions, some of the transmission lines might reach 2500 km length, creating a challenging situation. In this context, system planners have been defining the use of HVDC systems as the most feasible choice of transmission investment. It is so, recognized that the connections of power plants in the Northern region to the load centres in the Southeast will require a significant number of bipoles and, until the present moment, all the operational and planned HVDC lines are based on the converter technology known as LCC (Line Commutated Converter) and consequently subject to commutation failure. Currently, the Brazilian system has four LCC bipoles, with two other bipoles under construction. Although the Southeast grid is strong, the connection of two additional bipoles is a concern as the interaction between these inverters may cause strong effects on one another, a phenomenon known as multi-infeed interaction. In such a situation, the assessment of the system operation, possible outages and possible mitigation methods are of paramount importance. This document presents a different methodology for the analysis of the multi-infeed system mentioned and focuses on its validation by analysing operation under normal conditions and with the implementation of established mitigation methods. The investigation was carried out with EMT, power flow, short-circuit and electromechanical softwares in a very large AC system composed by 100 buses on EMT and full Brazilian system on the rest. The effects of faults were analysed and the areas containing the buses where a fault leads to multiple commutation failures were identified. / O sistema de brasileiro de transmissão abrange uma área ampla, com uma alta concentração de consumo na região Sudeste e abundante geração hidrelétrica no Norte. Para conectar essas regiões, algumas das linhas de transmissão podem alcançar comprimentos de 2500 km, criando uma situação desafiadora. Neste contexto, os planejadores de sistemas têm definido o uso de sistemas HVDC como a escolha mais viável de investimento em transmissão. É então reconhecido que as conexões de usinas na região Norte aos centros consumidores no Sudeste exigirão um número significativo de bipolos e, até o momento presente, todas as linhas HVDC operacionais e planejadas são baseadas na tecnologia de conversão conhecida como LCC (Line Commutated Converter) e consequentemente sujeito a falha de comutação. Atualmente, o sistema brasileiro tem quatro bipolos LCC, com outros dois bipolos em construção. Embora a rede do Sudeste seja considerada forte, a conexão de dois bipolos adicionais é uma preocupação, pois a interação entre esses inversores pode causar efeitos danosos uns sobre os outros, um fenômeno conhecido como interação multi-infeed. Em tal situação, a avaliação da operação do sistema, possíveis interrupções e possíveis métodos de mitigação são de suma importância. Este documento apresenta uma metodologia diferente para a análise do sistema multi-infeed mencionado e foca em sua validação, analisando a operação em condições normais e com a implementação de métodos de mitigação conhecidos. A investigação foi realizada com softwares EMT, de curto circuito, fluxo de potência e estabilidade eletromecância em um sistema CA muito grande composto por 100 barras em EMT e sistema brasileiro completo no resto. Os efeitos das falhas foram analisados e as áreas que contêm as barras onde uma falha leva a múltiplas falhas de comutação foram identificadas.
47

Design of Air-cooled Microchannel Condensers for Mal-distributed Air Flow Conditions

Subramaniam, Vishwanath 12 July 2004 (has links)
Air-cooled condensers are routinely designed for a variety of applications, including residential air-conditioning systems. Recent attempts at improving the performance of these heat exchangers have included the consideration of microchannel tube, multilouver fin heat exchangers instead of the more conventional round tube-plate fin designs. In most packaged air-conditioning systems, however, the condenser surrounds the compressor and other auxiliary parts in an outdoor unit, with an induced draft fan at the top of this enclosure. Such a configuration results in significant mal-distribution of the air flow arriving at the condenser, and leads to a decrease in performance. This work addresses the issue of mal-distribution by adapting the air-side geometry to the expected air flow distribution. A microchannel tube, multilouver fin condenser is first designed to transfer the desired heat rejection load for an air-conditioning system under uniform air flow conditions. Tube-side pass arrangements, tube dimensions, and fin and louver geometry are varied to arrive at a minimum mass, 2.54 kg condenser that delivers the desired heat load of 14.5 kW. The design model is then used to predict the performance of the condenser for a variety of air flow distributions across the heat exchanger. It is found that for a 50% air flow mal-distribution, the required condenser mass increases to 2.73 kg. The air-side geometry (fin density and height) of the condenser is then systematically changed to optimally distribute the air-side surface area across the condenser to best address the mal-distributed air flow. It is found that linear fin density and height variations from the mean value of 40% and 20%, respectively, keeping the mean fin density and height the same, reduce the required condenser mass to 2.65 kg even for this mal-distributed air-flow case. The influence of geometry variations on heat transfer coefficients, fan power and other performance measures is discussed in detail to guide the judicious choice of surface area and tube-side flow area allocations for any potential air flow mal-distribution. The results from this study can be used for the design of air-cooled condensers under realistic flow conditions.
48

Design And Simulation Of A Vapor Compression Refrigeration Cycle For A Micro Refrigerator

Yildiz, Seyfettin 01 June 2010 (has links) (PDF)
Cooling of electronic equipments has become an important issue as the advances in technology enabled the fabrication of very small devices. The main challenge in cooling is the space limitation. The use of miniature refrigerators seems to be a solution alternative for the cooling problem. The objective of this study is to design and simulate a vapor compression refrigeration cycle for a micro-scale refrigerator. A MATLAB code is developed for the simulations. The four components of the refrigerator, namely, the condenser, evaporator, compressor and the capillary tube are designed separately. The cycle is successfully completed nearly at the same point where it begins. The cold space temperature, ambient air temperature, condensation and evaporation temperatures, and the evaporator heat load are the predetermined parameters. A fan is used to cool the condenser, and the compressor is selected as isentropic. R-134A is selected as the refrigerant and a simple interpolation code is developed to obtain the thermophysical properties of R-134A. The original design is carried out with an isentropic compressor. For the purpose of comparison, a cycle with a polytropic compressor is also considered. Similarly, two alternative designs for the evaporator are developed and simulated. A second law analysis is performed at the end of the study.
49

The evaluation of a solar-driven aqua-ammonia diffusion absorption heating and cooling cycle / M.C. Potgieter.

Potgieter, Marthinus Christiaan January 2013 (has links)
Several steps are followed in order to evaluate the cycle as the title suggests. The diffusion absorption refrigerator (DAR) cycle performance is evaluated when using helium or hydrogen as auxiliary gas. A slight increase in COP is found when using helium, but it is not sufficient to justify the cost. A secondary simulation of an alternate dual-pressure cycle using a pump is done as feasibility comparison with the same parameters as the diffusion cycle. It was found that the second cycle is not acceptable due to high evaporator temperatures needed to ensure liquid enters the pump instead of partially evaporated solution. This would greatly increase the work input required for what essentially becomes a compressor. Optimisation of the DAR is evaluated by simulating the use of a rectification column and the effects of different design points on overall performance. Meteorological data for Potchefstroom, South Africa is used to perform a yearly analysis on the simulated cycle and to specify a suitable design point. The use of a radiative cooling system as heat sink for the system is then investigated and incorporated into the system model. Finally, the performance characteristics of the simulated DAR cycle are discussed, verified and compared with available data from similar research. It is shown that a 40% solution aqua-ammonia-hydrogen cycle driven by 526 kW of solar thermal energy at 130°C and a system pressure of 1.5 MPa can easily achieve a COP over 0.4 with an air-cooled absorber at 40°C and a water-cooled condenser at 35°C. A 231 kW refrigeration capacity at an average evaporator temperature of –20°C is achieved, satisfying the requirements for a domestic refrigeration system. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.
50

The evaluation of a solar-driven aqua-ammonia diffusion absorption heating and cooling cycle / M.C. Potgieter.

Potgieter, Marthinus Christiaan January 2013 (has links)
Several steps are followed in order to evaluate the cycle as the title suggests. The diffusion absorption refrigerator (DAR) cycle performance is evaluated when using helium or hydrogen as auxiliary gas. A slight increase in COP is found when using helium, but it is not sufficient to justify the cost. A secondary simulation of an alternate dual-pressure cycle using a pump is done as feasibility comparison with the same parameters as the diffusion cycle. It was found that the second cycle is not acceptable due to high evaporator temperatures needed to ensure liquid enters the pump instead of partially evaporated solution. This would greatly increase the work input required for what essentially becomes a compressor. Optimisation of the DAR is evaluated by simulating the use of a rectification column and the effects of different design points on overall performance. Meteorological data for Potchefstroom, South Africa is used to perform a yearly analysis on the simulated cycle and to specify a suitable design point. The use of a radiative cooling system as heat sink for the system is then investigated and incorporated into the system model. Finally, the performance characteristics of the simulated DAR cycle are discussed, verified and compared with available data from similar research. It is shown that a 40% solution aqua-ammonia-hydrogen cycle driven by 526 kW of solar thermal energy at 130°C and a system pressure of 1.5 MPa can easily achieve a COP over 0.4 with an air-cooled absorber at 40°C and a water-cooled condenser at 35°C. A 231 kW refrigeration capacity at an average evaporator temperature of –20°C is achieved, satisfying the requirements for a domestic refrigeration system. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013.

Page generated in 0.0761 seconds