• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Existência implicada de órbitas periódicas para fluxos de Reeb em S¹ x S² / Implied existence of closed orbits for the Reeb flows in S¹ x S²

Salazar, Diego Alfonso Sandoval 29 June 2017 (has links)
Consideramos o fluxo de Reeb associado a uma forma de contato em S¹ x S² que induz a estrutura de contato tight. Assumimos que o fluxo admite um par de órbitas periódicas L0 e L1 cujo link L = L0 L1 é transversalmente isotópico a ( S¹ x )( S¹ x ), em que n = (0,0,1) e s = (0,0,1) são os pólos norte e sul de S², respectivamente. O objetivo é provar que, nestas condições, existem infinitas órbitas periódicas no complementar desse link cujas classes de homotopia no complementar do link são prescritas de acordo com os números de rotação de L0 e L1. / We consider the Reeb flow associated to a contact form on S¹ x S² which induces a tight contact structure. We assume that the flow admits a pair of closed orbits L0 and L1 whose link L = L0 L1 is transversely isotopic to (S¹ x)(S¹ x), where n = (0,0,1) and s =(0,0,1) are the north and south poles of S², respectively. The main goal is to prove that, under these conditions, there exit infinitely many closed orbits in the complement of this link whose homotopy classes in the complement of this link are prescribed according to the rotation numbers of L0 and L1.
12

Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. / On three-dimensional Reeb flows: implied existence of periodic orbits and a dynamical characterization of the solid torus

Silva, André Vanderlinde da 29 October 2014 (has links)
Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato $\\lambda$ definida numa 3-variedade compacta e conexa M. Assumimos que $\\lambda$ é tight e a primeira classe de Chern da estrutura de contato $\\xi=\\ker\\lambda$ se anula sobre $\\pi_2(M)$. No nosso primeiro resultado, supomos que M é fechada e existe uma órbita fechada L do fluxo de Reeb que é um p-nó trivial com número de auto-enlaçamento $-1/p$. Supomos, além disso, que o número de rotação transversal da p-ésima iterada de L é estritamente menor do que 1. Nestas condições, provamos que existe uma órbita fechada (de Reeb) contrátil geometricamente distinta de L e não-enlaçada em L cujo número de rotação transversal é 1. Apresentamos também uma versão deste resultado para o caso em que M é uma 3-variedade cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb e não existem órbitas fechadas contidas no bordo. Nosso segundo resultado é uma caracterização dinâmica do toro sólido. Seja $\\lambda$ uma forma de contato não-degenerada definida em uma 3-variedade M cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb. Se o fluxo de Reeb satisfaz certas hipóteses de torção sobre o bordo, então ou existe uma órbita fechada contrátil com índice de Conley-Zehnder 2 ou M é folheada por discos transversais ao campo de Reeb. Neste último caso, M é difeomorfa a um toro sólido e existe uma órbita fechada não-contrátil em M que é ponto fixo da aplicação de retorno induzida pela folheação. / In this work, we study the Reeb dynamics associated to a tight contact form $\\lambda$ defined on a compact, connected 3-manifold M. Suppose that the first Chern class of $\\xi=\\ker\\lambda$ vanish on $\\pi_2(M)$. In our first result, we assume that M is closed and there exists a closed Reeb orbit L which is a p-unknotted, has self-linking number $-1/p$ and the transverse rotation number of the p-th iterate of L is less than 1. Under these conditions, we verify that there exists a contractible closed Reeb orbit which is geometrically distinct from L and not linked to L with transverse rotation number 1. We also prove a version of this result when M is a compact 3-manifold M whose boundary is diffeomorphic to a torus and invariant by the flow and, moreover, there does not exist closed Reeb orbits on the boundary. Our second result is a dynamical characterization of the solid torus. We assume that $\\lambda$ is a contact form on a compact 3-manifold M whose boundary is diffeomorphic to a torus. Under the hypothesis of $\\lambda$ being non-degenerate, if the flow is tangent to $\\partial M$ and satisfies some twist conditions on the boundary, then either there exists a contractible closed Reeb orbit which has Conley-Zehnder index 2 or M is foliated by disks transverse to the Reeb flow. In this last case, we see that M is diffeomorphic to a solid torus and there exists a non-contractible closed Reeb orbit M which is a fixed point of the return map induced by the foliation.
13

Sobre fluxos de Reeb tri-dimensionais: existência implicada de órbitas periódicas e uma caracterização dinâmica do toro sólido. / On three-dimensional Reeb flows: implied existence of periodic orbits and a dynamical characterization of the solid torus

André Vanderlinde da Silva 29 October 2014 (has links)
Neste trabalho, estudamos a dinâmica de Reeb associada a uma forma de contato $\\lambda$ definida numa 3-variedade compacta e conexa M. Assumimos que $\\lambda$ é tight e a primeira classe de Chern da estrutura de contato $\\xi=\\ker\\lambda$ se anula sobre $\\pi_2(M)$. No nosso primeiro resultado, supomos que M é fechada e existe uma órbita fechada L do fluxo de Reeb que é um p-nó trivial com número de auto-enlaçamento $-1/p$. Supomos, além disso, que o número de rotação transversal da p-ésima iterada de L é estritamente menor do que 1. Nestas condições, provamos que existe uma órbita fechada (de Reeb) contrátil geometricamente distinta de L e não-enlaçada em L cujo número de rotação transversal é 1. Apresentamos também uma versão deste resultado para o caso em que M é uma 3-variedade cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb e não existem órbitas fechadas contidas no bordo. Nosso segundo resultado é uma caracterização dinâmica do toro sólido. Seja $\\lambda$ uma forma de contato não-degenerada definida em uma 3-variedade M cujo bordo é difeomorfo a um toro e invariante pelo fluxo de Reeb. Se o fluxo de Reeb satisfaz certas hipóteses de torção sobre o bordo, então ou existe uma órbita fechada contrátil com índice de Conley-Zehnder 2 ou M é folheada por discos transversais ao campo de Reeb. Neste último caso, M é difeomorfa a um toro sólido e existe uma órbita fechada não-contrátil em M que é ponto fixo da aplicação de retorno induzida pela folheação. / In this work, we study the Reeb dynamics associated to a tight contact form $\\lambda$ defined on a compact, connected 3-manifold M. Suppose that the first Chern class of $\\xi=\\ker\\lambda$ vanish on $\\pi_2(M)$. In our first result, we assume that M is closed and there exists a closed Reeb orbit L which is a p-unknotted, has self-linking number $-1/p$ and the transverse rotation number of the p-th iterate of L is less than 1. Under these conditions, we verify that there exists a contractible closed Reeb orbit which is geometrically distinct from L and not linked to L with transverse rotation number 1. We also prove a version of this result when M is a compact 3-manifold M whose boundary is diffeomorphic to a torus and invariant by the flow and, moreover, there does not exist closed Reeb orbits on the boundary. Our second result is a dynamical characterization of the solid torus. We assume that $\\lambda$ is a contact form on a compact 3-manifold M whose boundary is diffeomorphic to a torus. Under the hypothesis of $\\lambda$ being non-degenerate, if the flow is tangent to $\\partial M$ and satisfies some twist conditions on the boundary, then either there exists a contractible closed Reeb orbit which has Conley-Zehnder index 2 or M is foliated by disks transverse to the Reeb flow. In this last case, we see that M is diffeomorphic to a solid torus and there exists a non-contractible closed Reeb orbit M which is a fixed point of the return map induced by the foliation.
14

Existência implicada de órbitas periódicas para fluxos de Reeb em S¹ x S² / Implied existence of closed orbits for the Reeb flows in S¹ x S²

Diego Alfonso Sandoval Salazar 29 June 2017 (has links)
Consideramos o fluxo de Reeb associado a uma forma de contato em S¹ x S² que induz a estrutura de contato tight. Assumimos que o fluxo admite um par de órbitas periódicas L0 e L1 cujo link L = L0 L1 é transversalmente isotópico a ( S¹ x )( S¹ x ), em que n = (0,0,1) e s = (0,0,1) são os pólos norte e sul de S², respectivamente. O objetivo é provar que, nestas condições, existem infinitas órbitas periódicas no complementar desse link cujas classes de homotopia no complementar do link são prescritas de acordo com os números de rotação de L0 e L1. / We consider the Reeb flow associated to a contact form on S¹ x S² which induces a tight contact structure. We assume that the flow admits a pair of closed orbits L0 and L1 whose link L = L0 L1 is transversely isotopic to (S¹ x)(S¹ x), where n = (0,0,1) and s =(0,0,1) are the north and south poles of S², respectively. The main goal is to prove that, under these conditions, there exit infinitely many closed orbits in the complement of this link whose homotopy classes in the complement of this link are prescribed according to the rotation numbers of L0 and L1.
15

H-cobordismes en géométrie symplectique / H-cobordisms in symplectic geometry

Courte, Sylvain 04 June 2015 (has links)
À toute variété de contact, on peut associer canoniquement une variété symplectique appelée sa symplectisation de sorte que la géométrie de contact peut se reformuler en termes de géométrie symplectique équivariante. Au sujet de cette construction fondamentale, une question basique restait ouverte : si deux variété de contact ont des symplectisations isomorphes sont-elles isomorphes ? On construit dans cette thèse des contre-exemples à cette question. Il existe en effet, en toute dimension impaire supérieure ou égale à 5, des variétés de contact non difféomorphes admettant pourtant des symplectisations isomorphes. On construit également, sur une même variété deux structures de contact non conjuguées par un difféomorphisme mais admettant des symplectisations isomorphes. Les démonstrations sont basées sur un phénomène bien connu en topologie différentielle (l'existence de h-cobordismes non triviaux, détectée par la torsion de Whitehead) ainsi que sur des résultats de flexibilité en géométrie symplectique dus à Cieliebak et Eliashberg. Un autre résultat de cette th?e affirme que ces variété de contact, bien que non isomorphes, le deviennent toutefois après un nombre suffisant de sommes connexes avec un produit de sphères. / To any contact manifold one can associate a symplectic manifold called its symplectisation in such a way that contact geometry can be reformulated in terms of equivariant symplectic geometry. Concerning this fundamental construction, a basic question remained open : if two contact manifolds have isomorphic symplectizations, are they isomorphic ? In this thesis, we construct counter-examples to this question. Indeed, in any odd dimension greater than or equal to 5, there exist non-diffeomorphic contact manifolds with isomorphic symplectisations. In addition, we construct two contact structures on a closed manifold that are not conjugate by a diffeomorphism though their symplectizations are isomorphic. The proofs are based on a well-known phenomenon in differential topology (the existence of non-trivial h-cobordisms, detected by Whitehead torsion) as well as flexibility results in symplectic geometry due to Cieliebak and Eliashberg. Another result from this thesis asserts that though these contact manifolds are not isomorphic, they become so after sufficiently many connect sum with a product of spheres.
16

Algebraic Torsion in Higher-Dimensional Contact Manifolds

Moreno, Agustin 04 April 2019 (has links)
Wir konstruieren Beispiele von Kontaktmannigfaltigkeiten in jeder ungeraden Dimension, welche endliche nicht-triviale algebraische Torsion (im Sinne von Latschev-Wendl) aufweisen, somit straff sind und keine starke symplektische Füllung haben. Wir beweisen, dass Giroux Torsion algebraische 1-Torsion in jeder ungeraden Dimension impliziert, womit eine Vermutung von Massot-Niederkrüger-Wendl bewiesen wird. Wir konstruieren unendlich viele nicht diffeomorphe Beispiele von 5-dimensionalen Kontaktmannigfaltigkeiten, welche straff sind, keine starke symplektische Füllung zulassen und keine Giroux Torsion haben. Wir erhalten Obstruktionen für symplektische Kobordismen, ohne für deren Beweis die SFT Maschinerie zu verwenden. Wir geben eine provisorische Definition eines spinalen offenen Buchs in höherer Dimension an, basierend auf der vom 3-dimensionalen Fall aus Lisi-van Horn Morris-Wendl. In einem Anhang geben wir in gemeinsamer Autorenschaft mit Richard Siefring eine wesentliche Zusammenfassung der Schnitttheorie für punktierte holomorphe Kurven und Hyperflächen an, welche die 3-dimensionalen Resultate von Siefring auf höhere Dimensionen verallgemeinert. Mittels der Schnitttheorie erhalten wir eine Anwendung für holomorphe Blätterungen von Kodimension zwei, die wir benutzen um das Verhalten von holomorphem Kurven in unseren Beispielen einzuschränken. / We construct examples in any odd dimension of contact manifolds with finite and non-zero algebraic torsion (in the sense of Latschev-Wendl), which are therefore tight and do not admit strong symplectic fillings. We prove that Giroux torsion implies algebraic 1-torsion in any odd dimension, which proves a conjecture of Massot-Niederkrüger-Wendl. We construct infinitely many non-diffeomorphic examples of 5-dimensional contact manifolds which are tight, admit no strong fillings, and do not have Giroux torsion. We obtain obstruction results for symplectic cobordisms, for which we give a proof not relying on SFT machinery. We give a tentative definition of a higher-dimensional spinal open book decomposition, based on the 3-dimensional one of Lisi-van Horn Morris-Wendl. An appendix written in co-authorship with Richard Siefring gives a basic outline of the intersection theory for punctured holomorphic curves and hypersurfaces, which generalizes his 3-dimensional results to higher dimensions. From the intersection theory we obtain an application to codimension-2 holomorphic foliations, which we use to restrict the behaviour of holomorphic curves in our examples.
17

Relative Symplectic Caps, Fibered Knots And 4-Genus

Kulkarni, Dheeraj 07 1900 (has links) (PDF)
The 4-genus of a knot in S3 is an important measure of complexity, related to the unknotting number. A fundamental result used to study the 4-genus and related invariants of homology classes is the Thom conjecture, proved by Kronheimer-Mrowka, and its symplectic extension due to Ozsv´ath-Szab´o, which say that closed symplectic surfaces minimize genus. In this thesis, we prove a relative version of the symplectic capping theorem. More precisely, suppose (X, ω) is a symplectic 4-manifold with contact type bounday ∂X and Σ is a symplectic surface in X such that ∂Σ is a transverse knot in ∂X. We show that there is a closed symplectic 4-manifold Y with a closed symplectic submanifold S such that the pair (X, Σ) embeds symplectically into (Y, S). This gives a proof of the relative version of Symplectic Thom Conjecture. We use this to study 4-genus of fibered knots in S3 . We also prove a relative version of the sufficiency part of Giroux’s criterion for Stein fillability, namely, we show that a fibered knot whose mondoromy is a product of positive Dehn twists bounds a symplectic surface in a Stein filling. We use this to study 4-genus of fibered knots in S3 . Using this result, we give a criterion for quasipostive fibered knots to be strongly quasipositive. Symplectic convexity disc bundles is a useful tool in constructing symplectic fillings of contact manifolds. We show the symplectic convexity of the unit disc bundle in a Hermitian holomorphic line bundle over a Riemann surface.

Page generated in 0.0555 seconds