Spelling suggestions: "subject:"dapped"" "subject:"dapprima""
1 |
Comparação da expressão dos genes Dapper com a de marcadores moleculares para desenvolvimento dos membros de aves (Gallus gallus) / Comparison of the expression pattern of the Dapper genes with the expression of molecular markers for limb development in chicken (Gallus gallus)Peterlini, Denner Jefferson 17 August 2018 (has links)
Orientador: Lúcia Elvira Alvares / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-17T20:53:58Z (GMT). No. of bitstreams: 1
Peterlini_DennerJefferson_M.pdf: 3626461 bytes, checksum: 754caba3e8964b3c91965dc6f4912b32 (MD5)
Previous issue date: 2011 / Resumo: Os membros de vertebrados representam uma aquisição importante do grupo, os quais possibilitaram a expansão destes pela Biosfera. As bases moleculares do desenvolvimento dos membros estão sob intensa investigação, e o papel de diversos genes e moléculas de sinalização começam a ser bem compreendidos tanto no contexto do estabelecimento de seus eixos quanto da padronização dos tecidos e estruturas. A família dos genes Dapper (Dpr) tem sido associada a diversos processos da embriogênese de vertebrados, desde a coordenação de movimentos morfogenéticos durante a gastrulação à morfogênese de estruturas tão distintas quanto encéfalo, olhos e coração. No entanto, pouco se sabe sobre o papel destes genes no desenvolvimento dos membros, um sítio marcante de sua expressão durante a embriogênese de vertebrados. Resultados preliminares obtidos com emprego de hibridação in situ em embrião de galinha no nosso laboratório já haviam mostrado a expressão destes genes nos membros, e isto sugeriu que eles pudessem desempenhar um papel importante na ontogênese destas estruturas. assim, os padrões de expressão dos genes Dpr1 e Dpr2 entre os estádios HH24 e HH34 da ontogênese de aves foram caracterizados por meio de hibridação in situ neste trabalho. Também foram avaliadas a expressão dos marcadores moleculares MyoD para desenvolvimento de músculo esquelético, e Sox9 para desenvolvimento de cartilagem, bem como foi feita coloração dos membros com alcian blue, que evidência matriz extra-celular de tecido cartilaginoso. Os resultados obtidos revelaram que, no estádio HH24, a expressão de Dpr1 está presente no mesênquima proximal e medial dos membros anterior e posterior, e ausente da região distal (autópode). Neste estádio, a expressão de Dpr2 é claramente associada à agregação das células mesenquimais em condensações pré-condrogênicas. No estádio HH25, transcritos de Dpr1 e Dpr2 foram localizados pela primeira vez no autópode, delimitando uma região com o formato dos moldes cartilaginosos dos dígitos em formação. No estádio HH28, o padrão de expressão de Dpr1 ainda acompanha o contorno dos dígitos, além de serem observados altos níveis de expressão nos precursores dos tarsos e carpos. Por sua vez, Dpr2 é expresso fortemente nos dígitos 1 e 5 dos membros anterior e posterior, bem como nos blastemas dos dígitos posteriores. Finalmente, no estádio HH34, transcritos Dpr1 e Dpr2 estão concentrados nas regiões das articulações dos membros em desenvolvimento, enquanto Dpr2 é expresso também em tendões e em anexos ectodérmicos em formação. Este estudo suporta fortemente a hipótese de que os genes Dpr1 e Dpr2 desempenham um papel no processo de condrogênese que antecede a formação dos ossos dos membros de aves, bem como no desenvolvimento de outras estruturas, como articulações, tendões e anexos cutâneos / Abstract: The acquisition of vertebrates limbs represents an important novelty for this group and allowed the expansion of vertebrates through the Biosphere. The molecular basis of limbs development are under intense investigation, and the role of several genes and signaling molecules begin to be understood both within the context of axis determination as well as in the patterning of tissues and structures. The Dapper (Dpr) gene family has been associated with different processes of vertebrates embryogenesis, from the coordination of morphogenetic movements during gastrulation to morphogenesis of structures as different as brain, eyes and heart. However, nothing is known about the role of these genes in limb development, am important domain of Dpr expression during the embryogenesis of vertebrates. Preliminary results of in situ hybridization in chicken embryo obtained in our laboratory had already shown the expression of these genes in limb, suggesting that they could play an important role in the ontogeny of these structures. Thus, in this study the Dpr1 and Dpr2 expression pattern was characterized by in situ hybridization between stages HH24 and HH34 of chicken development. We also determined the expression of the molecular markers MyoD (skeletal muscle) and Sox9 (cartilage) and stained limbs at the different stages with alcian blue, that labels the extracellular matrix of cartilage. The results revealed that, at stage HH24, Dpr1 expression is observed in the proximal and medial mesenchyme in the fore and hindlimb buds but avoids the autopod. At this stage, the expression of Dpr2 is clearly associated with mesenchymal condensations of pre-chondrogenic cells. At stage HH25, Dpr1 and Dpr2 transcripts were found for the first time in the autopod, delimiting a region with the shape of the cartilaginous templates of the developing digits. At stage HH28, Dpr1 is still expressed around the developing digits, and transcripts are found at high levels in the tarsi and carpi precursors. In turn, Dpr2 is expressed strongly in the first and fifth digits of the forelimbs and hindlimbs, as well as in the digit blastemas. Finally, at stage HH34, Dpr1 and Dpr2 transcripts are concentrated in the developing joints, while Dpr2 is also expressed in ectodermal tendons and developing skin appendages. This study strongly supports the hypothesis that Dpr1 and Dpr2 play a role in the process of chondrogenesis before the formation of the limb bones in birds as well as the development of other structures such as tendons and skin appendages / Mestrado / Histologia / Mestre em Biologia Celular e Estrutural
|
2 |
Análise comparativa da expressão dos genes Dapper (Dpr) durante a ontogênese dos membros de camundongo (Mus musculus C57BL/6) e galinha (Gallus gallus) / Comparative analysis of Dapper (Dpr) gene expression during limbs ontogeny of mouse (Mus musculus C57BL/6) and chicken (Gallus gallus)Sensiate, Lucimara Aparecida 18 August 2018 (has links)
Orientador: Lúcia Elvira Alvares / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-18T00:32:50Z (GMT). No. of bitstreams: 1
Sensiate_LucimaraAparecida_M.pdf: 8827752 bytes, checksum: 66afd653eb6cf0a2ff14cc79c158cfc1 (MD5)
Previous issue date: 2011 / Resumo: Dentre as moléculas envolvidas na sinalização molecular durante o desenvolvimento, têm papel de destaque aquelas envolvidas nas vias de sinalização Wnt e TGF-ß. Trabalhos demonstram que as proteínas Dapper (Dpr) são capazes de modular tais vias de sinalização. A família de genes Dpr é constituída por três componentes: Dpr1, Dpr2 e Dpr3 em peixe-zebra, camundongo e humanos e Dpr1 e Dpr2 em aves. Os genes Dpr têm sido associados a movimentos morfogenéticos durante a gastrulação, especificação do mesoderma, morfogênese do encéfalo, coração e olhos. Apesar da grande relevância desta família gênica para o desenvolvimento, pouco se sabe sobre o padrão de expressão de tais genes em mamíferos e aves. Este projeto de pesquisa teve como objetivo principal a caracterização do padrão de expressão dos genes Dpr ao longo do desenvolvimento embrionário de camundongo e com maiores detalhes, a caracterização do padrão de expressão dos genes Dpr durante a ontogênese dos membros em embriões de camundongo e galinha. O padrão de expressão foi determinado através de ensaios de hibridação in situ whole mount e em cortes de parafina. Para permitir comparações, hibridações in situ foram realizadas com marcadores para o desenvolvimento de cartilagem, tendão e músculo. Como resultado, observamos que os genes Dpr são expressos em seis domínios chave (tubérculo genital, membros, focinho, somitos, hérnia umbilical fisiológica e encéfalo) durante o desenvolvimento de camundongo. A análise do padrão de expressão sugere fortemente o envolvimento dos genes Dpr na ontogênese dos membros em embriões de galinha e camundongo. Contudo, a expressão destes genes é bastante diferente entre estes dois organismos. O gene Dpr1 parece estar envolvido com a formação de elementos da articulação e do pericôndrio durante o desenvolvimento dos membros em embriões de camundongo e galinha. O gene Dpr2 possui expressão bastante difusa durante o desenvolvimento dos membros em embriões de camundongo. Em contrapartida, na galinha, Dpr2 possui expressão localizada no blastema dos dígitos e articulações do autópode. O gene Dpr3 possui expressão difusa durante o desenvolvimento dos membros. Apesar disto, os domínios de expressão identificados sugerem que Dpr3 esteja relacionado com o desenvolvimento dos dígitos e articulações / Abstract: Among the molecules involved in molecular signaling during development, those involved in the Wnt and TGF-ß pathways are particularly important. Studies have shown that the Dapper protein family (Dpr) can modulate Wnt and TGF-ß signaling. The Dpr gene family consists of three members: Dpr1, Dpr2 and Dpr3 in zebrafish, mice and humans, and only two: Dpr1 and Dpr2, in birds. Dpr genes have been associated with morphogenetic movements during gastrulation, mesoderm specification, morphogenesis of the brain, heart and eyes. Despite the great relevance of this gene family during development, little is known about the expression pattern of the Dpr genes in mammals and birds. This research project had as main aims to characterize the expression pattern of the Dpr genes during mouse embryonic development and, in more detail, their expression during limb ontogenesis in mouse and chicken embryos. The expression pattern was determined by in situ hybridization in whole mount and in paraffin sections. To allow comparisons, were performed in situ hybridization with markers for the development of cartilage, tendon and muscle. Our results indicate that Dpr genes are expressed in six key areas (genital tubercle, limbs, nose, somites, brain and physiological umbilical hernia) during development of mouse. The expression pattern in the limbs strongly suggests that the Dpr genes work in limbs development in chicken and mouse embryos. However, the expression pattern of these genes is different in these two organisms. Dpr1 seems to be involved in joint and perichondrium formation during limb development in mouse and chicken embryos. For Dpr2, the expression was diffuse during limb development in mouse embryos. In contrast, chicken Dpr2 has localized expression in the digits and joints. Dpr3 gene has diffuse expression during limb development. However, its expression domains suggest that Dpr3 is related to digits and joints development / Mestrado / Biologia Celular / Mestre em Biologia Celular e Estrutural
|
3 |
Identificação de uma nova variante do gene Dapper1 gerada por splicing alternativo durante o desenvolvimento de vertebrados e sua analise numa abordagem evolutiva / Identification and evolutionary analysis of a new Dapper1 variant generated by alternative splicing during vertebrate developmentSobreira, Debora Rodrigues, 1981- 13 August 2018 (has links)
Orientadores: Lucia Elvira Alvares, Jose Xavier Neto / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-13T10:17:43Z (GMT). No. of bitstreams: 1
Sobreira_DeboraRodrigues_M.pdf: 2481929 bytes, checksum: 2cb1105ccc78322b5f11f4528108d2fc (MD5)
Previous issue date: 2009 / Resumo: Splicing Alternativo é um mecanismo importante para expandir a diversidade protéica em eucariotos. Este processo permite a produção de diferentes mRNAs a partir de uma mesma molécula de pré-RNA e é freqüentemente utilizado pelos genes envolvidos no desenvolvimento embrionário. O gene Oapper1 (Opr1) é um importante modulador da via de sinalização Wnt, atuando em diversos processos como especificação do tecido neural, morfogênese cefálica e desenvolvimento do coração e olho. Entre seus parceiros estão as '1lOléculas Dishevelled, o fator de transcrição TCF-3 (ambas as moléculas envolvidas na sinalização Wnt) e Dbf-4 (regulador do ciclo celular). Considerando que Dpr1 possui uma estrutura modular e interage com diferentes parceiros moleculares através de diferentes domínios estruturais, esta molécula poderia utilizar a maquinaria de Splicing Alternativo para combinar diferentes domínios e conseqüentemente ampliar suas funções biológicas. Neste estudo, descrevemos uma nova Variante do gene Opr1, identificada inicialmente no transcriptoma de camundongo utilizando ferramentas de Bioinformática. Esta nova Variante é maior em 111 pb em relação à codificada pela seqüência referência de RNAm para Dpr1 RefSeq, as quais são denominadas, respectivamente, como Variante A e Variante B. Estes transcritos variantes são gerados por dois sítios aceptores de Splicing distintos presentes no início do exon 4. O segmento exclusivo da Variante A codifica 37 aminoácidos localizados na região onde Opr1 se associa ao fator transcricional TCF-3. Uma análise comparativa do lócus de Opr1 entre diversos vertebrados (peixe, anfíbio, galinha, camundongo e humano) revelou que ambos os sítios aceptores de Splicing são conservados nos tetrápodas, enquanto que em peixe apenas um sítio é encontrado. Ensaios de RT-PCR confirmaram nossos resultados obtidos em Bioinformática. Além disso, demonstramos que ambas as Variantes são co-expressas ao longo do desenvolvimento de galinha, sugerindo que a concentração relativa dessas moléculas pode ser importante para a sua função. Finalmente, análises de pressão seletiva foram realizadas para a molécula de Dpr1. Apesar de não se confirmar a presença de seleção positiva ao longo da proteína Dpr1, o exon 4 parece estar sob pressão seletiva mais relaxada quando comparado aos outros exons. Nossos resultados são consistentes com a hipótese de que o mecanismo de Splicing Alternativo atua acelerando a evolução, reduzindo a seleção negativa. / Abstract: Alternative splicing is an important mechanism to expand protein diversity in eukaryotes. This process allows the production of different mRNAs from a single coding sequence and is frequentfy used by genes involved in development. Oapper 1 (Opr1) is an important rnodulator of Wnt signalling, working in several developmental processes, such as neural tissue specification, head morphogenesis, heart and eye development. While its interaction with Oishevelled is known to modulate Wnt signalling both in vivo and in vitre, the interaction wrth other molecules is required to mediate its multiple biological functions. Considering that Dpr1 has a modular structure that mediates its interaction with different partners through different structural domains, this molecule could greatly benefit from alternative splicing in order to combine different domains and consequently amplify its biological functions. In the present study we describe a new Opr1 isoform that was initially identified in the mouse transcriptome using bioinformatic tools. This isoform is 111 pb longer than the one encoded by the RefSeq mRNA for Opr1, here named O and E isoforms, respectively. The variant transcripts are generated through two distinct acceptor splice sites in exon 4. The segment exclusive of the O isoform is in frame and encodes 37 residues located in a variable region of Oprl exon 4, known to be necessary for the interaction with the transcriptional factor Tcf3. comparative analysis of the Opr1 locus among fish, frog, chicken, mouse and human revealed that in tetrapods two acceptor splice sites are conserved in the beginning of the exon 4, while in fish a single acceptor splice site is found. RT-PCR using species-specific primers confirmed the expression of the O and E isoforms in tetrapods while in fish only the O isoform was detected. In addition, we showed that the Opr1 isoforms are coexpressed throughout chicken development, suggesting that the relative concentration of these molecules may be important for their functionality. Finally, even though no evidence of positive selection was detected for the entire Dpr1 protein, exon 4 seems to be under more relaxed selective pressure than the other exons. These results are consistent with the notion that alternative splicing can act as a mechanism for opening accelerated paths of evolution by reducing negative selection pressure. / Mestrado / Histologia / Mestre em Biologia Celular e Estrutural
|
4 |
Objektrelationsmappning ADO vs Dapper : En Jämförande Analys av ADO och Dapper för DataåtkomstShahda, Jad January 2024 (has links)
Vården är Sveriges mest viktiga sektor. Med den dagliga ökningen av personer som söker medicinsk vård behöver sjukvården ha ett väl fungerande system lämpligt för databaser, med målet att minimera den nuvarande belastning som redan vilar på sjukvårdssystemet. Regionerna har olika system, vilket leder till ökade kostnader vid drift och uppdatering av dessa system. Vården idag har inte tiden att lägga på långsamma och icke effektiva system utan fokuset måste läggas på patienterna. Målet med detta arbete har varit att utveckla pålitlig teknik som skapar de bästa förutsättningar för att vården ska kunna hantera patientinformation, genom att implementera de bästa databasmetoderna. ADO och Dapper är de två ORM:en som den här studien ägnar sig åt, där en jämförelse mellan som dessa två ORM har gjorts för att svara på följande frågorna som är, hastighet, kod komplexitet, prestanda och flexibilitet. Målen som det här arbetet fokuserar på kommer att ge en tydlig bild för de andra utvecklare vid de senare utvecklingsfaserna av dessa system på vilka för och nackdelar varje teknik har och vilken är mest lämplig att satsa på beroende på behovet. Studien har visat att ADO generellt sätt hade bättre mätningsresultat när det gällde hastigheten men mindre bra resultat än Dapper när det kom till kod komplexiteten. Dapper hade några bekymmer när det kom till prestanda dock så var den enklare att bygga vidare på tack var det hur flexibel den är som ORM. / The healthcare sector is Sweden's most crucial sector. With the daily increase of people seeking medical care, healthcare needs to have a well-functioning system suitable for databases, aiming to minimize the current burden the healthcare system already faces. The regions have different systems, which leads to increased costs when operating and updating these systems. Healthcare today needs more time on slow and ineffective systems, but the focus must be on the patients. This work aims to develop reliable technology that creates the best conditions for healthcare to manage patient information by implementing the best database methods. ADO and Dapper are the two ORMs that this study deals with, and a comparison between these ORMs has been made to answer the following questions: speed, code complexity, performance, and flexibility. These goals that this work focuses on will give a clear picture to the other developers at the later development phases of these systems on which pros and cons each technology has and which one is most suitable to bet on depending on the need. The study showed that ADO generally had better saturation results regarding speed but less good results than Dapper regarding code complexity. Dapper had some performance concerns; however, it was easier to build on thanks to its flexibility as an ORM.
|
5 |
Estudos sobre os genes da família Dapper = origem, evolução e análise da expressão durante a ontogênese dos membros de galinha = Studies on the Dapper gene family : origin, evolution and expression analysis during chicken limb development / Studies on the Dapper gene family : origin, evolution and expression analysis during chicken limb developmentSobreira, Debora Rodrigues, 1981- 07 November 2013 (has links)
Orientadores: Lúcia Elvira Alvares, José Xavier Neto / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-23T10:52:38Z (GMT). No. of bitstreams: 1
Sobreira_DeboraRodrigues_D.pdf: 9430834 bytes, checksum: 1c730ee238256c4ea0f303311fa3283b (MD5)
Previous issue date: 2013 / Resumo: Os genes da família Dapper (Dpr) codificam proteínas adaptadoras capazes de ligar-se fisicamente a diferentes moléculas e modular as vias de sinalização Wnt e TGF-?. Diferentes análises funcionais revelaram que os Dpr atuam na especificação do eixo corporal e do tecido neural, nos movimentos morfogenéticos, no desenvolvimento do olho, na indução da cardiogênese, adipogênse e cicatrização. Diversos estudos foram realizados a fim de compreender o papel desempenhado pelos Dpr durante a embriogenêse dos vertebrados e na homeostase de tecidos adultos. Contudo, muitas questões ainda necessitam ser elucidadas. Este projeto de Doutorado teve como objetivo (1) descrever os sítios de expressão da família gênica Dpr durante a ontogênese dos membros de galinha, associando-a as vias de sinalização Wnt e TGF-? e (2) investigar a origem e a evolução desses genes durante a filogenia dos metazoários. Nossos resultados confirmaram que os genes Dpr são dinamicamente expressos durante o desenvolvimento dos membros de galinha, provavelmente, modulando os sinais Wnt e TGF-?. Os genes Dpr são encontrados no mesênquima indiferenciado dos membros em formação e em células progenitoras de condrócitos, pericôndrio e tendões. Esses resultados sugerem as moléculas Dpr como um novo grupo de marcadores do desenvolvimento dos membros em galinha. Já nossas análises filogenéticas revelaram que os Dprs surgiram durante a evolução dos organismos deuterostômios e um novo ortólogo dessa família de proteínas, denominado Dpr4, foi descrito. Acreditamos que o nosso trabalho irá fornecer bases para estudos moleculares com o intuito de estabelecer a função individual de cada membro da família Dpr, bem como auxiliar no entendimento sobre como estas proteínas podem interagir e cooperar entre si para modular diferentes vias de sinalização molecular em diferentes contextos celulares / Abstract: The Dapper (Dpr) genes form a small gene family of adaptor proteins important to several processes of vertebrates development, such as the specification of the body axis and neural tissue, morphogenetic movements, eye development, induction of cardiogenesis, adipogenesis and wound healing, by modulating the Wnt and TGF-? signaling pathways using specific conserved domains/motifs. Three Dpr genes have been identified in human and mouse, two in chicken, one in frog and two in zebrafish genome. Since the discovery of Dpr proteins, several assays have been performed in order to understand the role of this family during embryogenesis, although many questions still need to be elucidated. Thus, this PhD project aimed to (1) describe the possible role of Dpr genes during ontogeny of chicken regarding the regulation of Wnt and TGF-? signaling pathways and (2) investigate the origin and evolution of Dpr family over the course of metazoan evolution. Our results demonstrated that Dpr genes are involved in chicken limb development, probably, by modulating Wnt and TGF-? signals. Dpr genes were found in the undifferentiated limb mesenchyme, progenitor of chondrocytes, perichondrium and tendons. These results suggest that Dpr genes are good candidates to a new set of markers in chicken limb development. Furthermore, our phylogenetic analysis revealed that the Dprs arose late during the deuterostomes evolution and allowed the identification of a new Dpr paralog (Dpr4), meaning that a repertoire of four Dact genes is found in vertebrates. Thus, our work will provide the basis for molecular studies in order to establish the role of each individual member of this family as well as how the set of Dpr proteins can interact and cooperate to modulate different molecular signaling pathways in different cellular contexts / Doutorado / Biologia Tecidual / Doutora em Biologia Celular e Estrutural
|
6 |
Informační systém pro podporu drobné rostlinné výrobyDohnálek, Lukáš January 2016 (has links)
This thesis focuses on design and implementation of an ERP system, dedicated to support small farmers and their enterprises in crops production in the Czech republic. ERP system is divided into three bases. First of them aims on working with land blocks, the other one focuses on stock operations and the third one focuses on economical operations of small farmers. Based on the processed data, ERP system provides control of costs and yields of single land blocks. Furthermore, the ERP is dedicated for creation of crop rotation plans and a compliance of which it helps to keep track of. The system also provides desired data for management of farming control. The ERP system was being developed in cooperation with an entrepreneur Karel Procházka, further refered to as an authority, who was testing the final application. The ERP system was developed as an web application.
|
7 |
Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS project / Entwicklung einer Schnittstelle zur Überführung von Geodaten des Projektes CEOP-AEGIS in ein NetCDF-Datenmodell und Publikation dieser Daten unter Verwendung der Internetanwendung DChartHolzer, Nicolai 08 August 2011 (has links) (PDF)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security.
The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability.
Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way.
Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community. / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit.
Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann.
In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt.
In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.
|
8 |
Development of an interface for the conversion of geodata in a NetCDF data model and publication of this data by the use of the web application DChart, related to the CEOP-AEGIS projectHolzer, Nicolai 20 April 2011 (has links)
The Tibetan Plateau with an extent of about 2,5 million square kilometers at an average altitude higher than 4,700 meters has a significant impact on the Asian monsoon and regulates with its snow and ice reserves the upstream headwaters of seven major south-east Asian rivers. Upon the water supply of these rivers depend over 1,4 billion people, the agriculture, the economics, and the entire ecosystem in this region. As the increasing number of floods and droughts show, these seasonal water reserves however are likely to be influenced by climate change, with negative effects for the downstream water supply and subsequently the food security.
The international cooperation project CEOP-AEGIS – funded by the European Commission under the Seventh Framework Program – aims as a result to improve the knowledge of the hydrology and meteorology of the Qinghai-Tibetan Plateau to further understand its role in climate, monsoon and increasing extreme meteorological events. Within the framework of this project, a large variety of earth observation datasets from remote sensing products, model outputs and in-situ ground station measurements are collected and evaluated. Any foreground products of CEOP-AEGIS will have to be made available to the scientific community by an online data repository which is a contribution to the Global Earth Observation System of Systems (GEOSS). The back-end of the CEOP-AEGIS Data Portal relies on a Dapper OPeNDAP web server that serves data stored in the NetCDF file format to a DChart client front-end as web-based user interface. Data from project partners are heterogeneous in its content, and also in its type of storage and metadata description. However NetCDF project output data and metadata has to be standardized and must follow international conventions to achieve a high level of interoperability.
Out of these needs, the capabilities of NetCDF, OPeNDAP, Dapper and DChart were profoundly evaluated in order to take correct decisions for implementing a suitable and interoperable NetCDF data model for CEOP-AEGIS data that allows a maximum of compatibility and functionality to OPeNDAP and Dapper / DChart as well. This NetCDF implementation is part of a newly developed upstream data interface that converts and aggregates heterogeneous input data of project partners to standardized NetCDF datasets, so that they can be feed via OPeNDAP to the CEOP-AEGIS Data Portal based on the Dapper / DChart technology. A particular focus in the design of this data interface was set to an intermediate data and metadata representation that easily allows to modify its elements with the scope of achieving standardized NetCDF files in a simple way.
Considering the extensive variety and amount of data within this project, it was essential to properly design a data interface that converts heterogeneous input data of project partners to standardized and aggregated NetCDF output files in order to ensure maximum compatibility and functionality within the CEOP-AEGIS Data Portal and subsequently interoperability within the scientific community.:Task of Diploma Thesis ii
Declaration of academic honesty vii
Abstract ix
Acknowledgments xiii
Dedication xv
Table of Contents xvii
List of Figures xxi
List of Tables xxiii
List of Listings xxv
Nomenclature xxvii
1 Introduction 1
1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10
2 Theoretical foundations 13
2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31
2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33
2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34
2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35
2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36
2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42
2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47
2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48
2.2.5 OPeNDAP data models and data types . . . . . . . . . 49
2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53
2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57
2.3.2 System architecture and Dapper services . . . . . . . . 58
2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60
2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61
2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64
2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66
2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67
2.5.2 Dapper and DChart system requirements . . . . . . . . 67
3 Implementation 69
3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71
3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73
3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80
3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89
3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93
3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95
3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98
3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98
3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105
3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4 Conclusion 111
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A Appendix 119
A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119
A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121
A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122
A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123
A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124
A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125
A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126
A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127
A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130
A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131
A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132
A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133
A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134
A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135
A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136
A.5.4 Data Interface modules and classes . . . . . . . . . . . 137
A.5.5 Data Interface NetCDF metadata file for gridded data 138
A.5.6 Data Interface NetCDF metadata file for in-situ data . 139
A.5.7 Data Interface coordinate metadata file for gridded data140
A.5.8 Data Interface coordinate metadata file for in-situ data 140
A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141
A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142
A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143
A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144
A.5.13 Data Interface settings file for gridded data . . . . . . . 145
A.5.14 Data Interface settings file for in-situ data . . . . . . . 146
A.5.15 Data Interface batch file for data conversion via GrADS146
A.5.16 Data Interface batch file for data conversion via GDAL 147
A.5.17 Data Interface batch file for data conversion via CSV . 148
A.6 Pydoc documentation for upstream data interface . . . . . . . 149
A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150
A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155
A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162
A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167
A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172
A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175
A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179
A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185
A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189
A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191
Bibliography 197
Index 205 / Das Hochplateau von Tibet mit einer Ausdehnung von 2.5 Millionen Quadratkilometer und einer durchschnittlichen Höhe von über 4 700 Meter beeinflusst wesentlich den asiatischen Monsun und reguliert mit seinen Schnee- und Eisreserven den Wasserhaushalt der Oberläufe der sieben wichtigsten Flüsse Südostasiens. Von diesem Wasserzufluss leben 1.4 Milliarden Menschen und hängt neben dem Ackerbau und der Wirtschaft das gesamte Ökosystem in dieser Gegend ab. Wie die zunehmende Zahl an Dürren und Überschwemmungen zeigt, sind diese jahreszeitlich beeinflussten Wasserreserven allen Anscheins nach vom Klimawandel betroffen, mit negativen Auswirkungen für die flussabwärts liegenden Stromgebiete und demzufolge die dortige Nahrungsmittelsicherheit.
Das internationale Kooperationsprojekt CEOP-AEGIS – finanziert von der Europäischen Kommission unter dem Siebten Rahmenprogramm – hat sich deshalb zum Ziel gesetzt, die Hydrologie und Meteorologie dieses Hochplateaus weiter zu erforschen, um daraus seine Rolle in Bezug auf das Klima, den Monsun und den zunehmenden extremen Wetterereignissen tiefgreifender verstehen zu können. Im Rahmen dieses Projektes werden verschiedenartigste Erdbeobachtungsdaten von Fernerkundungssystemen, numerischen Simulationen und Bodenstationsmessungen gesammelt und ausgewertet. Sämtliche Endprodukte des CEOP-AEGIS Projektes werden der wissenschaftlichen Gemeinschaft auf Grundlage einer über das Internet erreichbaren Datenbank zugänglich gemacht, welche eine Zuarbeit zur Initiative GEOSS (Global Earth Observing System of Systems) ist. Hintergründig basiert das CEOP-AEGIS Datenportal auf einem Dapper OPeNDAP Internetserver, welcher die im NetCDF Dateiformat gespeicherten Daten der vordergründigen internetbasierten DChart Benutzerschnittstelle auf Grundlage des OPeNDAP Protokolls bereit stellt. Eingangsdaten von Partnern dieses Projektes sind heterogen nicht nur in Bezug ihres Dateninhalts, sondern auch in Anbetracht ihrer Datenhaltung und Metadatenbeschreibung. Die Daten- und Metadatenhaltung der im NetCDF Dateiformat gespeicherten Endprodukte dieses Projektes müssen jedoch auf einer standardisierten Basis internationalen Konventionen folgen, damit ein hoher Grad an Interoperabilität erreicht werden kann.
In Anbetracht dieser Qualitätsanforderungen wurden die technischen Möglichkeiten von NetCDF, OPeNDAP, Dapper und DChart in dieser Diplomarbeit gründlich untersucht, damit auf Grundlage dieser Erkenntnisse eine korrekte Entscheidung bezüglich der Implementierung eines für CEOP-AEGIS Daten passenden und interoperablen NetCDF Datenmodels abgeleitet werden kann, das eine maximale Kompatibilität und Funktionalität mit OPeNDAP und Dapper / DChart sicher stellen soll. Diese NetCDF Implementierung ist Bestandteil einer neu entwickelten Datenschnittstelle, welche heterogene Daten von Projektpartnern in standardisierte NetCDF Datensätze konvertiert und aggregiert, sodass diese mittels OPeNDAP dem auf der Dapper / DChart Technologie basierendem Datenportal von CEOP-AEGIS zugeführt werden können. Einen besonderen Schwerpunkt bei der Entwicklung dieser Datenschnittstelle wurde auf eine intermediäre Daten- und Metadatenhaltung gelegt, welche mit der Zielsetzung von geringem Arbeitsaufwand die Modifizierung ihrer Elemente und somit die Erzeugung von standardisierten NetCDF Dateien auf eine einfache Art und Weise erlaubt.
In Anbetracht der beträchtlichen und verschiedenartigsten Geodaten dieses Projektes war es schlussendlich wesentlich, eine hochwertige Datenschnittstelle zur Überführung heterogener Eingangsdaten von Projektpartnern in standardisierte und aggregierte NetCDF Ausgansdateien zu entwickeln, um damit eine maximale Kompatibilität und Funktionalität mit dem CEOP-AEGIS Datenportal und daraus folgend ein hohes Maß an Interoperabilität innerhalb der wissenschaftlichen Gemeinschaft erzielen zu können.:Task of Diploma Thesis ii
Declaration of academic honesty vii
Abstract ix
Acknowledgments xiii
Dedication xv
Table of Contents xvii
List of Figures xxi
List of Tables xxiii
List of Listings xxv
Nomenclature xxvii
1 Introduction 1
1.1 CEOP-AEGIS project . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Objective of this thesis . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . 10
2 Theoretical foundations 13
2.1 NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.1 Data models . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.5 Attributes . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 NetCDF 3 . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.7 NetCDF 4 . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1.8 Common Data Model . . . . . . . . . . . . . . . . . . . 31
2.1.9 NetCDF libraries and APIs . . . . . . . . . . . . . . . 33
2.1.10 NetCDF utilities . . . . . . . . . . . . . . . . . . . . . 34
2.1.11 NetCDF textual representations . . . . . . . . . . . . . 35
2.1.12 NetCDF conventions . . . . . . . . . . . . . . . . . . . 36
2.2 OPeNDAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.2 OPeNDAP servers . . . . . . . . . . . . . . . . . . . . 42
2.2.3 OPeNDAP clients . . . . . . . . . . . . . . . . . . . . . 47
2.2.4 Data Access Protocol . . . . . . . . . . . . . . . . . . . 48
2.2.5 OPeNDAP data models and data types . . . . . . . . . 49
2.2.6 OPeNDAP and NetCDF . . . . . . . . . . . . . . . . . 53
2.3 Dapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1 Climate Data Portal . . . . . . . . . . . . . . . . . . . 57
2.3.2 System architecture and Dapper services . . . . . . . . 58
2.3.3 Data aggregation . . . . . . . . . . . . . . . . . . . . . 60
2.3.4 Supported conventions of Dapper . . . . . . . . . . . . 61
2.4 DChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.4.1 Design goals . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.3 System architecture . . . . . . . . . . . . . . . . . . . . 64
2.5 Dapper and DChart configuration . . . . . . . . . . . . . . . . 66
2.5.1 License and release notes . . . . . . . . . . . . . . . . . 67
2.5.2 Dapper and DChart system requirements . . . . . . . . 67
3 Implementation 69
3.1 Scientific data types . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.1 Gridded data . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.2 In-situ data . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 NetCDF for CEOP-AEGIS . . . . . . . . . . . . . . . . . . . . 71
3.2.1 CF Climate and Forecast Convention . . . . . . . . . . 73
3.2.2 Dapper In-situ Convention . . . . . . . . . . . . . . . . 80
3.2.3 NetCDF implementation for CEOP-AEGIS . . . . . . 89
3.3 CEOP-AEGIS Data Interface . . . . . . . . . . . . . . . . . . 93
3.3.1 Intermediate data model . . . . . . . . . . . . . . . . . 95
3.3.2 Data Interface dependencies . . . . . . . . . . . . . . . 98
3.3.3 Data Interface usage . . . . . . . . . . . . . . . . . . . 98
3.3.4 Data Interface modules . . . . . . . . . . . . . . . . . . 105
3.4 Final products . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4 Conclusion 111
4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A Appendix 119
A.1 CD-ROM of project data . . . . . . . . . . . . . . . . . . . . . 119
A.2 Flood occurrence maps . . . . . . . . . . . . . . . . . . . . . . 121
A.2.1 Flood occurrence May . . . . . . . . . . . . . . . . . . 122
A.2.2 Flood occurrence August . . . . . . . . . . . . . . . . . 123
A.3 CEOP-AEGIS Data Portal . . . . . . . . . . . . . . . . . . . . 124
A.3.1 Capture image of CEOP-AEGIS Data Portal . . . . . . 125
A.3.2 Dapper configuration file . . . . . . . . . . . . . . . . . 126
A.3.3 DChart configuration file . . . . . . . . . . . . . . . . . 127
A.4 NetCDF data models for CEOP-AEGIS . . . . . . . . . . . . 130
A.4.1 Data model for gridded data . . . . . . . . . . . . . . . 131
A.4.2 Data model for in-situ data . . . . . . . . . . . . . . . 132
A.5 Upstream data interface . . . . . . . . . . . . . . . . . . . . . 133
A.5.1 Data Interface and service chain . . . . . . . . . . . . . 134
A.5.2 Data Interface data flow . . . . . . . . . . . . . . . . . 135
A.5.3 Data Interface data flow 2 . . . . . . . . . . . . . . . . 136
A.5.4 Data Interface modules and classes . . . . . . . . . . . 137
A.5.5 Data Interface NetCDF metadata file for gridded data 138
A.5.6 Data Interface NetCDF metadata file for in-situ data . 139
A.5.7 Data Interface coordinate metadata file for gridded data140
A.5.8 Data Interface coordinate metadata file for in-situ data 140
A.5.9 Data Interface UI main program . . . . . . . . . . . . . 141
A.5.10 Data Interface UI GrADS component . . . . . . . . . . 142
A.5.11 Data Interface UI GDAL component . . . . . . . . . . 143
A.5.12 Data Interface UI CSV component . . . . . . . . . . . 144
A.5.13 Data Interface settings file for gridded data . . . . . . . 145
A.5.14 Data Interface settings file for in-situ data . . . . . . . 146
A.5.15 Data Interface batch file for data conversion via GrADS146
A.5.16 Data Interface batch file for data conversion via GDAL 147
A.5.17 Data Interface batch file for data conversion via CSV . 148
A.6 Pydoc documentation for upstream data interface . . . . . . . 149
A.6.1 grads_2Interface.py . . . . . . . . . . . . . . . . . . . . 150
A.6.2 gdal_2Interface.py . . . . . . . . . . . . . . . . . . . . 155
A.6.3 csv_2Interface.py . . . . . . . . . . . . . . . . . . . . . 162
A.6.4 interface_Main.py . . . . . . . . . . . . . . . . . . . . 167
A.6.5 interface_Settings.py . . . . . . . . . . . . . . . . . . . 172
A.6.6 interface_Control.py . . . . . . . . . . . . . . . . . . . 175
A.6.7 interface_Model.py . . . . . . . . . . . . . . . . . . . . 179
A.6.8 interface_ModelUtilities.py . . . . . . . . . . . . . . . 185
A.6.9 interface_Data.py . . . . . . . . . . . . . . . . . . . . . 189
A.6.10 interface_ProcessingTools.py . . . . . . . . . . . . . . 191
Bibliography 197
Index 205
|
Page generated in 0.0476 seconds