• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 297
  • 121
  • 99
  • 38
  • 18
  • 16
  • 16
  • 12
  • 11
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 745
  • 114
  • 103
  • 74
  • 69
  • 62
  • 61
  • 60
  • 57
  • 56
  • 55
  • 52
  • 50
  • 48
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

AMPA Receptor Trafficking: A Mechanism of Excitatory Synaptic Plasticity

Tcharnaia, Lilia 10 1900 (has links)
<p>Trafficking of the glutamatergic AMPA receptors (AMPARs) has been implicated in synaptic plasticity regulation, including long-term potentiation, long-term depression, and synaptic scaling. Two proteins, GRIP for stabilization at the synapse and PICK for internalization, are involved in trafficking GluR2-containing AMPARs in and out of the synapse. In this thesis, I addressed the changes in the mechanisms of AMPAR trafficking by characterizing the developmental trajectories of GluR2, the phosphorylated form pGluR2, GRIP, and PICK and comparing expression in visual vs. frontal cortex. I found significant differences between cortical areas in the developmental trajectories of GluR2 and pGluR2. In visual cortex, expression levels exhibited smooth developmental increases. In frontal cortex, GluR2 and pGluR2 rose to an exuberant expression between P18 and P35. Developmental trajectories for GRIP and PICK showed smooth increases that were consistent across cortical areas. Furthermore, looking at the correlation between the surface components (GluR2 and GRIP) and internalized components (pGluR2 and PICK), I found that the development of AMPAR trafficking components is tightly regulated across the cortex.</p> <p>In this thesis, I also looked at AMPAR expression in adult cortex. Fluoxetine has previously been reported to induce a juvenile like state of plasticity in visual cortex and this plasticity was assessed through monocular deprivation. My results indicated that fluoxetine administration was not associated with significant changes in AMPAR expression levels. However, monocular deprivation induced significant upregulation in expression levels of all four proteins. These results imply the presence of AMPAR-mediated plasticity in the adult brain.</p> / Master of Science (MSc)
172

Ultrashort Laser Ablation of Cortical Bone: Literature Review and Experimental Evaluation

Khader, Ghadeer W. 10 1900 (has links)
<p>Mechanical instruments, such as saw and bur are commonly used for bone cutting during orthopedics surgeries. These conventional instruments showed good bone removal efficiency. Nonetheless, there are some issues with the use of the mechanical tools, such as ill-placed screws and elevation of tissue temperature, which results in thermal damage to the surrounding tissues. These difficulties accompanied with using mechanical tools led to laser ablation investigations. Lasers, including continues wave (CW) and pulsed, were considered to be a promising tool for bone ablation. When compared to mechanical tools, lasers produce less thermal damage to the surrounding tissues due to their ability to focus on a very small spot, which also produces more precise ablation. Lasers also produce no significant mechanical vibrations within the surrounding tissue and thus less mechanical damage and cracks occur during ablation. Performances of laser ablations are measured by several factors; such as collateral damage, machining time, ablated depth, and ablative precision. In this thesis work, a literature review was conducted with the aim of understanding the bone characteristics that are related to the optical properties of bone, which leads to a better understanding for ablation mechanisms. This helps in a proper choice of laser parameters for a certain tissue ablation, and thus avoiding collateral damage.</p> <p>Some laser parameters (pulse energy, scanning speed, and number of passes) were characterized as a first step towards producing large holes. The effect of each one of these laser parameters on the groove depth was found. The feasibility of the ultrafast laser in creating large scale holes was examined, using two scanning strategies: (i) concentric circles scanning, the largest crater depth measured using this procedure was 3.81 mm, (ii) helical scanning, which was used to reduce the machining time, using this procedure a micropillar was created with 12 passes in just 2.5 minutes.</p> / Master of Applied Science (MASc)
173

An in Vivo Study of Cortical Dynein Dynamics and its Contribution to Microtubule Sliding in the Midzone

Jordan, Heather M 13 July 2016 (has links) (PDF)
In LLC-Pk1 cells, and most cultured mammalian cells, cell division is highly regulated to achieve equal sized daughter cells. During this process, duplicated centrosomes separate and establish a bipolar array called the mitotic spindle. The mitotic spindle is responsible for aligning the chromosomes at the metaphase plate, and separating sister chromatids during anaphase. Spindle positioning and elongation are thought to be driven by the interaction between dynamic astral microtubules and cortical dynein. Extensive research has revealed that dynein is anchored to the cortex via the highly conserved NuMA/LGN/Gαi ternary complex in metaphase and the additional PIP/PIP2/NuMA, or 4.1G/R/NuMA, pathways during anaphase. Although substantial research has been conducted on the proteins involved with this process, it is unclear exactly how a cell is able to generate forces for spindle positioning and elongation. Here, I use photoactivation and FRAP techniques to investigate the role of the midzone during spindle elongation, and how cortical dynein is able to drive this process. I provide evidence that microtubule sliding in the midzone is not precisely coordinated with pole separation, however the two actions are interdependent. In addition, I demonstrate that cortical dynein dynamics are significantly enhanced during anaphase, most likely due to an increased length and stability of astral microtubules. I hypothesize that this increased turnover rate allows for rapid redistribution of dynein throughout the cortex to ensure proper spindle elongation.
174

Evaluating Microglia Dynamics in Blast and Impact-Induced Neurotrauma and Assessing the Role of Hemostatic Nanoparticles in Microglia Activation

White, Michelle Renee 03 October 2022 (has links)
Traumatic brain injury (TBI) is a major medical concern that has demonstrated to be particularly challenging to treat because of the disparity amongst injury modes and severities. Increased use of explosive devices during combat has caused blast TBI (bTBI) to become a widespread consequence in military and Veteran populations, and impact-related trauma from contact-related sports or motor vehicle accidents has made mild impact-induced TBIs (concussion) a major health problem. There is a high risk for those who have sustained a TBI to develop behavioral and cognitive disorders following injury, and these symptoms can present as delayed onset, causing diagnosis to be a major feat when planning for treatment and long-term healthcare. Both preclinical and clinical studies report the neuropathological changes following TBI, yet investigating the distinct mechanistic changes in blast and impact trauma that contribute to pathological disparities has yet to be elucidated. Microglia dynamics play a key role in initiating the inflammatory response after injury, as microglia become activated by undergoing morphological changes that influence their function in the injured brain, and unique signaling pathways influence their functional inflammatory states. While previous literature report on the unique responses of microglia, their mediated-inflammatory responses are still not well defined. This work aimed to investigate the acute and subacute responses of microglia to injury through their diverse activation states following blast and impact trauma. The work herein employed rodent models to investigate these changes, finding that microglia activation was spatially and temporally heterogeneous within and across injury paradigms. Three days following bTBI, activated microglia in the cortex displayed morphologies similar to microglia that are known to increase their interactions with dysfunctional synapses, while dystrophic microglia were prevalent in the hippocampus seven days following injury. Moreover, transhemispheric changes in microglia activation were noted following impact TBI, with stressed/primed microglia responding to immune challenges of the cortex at three days, whereas a unique morphological state that was markedly different from those traditionally reported in CNS injury and disease was present within the hippocampus three- and seven-days following injury. State-of-the-art cell sorting techniques were used for in vivo analysis of microglia, which also exhibited that functional changes of microglia vary between injury paradigms, providing insight into how differences in primary insult may elicit distinct signaling pathways involved in microglia-mediated inflammatory responses. These in vivo studies were then crucial in understanding the malleable responses of microglia to complex injuries such as "blast plus impact" TBI, indicating that phenotypic changes in microglia following this injury are also unique and spatially heterogeneous. To date, therapeutic efforts for TBI are limited due to the lack of understanding the underlying mechanisms that influence TBI pathology. This work also investigated novel therapeutic targets, noting that administration of polyester nanoparticles restored microglia to baseline levels following impact. The fundamental research presented in this study is innovative and advantageous as it can provide essential data into targeted and personalized treatments that can improve long-term healthcare and ultimately, the quality of life for those suffering from a TBI. / Doctor of Philosophy / Traumatic brain injury (TBI) is a major medical concern that has demonstrated to be particularly challenging to treat because of the differences in injury modes and severities. Increased use of explosive devices during combat has caused blast TBI (bTBI) to become a widespread result in military and Veteran populations, and impact-related trauma from contact sports or motor vehicle accidents has made mild impact-induced TBIs (concussion) a major health problem. There is a high risk for those who have sustained a TBI to develop behavioral and cognitive disorders following injury, and these symptoms can present later on, causing diagnosis to be a major feat when planning for treatment and long-term healthcare. Microglia play a key role in inducing the inflammatory response after injury, as they change shape and size, which then influences their function in the injured brain. Although prior research reports on the unique responses of microglia, their effects on inflammation following TBI are still not well defined. This work aimed to investigate the early responses of microglia to injury through their diverse activation states following blast and impact trauma. The experiments in this study used animal models, finding that microglia activation can be distinct across time and brain regions, which may be injury-type-specific. To date, therapeutic efforts of TBI are limited due to the lack of understanding the underlying mechanisms that influence TBI pathology. This work also investigated beneficial treatments for TBI, noting that administration of nanoparticles helped restore microglia to levels similar to the control group. The fundamental research presented in this study is innovative and important as it can provide essential data into targeted and personalized treatments that can improve long-term healthcare and ultimately the quality of life for those suffering from a TBI.
175

Motion-sensitive neurones in V5/MT modulate perceived spatial position

Barrett, Brendan T., McGraw, Paul V., Walsh, V. January 2004 (has links)
No / Until recently, it was widely believed that object position and object motion were represented independently in the visual cortex. However, several studies have shown that adaptation to motion produces substantial shifts in the perceived position of subsequently viewed stationary objects [[13]]. Two stages of motion adaptation have been proposed: an initial stage at the level of V1 and a secondary stage thought to be located in V5/MT [[4]]. Indeed, selective adaptation can be demonstrated at each of these levels of motion analysis [[5, 6]]. What remains unknown is which of these cortical sites are involved in modulating the positional representation of subsequently viewed objects. To answer this question directly, we disrupted cortical activity by using transcranial magnetic stimulation (TMS) immediately after motion adaptation. When TMS was delivered to V5/MT after motion adaptation, the perceived offset of the test stimulus was greatly reduced. In marked contrast, TMS of V1 had no effect on the changes that normally occur in perceived position after motion adaptation. This result demonstrates that the anatomical locus at which motion and positional information interact is area V5/MT rather than V1/V2.
176

Neuronal-glial populations form functional networks in a biocompatible 3D scaffold.

Smith, I., Haag, M., Ugbode, Christopher I., Tams, D., Rattray, Marcus, Przyborski, S., Bithell, A., Whalley, B.J. 2015 October 1914 (has links)
Yes / Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50 Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50 Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems.
177

Estimation of cortical magnification from positional error in normally sighted and amblyopic subjects

Hussain, Z., Svensson, C-M., Besle, J., Webb, B.S., Barrett, Brendan T., McGraw, Paul V. 02 1900 (has links)
Yes / We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg 1 at 18 eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results.
178

Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering

Zhang, X., Wang, C., Liao, M., Dai, L., Tang, Y., Zhang, H., Coates, Philip D., Sefat, Farshid, Zheng, L., Song, J., Zheng, Z., Zhao, D., Yang, M., Zhang, W., Ji, P. 13 February 2019 (has links)
Yes / Physical properties of scaffolds such as nanofibers and aligned structures have been reported to exert profound effects on the growth and differentiation of stem cells due to their homing-effect features and contact guidance. However, the biological function of aligned nanofiber utilized as bone-scaffold has not been rigorously characterized. In the present study, aligned electrospun cellulose/CNCs nanocomposite nanofibers (ECCNNs) loaded with bone morphogenic protein-2 (BMP-2) were used for the first time to investigate (1) in vitro osteogenic differentiation of human mesenchymal stem cells (BMSCs) and (2) in vivo collagen assembly direction and cortical bone regeneration. Aligned ECCNNs scaffolds loaded with BMP-2 possess good biological compatibility. The growth orientation of BMSCs followed the underlying aligned nanofibers morphology, accompanied with increased alizarin red stain, ALP activity and calcium content in vitro while, a rabbit calvaria bone defect model was used in an in vivo study. / This work was supported by Natural Science Foundation of China (NSFC) grants (31500789, 51433006, 51473100, 81870758 and 31871464), Chongqing Yuzhong District science and technology plan project grants (20170124), Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0807, cstc2017jcyjBX0019 and cstc2017jcyjAX0020), Temple University Kornberg School of Dentistry research start-up funds, the RCUK China-UK Science Bridges Program through the Medical Research Council and the Engineering and Physical Sciences Research Council and Program for Innovation Team 1015 Building at Institutions of Higher Education (No. 1016 CXTDG201602006) funded by the Chongqing Municipal 1017 Education Commission of China in 2016
179

Investigação da circuitaria cortical envolvida no processamento do medo contextual à ameça predatória. / Study of the cortical circuitry underlying contextual fear processing to predatory threat.

Lima, Miguel Antonio Xavier de 16 October 2015 (has links)
Lesões na parte ventral do núcleo anteromedial do tálamo (AMv) interferem no processamento da memória aversiva predatória sem no entanto influenciar as respostas de defesa inatas do animal frente a um predador. O escopo deste trabalho foi entender melhor o papel do AMv e investigar se seus alvos de projeção corticais também interferem no processamento da memória aversiva. No primeiro experimento detectamos que o AMv participa da aquisição da memória aversiva. As áreas corticais pré-límbica, cingulada anterior, visual anteromedial e retroesplenial ventral, recebem e integram entre si projeções oriundas do AMv, além de enviar projeções para a amígdala e hipocampo. Estas áreas corticais estão seletivamente recrutadas durante a exposição ao predador, e observamos que lesões neuroquímicas afetaram severamente a formação da memória aversiva. Nossos dados sugerem que há um circuito de áreas corticais que está criticamente envolvido no processo mnemônico aqui abordado, e fornece as primeiras evidências para a hipótese de módulos corticais a partir do conectoma do rato. / Neurochemical lesions placed into ventral part of anteromedial thalamic nucleus (AMv) disrupt contextual, but not innate, fear responses to predatory threats. In the present investigation, we determined whether the AMv is involved in the acquisition and/or retrieval of the conditioned responses, and if its cortical targets are involved in the fear memory processing. In the first assay, we found that AMv has a critical role in the acquisition of conditioned responses. The cortical areas prelimbic (PL), anterior cingulate area (ACA), anteromedial visual area (VISam) and the ventral part of retrosplenial area (RSPv), receive projections from AMv and are recruited during predator exposure. The integrity of these cortical areas is required for the processing of the mnemonic processes here addressed. Our data corroborate current ideas on functional cortical modules, and help to elucidate how they are involved in the acquisition of fear memories related to life threatening situations.
180

Medida da espessura cortical com imagens de ressonância magnética: técnica e aplicações na doença de Alzheimer e na polimicrogiria / Measurement of cortical thickness using magnetic resonance imaging: technique and applications in Alzheimer\'s disease and polymicrogyria

Oliveira Junior, Pedro Paulo de Magalhães 12 January 2009 (has links)
As técnicas de morfometria baseadas em imagens ressonância magnética desde o início do século XXI tem sido uma importante ferramenta para estudar doenças neurológicas. Um dos benefícios desta técnica é prover medidas de parâmetros que manualmente são difíceis de estimar e com um grande viés de operador. Este trabalho teve como objetivo descrever as alterações corticais em duas doenças, uma malformação do desenvolvimento cortical, e outra neurodegenerativa utilizando as técnicas de morfometria por estudo de superfície cortical. As imagens de ressonância magnética foram obtidas por sequências volumétricas ponderadas em T1 e analisadas através de um algoritmo específico, implementado no software FreeSurfer (Fischl et al., Harvard University - Estados Unidos). De um grupo de pacientes com malformação do desenvolvimento cortical foram analisados 3 pacientes com polimicrogiria (PMG), comparados com um grupo de 14 pessoas saudáveis e de idade similar. Foram também analisados 14 pacientes com alteração degenerativa (Doença de Alzheimer - DA) com manifestação recente, idade avançada e alto nível de escolaridade comparados com 20 idosos saudáveis. Este dado foi posteriormente utilizado para separar os dois grupos através de uma técnica de classificação multivariada, implementada pelo autor. A análise de cada um dos indivíduos com PMG comparados ao grupo controle apresentou aumento de espessura cortical nas áreas com polimicrogiria e redução também estatisticamente significante de espessura cortical em áreas sem polimicrogiria. No estudo do grupo de pacientes com DA observou-se redução de espessura cortical nas regiões do córtex para hipocampal, entorrinal, córtex límbico e córtex temporal superior. Além disso, a volumetria de estruturas subcorticais obtidas apresentou poder de classificação de 84,6% na comparação de pacientes com DA e controles saudáveis. Concluímos que as técnicas de análise de imagens baseadas em superfície cortical se mostram promissoras no estudo de doenças cerebrais que, de maneiras distintas, afetam a espessura cortical. Descritores: 1.Imagem por ressonância magnética 2.Processamento automatizado de dados 3.Doença de Alzheimer 4.Malformações do desenvolvimento cortical / The techniques of brain morphometry based on magnetic resonance images since the beginning of the twenty-first century has been an important tool for studying neurological diseases. One of the benefits of this technique is to provide measures of parameters that are difficult to estimate manually and subject to operator bias. This study aimed to describe the changes in the cortex in two diseases, a malformation of cortical development and a neurodegenerative one, using surface based morphometry techniques. From a group of patients with malformation of cortical development were analyzed 3 with polymicrogyria (PMG), compared to a group of 14 healthy age matched subjects. The images from a T1 weighted volume were analyzed using a specific algorithm, implemented in the software FreeSurfer (Fischl et al., Harvard University - United States). We analyzed 14 patients with degenerative changes (Alzheimers disease - AD) with recent onset, advanced age and high level of education compared to 20 healthy age matched elderly. The images of this study were also obtained from a T1 weighted volume and were analyzed with the same software package. This analyzed data was used to separate the two groups through a multivariate classifier, implemented by the author. The analysis of each individual with PMG compared to the control group showed a statistically significant increase in cortical thickness in the areas with polymicrogyria and also a statistically significant reduction of cortical thickness in some areas without polymicrogyria. In the study group of AD patients the result was a cortical thinning statistically significant in hippocampal, entorhinal, limbic and superior temporal cortex. Moreover, the volume of subcortical structures has provided a classification power of 84.6% discriminating AD patients from healthy controls. We conclude that the surface based cortical analysis have shown a good potential in the study of brain diseases that affect, in different ways, the cortical thickness.

Page generated in 0.0388 seconds