Spelling suggestions: "subject:"corpo find"" "subject:"corpo fine""
1 |
Optimisation de codes correcteurs d’effacements par application de transformées polynomiales / Optimisation of erasure codes by applying polynomial transformsDetchart, Jonathan 05 December 2018 (has links)
Les codes correcteurs d’effacements sont aujourd’hui une solution bien connueutilisée pour fiabiliser les protocoles de communication ou le stockage distribué desdonnées. La plupart de ces codes sont basés sur l’arithmétique des corps finis, définissantl’addition et la multiplication sur un ensemble fini d’éléments, nécessitantsouvent des opérations complexes à réaliser. En raison de besoins en performancetoujours plus importants, ces codes ont fait l’objet de nombreuses recherches dans lebut d’obtenir de meilleures vitesses d’exécution, tout en ayant la meilleure capacitéde correction possible. Nous proposons une méthode permettant de transformer les éléments de certains corps finis en éléments d’un anneau afin d’y effectuer toutes les opérations dans lebut de simplifier à la fois le processus de codage et de décodage des codes correcteursd’effacements, sans aucun compromis sur les capacités de correction. Nous présentonségalement une technique de réordonnancement des opérations, permettant deréduire davantage le nombre d’opérations nécessaires au codage grâce à certainespropriétés propres aux anneaux utilisés. Enfin, nous analysons les performances decette méthode sur plusieurs architectures matérielles, et détaillons une implémentationsimple, basée uniquement sur des instructions xor et s’adaptant beaucoupplus efficacement que les autres implémentations à un environnement d’exécutionmassivement parallèle. / Erasure codes are widely used to cope with failures for nearly all of today’snetworks communications and storage systems. Most of these codes are based onfinite field arithmetic, defining the addition and the multiplication over a set offinite elements. These operations can be very complex to perform. As a matter offact, codes performance improvements are still an up to date topic considering thecurrent data growth explosion. We propose a method to transform the elements of some finite fields into ring elements and perform the operations in this ring to simplify both coding and decoding of erasure codes, without any threshold on the correction capacities.We also present a scheduling technique allowing to reduce the number of operations thanks to some particular properties of the ring structure. Finally, we analyse the performance ofsuch a method considering several hardware architectures and detail a simple implementation, using only xor operations, fully scalable over a multicore environment.
|
2 |
Dénombrement des polynômes irréductibles unitaires dans les corps finis avec différentes contraintes sur les coefficientsLarocque, Olivier 09 1900 (has links)
No description available.
|
3 |
Étude du nombre de polynômes irréductibles dans les corps finis avec certaines contraintes imposées aux coefficientsBeauchamp Houde, Gabriel 08 1900 (has links)
L'objectif de ce mémoire est de dénombrer les polynômes irréductibles unitaires sur un corps fini en prescrivant des contraintes sur les coefficients. Dans les prochaines pages, il sera question de fixer simplement des coefficients, ou simplement de fixer leur signe, leur cubicité ou leur quarticité. / The objective of this thesis is to count monic irreducible polnomials over a
finite field under some conditions on the coefficients of the polynomial. These
conditions will be simply to fix some coefficients, or to fix their sign, cubicity or
quarticity.
|
4 |
Arithmétique rapide pour des corps finis / Fast finite field arithmeticLarrieu, Robin 10 December 2019 (has links)
La multiplication de polynômes est une opération fondamentale en théorie de la complexité. En effet, pour de nombreux problèmes d’arithmétique, la complexité des algorithmes s’exprime habituellement en fonction de la complexité de la multiplication. Un meilleur algorithme de multiplication permet ainsi d’effectuer les opérations concernées plus rapidement. Un résultat de 2016 a établi une meilleure complexité asymptotique pour la multiplication de polynômes dans des corps finis. Cet article constitue le point de départ de la thèse ; l’objectif est d’étudier les conséquences à la fois théoriques et pratiques de la nouvelle borne de complexité.La première partie s’intéresse à la multiplication de polynômes à une variable. Cette partie présente deux nouveaux algorithmes censés accélérer le calcul en pratique (plutôt que d’un point de vue asymptotique). S’il est difficile dans le cas général d’observer l’amélioration prévue, certains cas précis sont particulièrement favorables. En l’occurrence, le second algorithme proposé, spécifique aux corps finis, conduit à une meilleure implémentation de la multiplication dans F_2[X], environ deux fois plus rapide que les logiciels précédents.La deuxième partie traite l’arithmétique des polynômes à plusieurs variables modulo un idéal, telle qu’utilisée par exemple pour la résolution de systèmespolynomiaux. Ce travail suppose une situation simplifiée, avec seulement deux variables et sous certaines hypothèses de régularité. Dans ce cas particulier, la deuxième partie de la thèse donne des algorithmes de complexité asymptotiquement optimale (à des facteurs logarithmiques près), par rapport à la taille des entrées/sorties. L’implémentation pour ce cas spécifique est alors nettement plus rapide que les logiciels généralistes, le gain étant de plus en plus marqué lorsque la taille de l’entrée augmente. / The multiplication of polynomials is a fundamental operation in complexity theory. Indeed, for many arithmetic problems, the complexity of algorithms is expressed in terms of the complexity of polynomial multiplication. For example, the complexity of euclidean division or of multi-point evaluation/interpolation (and others) is often expressed in terms of the complexity of polynomial multiplication. This shows that a better multiplication algorithm allows to perform the corresponding operations faster. A 2016 result gave an improved asymptotic complexity for the multiplication of polynomials over finite fields. This article is the starting point of the thesis; the present work aims to study the implications of the new complexity bound, from a theoretical and practical point of view.The first part focuses on the multiplication of univariate polynomials. This part presents two new algorithms that should make the computation faster in practice (rather than asymptotically speaking). While it is difficult in general to observe the predicted speed-up, some specific cases are particularly favorable. Actually, the second proposed algorithm, which is specific to finite fields, leads to a better implementation for the multiplication in F 2 [X], about twice as fast as state-of-the-art software.The second part deals with the arithmetic of multivariate polynomials modulo an ideal, as considered typically for polynomial system solving. This work assumes a simplified situation, with only two variables and under certain regularity assumptions. In this particular case, there are algorithms whose complexity is asymptotically optimal (up to logarithmic factors), with respect to input/output size. The implementation for this specific case is then significantly faster than general-purpose software, the speed-up becoming larger and larger when the input size increases.
|
5 |
Contribution à un environnement pour le calcul scientifique et la modélisation : strates et systèmes polynômiaux sur les corps finisGarreau, Pierre-Olivier 30 September 1994 (has links) (PDF)
Cette thèse concerne le développement et la mise en œuvre d'un environnement pour le calcul scientifique et la modélisation. L'approche retenue est celle d'une décomposition stratifiée des problèmes, ceci dans un double but: marquer le cheminement progressif des étapes de description, allant de l'énoncé informel vers un langage cible en passant par des langages intermédiaires plus ou moins formalisés ; et, d'obtenir une décomposition structurée, modulaire, pour aller du problème initial vers le programme. Dans le but de vérifier la cohérence des descriptions, des schémas de résolutions, des décompositions, nous associons à tout énoncé des conditions logiques dépendant du langage de description. Pour cela, il nous a paru nécessaire d'étudier les formulations logiques décrites par des systèmes polynômiaux sur les corps finis de la forme Z/pZ. L'étude de ces systèmes nous conduisent à traiter le problème de l'élimination des quantificateurs sur un corps fini, le problème du calcul du résultat sur Z/pZ: des algorithmes sont proposés, ainsi qu'une généralisation de la méthode de Dixon-Biard. Le problème de la déduction est aussi abordé. Ces algorithmes nous permettent de vérifier localement la cohérence d'un énoncé mais aussi d'une décomposition de problème. Ceci rend envisageable une vérification globale. Un éditeur de strates sous Grif est présenté
|
6 |
Caractère reconnaissable densembles de polynômes à coefficients dans un corps finiWaxweiler, Laurent 11 December 2009 (has links)
Nous nous plaçons dans le cadre de l'anneau des polynômes sur un corps fini. Si P est un polynôme de degré au moins 1, tout polynôme Q se décompose de manière unique sous la forme d'une combinaison linéaire de puissances de P, dont les coefficients sont des polynômes dont le degré est strictement inférieur à celui de P. À une telle décomposition, nous associons un mot que nous appelons la P-représentation du polynôme Q. Un ensemble de polynômes est alors qualifié de P-reconnaissable si il existe un automate fini déterministe qui accepte l'ensemble des P-représentations de ses éléments.<BR><BR>
Dans cette thèse, nous montrons que les ensembles P-reconnaissables sont exactement ceux qui sont définissables par une formule du premier ordre dans une certaine structure S(P) basée sur un prédicat dépendant du polynôme P. Nous donnons aussi une caractérisation des ensembles P-reconnaissables en terme de suites P-automatiques. Nous apportons également une réponse partielle à la question de savoir quels sont les ensembles reconnaissables simultanément dans toutes les bases de degré au moins 1. Finalement, nous montrons que si P et Q sont deux polynômes de degré au moins 1 et multiplicativement indépendants, alors la multiplication est définissable dans la réunion des structures S(P) et S(Q).
|
7 |
Nombre de points rationnels des courbes singulières sur les corps finis / Number of rational points on singular curves over finite fieldsIezzi, Annamaria 06 July 2016 (has links)
On s'intéresse, dans cette thèse, à des questions concernant le nombre maximum de points rationnels d'une courbe singulière définie sur un corps fini, sujet qui, depuis Weil, a été amplement abordé dans le cas lisse. Cette étude se déroule en deux temps. Tout d'abord on présente une construction de courbes singulières de genres et corps de base donnés, possédant un grand nombre de points rationnels : cette construction, qui repose sur des notions et outils de géométrie algébrique et d'algèbre commutative, permet de construire, en partant d'une courbe lisse X, une courbe à singularités X', de telle sorte que X soit la normalisée de X', et que les singularités ajoutées soient rationnelles sur le corps de base et de degré de singularité prescrit. Ensuite, en utilisant une approche euclidienne, on prouve une nouvelle borne sur le nombre de points fermés de degré deux d'une courbe lisse définie sur un corps fini.La combinaison de ces résultats, à priori indépendants, permet notamment d'étudier le problème de savoir quand la borne d'Aubry-Perret, analogue de la borne de Weil dans le cas singulier, est atteinte. Cela nous amène de façon naturelle à l'étude des propriétés des courbes maximales et, lorsque la cardinalité du corps de base est un carré, à l'analyse du spectre des genres de ces dernières. / In this PhD thesis, we focus on some issues about the maximum number of rational points on a singular curve defined over a finite field. This topic has been extensively discussed in the smooth case since Weil's works. We have split our study into two stages. First, we provide a construction of singular curves of prescribed genera and base field and with many rational points: such a construction, based on some notions and tools from algebraic geometry and commutative algebra, yields a method for constructing, given a smooth curve X, another curve X' with singularities, such that X is the normalization of X', and the added singularities are rational on the base field and with the prescribed singularity degree. Then, using a Euclidian approach, we prove a new bound for the number of closed points of degree two on a smooth curve defined over a finite field.Combining these two a priori independent results, we can study the following question: when is the Aubry-Perret bound (the analogue of the Weil bound in the singular case) reached? This leads naturally to the study of the properties of maximal curves and, when the cardinality of the base field is a square, to the analysis of the spectrum of their genera.
|
8 |
Les Codes LDPC non-binaires de nouvelle génération / Development of new generation non-binary LDPC error correcting codesShams, Bilal 08 December 2010 (has links)
Dans cette thèse, nous présentons nos travaux dans le domaine de l'algorithme de décodage non-binaire pour les classes générales de codes LDPC non-binaires. Les Low-Density Parity-Check (LDPC) codes ont été initialement présentés par Gallager en 1963, et après quelques avancées théoriques fondamentales, ils ont été pris en compte dans les normes comme le DVB-S2, WI-MAX, DSL, W-LAN etc. Plus tard, Les codes LDPC non-binaires (NB-LDPC) ont été proposés dans la littérature, et ont montré de meilleures performances lorsque la taille du code est petite ou lorsqu'il est utilisé sur des canaux non-binaires. Toutefois, les avantages de l'utilisation des codes LDPC non-binaires entrainent une complexité de décodage fortement accrue. Pour un code défini dans GF (q), la complexité est de l'ordre O(q^2). De même, la mémoire nécessaire pour stocker les messages est d'ordre O(q). Par conséquent, l'implémentation d'un décodeur LDPC-définie sur un ordre q> 64 devient pratiquement impossible.L'objectif principal de la thèse est de développer des algorithmes a complexité réduite, pour les codes LDPC non-binaires qui démontrent un rendement excellent et qui soient implémentable. Pour optimiser les performances de décodage, non seulement l'algorithme de décodage est important, mais aussi la structure du code joue un rôle important. Avec cet objectif à l'esprit, une nouvelle famille de codes appelés codes cluster-NB-LDPC a été élaboré et des améliorations spécifiques du décodeur NB pour les codes de cluster-NB-LDPC ont été proposés. Notre principal résultat est que nous étions en mesure de proposer des décodeurs de codes cluster-NB-LDPC avec une complexité réduite par rapport à décodeurs d'habitude pour les codes LDPC-NB sur les corps de Galois, sans aucune perte de performance en matière de la capacité de correction d'erreur. / In this thesis we present our work in the domain of non-binary decoding algorithm for general classes of non-binary LDPC codes. Low-Density Parity-Check (LDPC) codes were originally presented by Gallager in 1963, and after some fundamental theoretical advancements, they were considered in standards like DVB-S2, WI-MAX, DSL, W-LAN etc. Later on, non-binary LDPC (NB-LDPC)codes were proposed in the litterature, and showed better performance for small lengths or when used on non-binary channels. However, the advantages of using NB-LDPC codes comes with the consequence of an heavily increased decoding complexity. For a code defined in GF(q), the complexity is of the order O(q^2). Similarly, the memory required for storing messages is of order O(q). Consequently, the implementation of an LDPC-decoder defined over a field order q > 64 becomes practically impossible.The main objective of the thesis is to develop reduced complexity algorithms for non-binary LDPC codes that exhibit excellent performance and is practically im-plementable. For better decoding performance, not only the decoding algorithm is important, but also the structure of the code plays an important role. With this goal in mind, a new family of codes called cluster-NB-LDPC codes was developped and specific improvements of the NB decoder for cluster-NB-LDPC codes were proposed. Our principal result is that we were able to propose decoders for cluster-NB-LDPC codes with reduced complexity compared to usual decoders for NB-LDPC codes on fields, without any performance loss in error correction capability.
|
9 |
Algorithmes pour la factorisation d'entiers et le calcul de logarithme discret / Algorithms for integer factorization and discrete logarithms computationBouvier, Cyril 22 June 2015 (has links)
Dans cette thèse, nous étudions les problèmes de la factorisation d'entier et de calcul de logarithme discret dans les corps finis. Dans un premier temps, nous nous intéressons à l'algorithme de factorisation d'entier ECM et présentons une méthode pour analyser les courbes elliptiques utilisées dans cet algorithme en étudiant les propriétés galoisiennes des polynômes de division. Ensuite, nous présentons en détail l'algorithme de factorisation d'entier NFS, et nous nous intéressons en particulier à l'étape de sélection polynomiale pour laquelle des améliorations d'algorithmes existants sont proposées. Puis, nous présentons les algorithmes NFS-DL et FFS pour le calcul de logarithme discret dans les corps finis. Nous donnons aussi des détails sur deux calculs de logarithme discret effectués durant cette thèse, l'un avec NFS-DL et l'autre avec FFS. Enfin, nous étudions une étape commune à l'algorithme NFS pour la factorisation et aux algorithmes NFS-DL et FFS pour le calcul de logarithme discret: l'étape de filtrage. Nous l'étudions en détail et nous présentons une amélioration dont nous validons l'impact en utilisant des données provenant de plusieurs calculs de factorisation et de logarithme discret / In this thesis, we study the problems of integer factorization and discrete logarithm computation in finite fields. First, we study the ECM algorithm for integer factorization and present a method to analyze the elliptic curves used in this algorithm by studying the Galois properties of division polynomials. Then, we present in detail the NFS algorithm for integer factorization and we study in particular the polynomial selection step for which we propose improvements of existing algorithms. Next, we present two algorithms for computing discrete logarithms in finite fields: NFS-DL and FFS. We also give some details of two computations of discrete logarithms carried out during this thesis, one with NFS-DL and the other with FFS. Finally, we study a common step of the NFS algorithm for integer factorization and the NFS-DL and FFS algorithms for discrete logarithm computations: the filtering step. We study this step thoroughly and present an improvement for which we study the impact using data from several computations of discrete logarithms and factorizations
|
Page generated in 0.0657 seconds