311 |
Optimal Control Strategies for Synergetic Insect and Plant Production: Maximizing Yield, Resource Efficiency, and SustainabilityPadmanabha, Murali 23 October 2024 (has links)
Controlled-environment agriculture, in specific indoor vertical farming, has emerged as a promising approach to meet the increasing demand for food while reducing the environmental impacts such as land and water use. However, such climate-controlled farms often require significant energy and resource inputs, particularly for artificial lighting and climate regulation and in certain cases undesired emissions such as CO2. To address these challenges, this thesis investigates the use of model-based control approaches to optimize energy, resource, and byproduct utilization in both independent and symbiotically connected farms. The thesis begins with a review of existing process models and optimization techniques, highlighting the limitations of current plant growth models and the absence of insect larvae (Hermitia illucens) models that are capable of describing growth, complex interactions between environmental variables, and resource utilization. To overcome these limitations, this thesis proposes the development of comprehensive models combining first-principle models and empirical models that integrate physical and biological processes such as heat and mass transfer; insect growth, development, and metabolism; and finally plant photosynthesis and transpiration. A custom designed, lab-scale production unit is developed in this work to perform experiments and measure various environmental and biological process variables, facilitating the development, calibration, and validation of the proposed models to accurately represent the underlying processes. Using these models with optimal control theory, this thesis develops a framework for implementing the optimal control of plant and insect production units independently, addressing techniques for formulating the necessary optimal control problems under process or model incompleteness and also hardware or process constraints. Optimal control strategies are synthesized to primarily minimize energy and resource utilization while maintaining or even improving biomass yields. The effectiveness of the proposed approach is demonstrated through case studies, showcasing significant reduction in energy and resource utilization while achieving the automation and process goals. Furthermore, this work investigates the efficacy of resource consumption and byproduct exchange between plant production units and insect production units under different resource exchange infrastructures and climate conditions. By identifying the optimal strategies for resource exchange, this thesis shows that the overall resource utilization can be minimized, while maximizing the productivity of both plant and insect production processes, highlighting the possible synergies and sustainability. Overall, the potential of first-principle models and optimal control approaches to optimize yield and resource utilization in climate-controlled (indoor) food production systems is demonstrated with implications of efficient and sustainable food production via smart resource management and integration of production units with potential symbiotic relationships. / Landwirtschaft in kontrollierter Umgebung, insbesondere die Vertikale Landwirtschaft, hat sich als vielversprechender Ansatz erwiesen, um die steigende Nachfrage an Lebensmitteln zu befriedigen und gleichzeitig die Belastungen auf die Umwelt zu verringern. Solche klimatisierten Farmen erfordern jedoch oft einen erheblichen Energie- und Ressourceneinsatz, insbesondere für die künstliche Beleuchtung und die Klimatisierung. Um diesen Herausforderungen zu begegnen, untersucht diese Arbeit den Einsatz modellbasierter Regelungsansätze zur Optimierung der Energie- und Ressourcennutzung sowohl in unabhängiger als auch in symbiotischer Verbindung. Die Arbeit beginnt mit einem Überblick über bestehende Prozessmodelle und Optimierungstechniken, wobei die Grenzen der derzeitigen Pflanzenwachstumsmodelle und die Notwendigkeit von Modellen für Insektenlarven (Hermitia illucens), die das Wachstum, komplexe Wechselwirkungen zwischen Umweltvariablen, Energie- und Ressourcennutzung beschreiben, aufgezeigt werden. Als Lösungsansatz wird in dieser Arbeit die Entwicklung umfassender Modelle vorgeschlagen, in denen First-Principle-Modelle und empirische Modelle kombiniert werden, um folgende physikalische und biologische Prozesse zu integrieren: die Wärme- und Stoffübertragung; Insektenwachstum, -entwicklung und -stoffwechsel; und Photosynthese und Transpiration der Pflanzen. Dafür wird eine maßgeschneiderte Produktionseinheit im Labormaßstab entwickelt, die dazu dient verschiedene Umwelt- und biologische Prozessvariablen zu messen, welche die Entwicklung, Kalibrierung und Validierung der vorgeschlagenen Modelle zur genauen Darstellung der zugrunde liegenden Prozesse erleichtert. Unter Verwendung dieser Modelle und auf Basis der optimalen Steuerung wird in dieser Arbeit ein Rahmen für deren Umsetzung in den Produktionseinheiten für die jeweilge unabhängige Insekten- und Pflanzenproduktion und für deren gekoppelte Produktion, entwickelt. Dabei werden außerdem Möglichkeiten zur Beschreibung der erforderlichen Optimalsteureungsprobleme evaluiert unter Prozess- oder Modellunvollständigkeit sowie Hardware- oder Prozessbeschränkungen behandelt. Es werden optimalersteuerungsstrategien entwickelt, die die Energie- und Ressourcennutzung minimieren, die Erträge verbessern und gleichzeitig die festgelegten Automatisierungs- und Prozessanforderungen erfüllen. Die Effektivität des vorgeschlagenen Ansatzes wird anhand von Fallstudien demonstriert. Darüber hinaus untersucht diese Arbeit die Effizienz des Ressourcenverbrauchs und des Austausches von Nebenprodukten zwischen den Pflanzen- und Insektenproduktionseinheiten in verschiedenen Infrastrukturen für den Ressourcenaustausch sowie unter verschiedenen klimatischen Bedingungen. Durch die Identifizierung der optimalen Ressourcenaustauschstrategien und intellegentes Ressourcenanagement zeigt diese Arbeit, dass die Gesamtressourcennutzung minimiert werden kann, während die Produktivität sowohl der Pflanzen- als auch der Insektenproduktionsprozesse maximiert wird. Die mögliche Synergien und die Nachhaltigkeit der symbiotischen Beziehungen werden dabei hervorgehoben. Insgesamt wird das Potential von First-Principle-Modellen und Optimalsteuerung zur Optimierung des Ertrags sowie der Ressourcennutzung in klimatisierten Lebensmittelproduktionssystemen aufgezeigt. Dies führt zu einer effizienten und nachhaltigen Lebensmittelproduktion durch intelligentes Ressourcenmanagement und der Integration von Produktionseinheiten mit potenziellen symbiotischen Beziehungen.
|
312 |
High-Yield Wafer-Scale Self-Assembly of 3D Microelectronic Devices for Electron OpticsHuber, Renato 25 February 2025 (has links)
Parallel fabrication of 3D self-assembled micro coils has been carried out, providing the basis for micro electromagnetic elements capable of shaping and modulating an electron beam with an adjustable magnetic field. The self-assembled micro coils were fabricated in parallel using a polymer technology demonstrated on a 6-inch wafer. The parallel process also successfully integrates the Bosch's deep silicon etching process to open an aperture for the electron beam. An 88% yield was achieved in this parallel process. The individual fabricated devices were tailored to fulfil various electron optical functions, including deflectors, lenses, and phase plates. Given their small dimensions, these devices were retrofitted into an existing transmission electron microscope. A static deflection in the mrad regime was observed for 300 kV electrons. In addition, 2D deflectors for the electron beam were fabricated to allow blanking, 2D scanning and a proof of concept for stroboscopic experiments. Useful electron beam deflection was observed up to a frequency of 100 MHz. The focusing devices used magnetic quadrupole schemes and achieved focal lengths of as little as 46 mm for 300 kV electrons. In addition, phase plate devices have been developed that can shift the phase of the 300 keV electron beam in the azimuthal direction up to several 1000 π rad. These elements indicate the practicality of miniaturizing electron optical components for a variety of applications, including multibeam instruments, miniaturized electron optical instruments, stroboscopic measurement setups, and the in-situ application of a tunable magnetic field.:NOTATION AND REMARKS VI
1 MOTIVATION 1
2 THEORY AND BACKGROUND 7
2.1 MICRO ELECTROMAGNETS 8
2.1.1 Magnetic Field Generation: Biot-Savart law 9
2.1.2 Electrical Characteristics 12
2.2 ELECTRON OPTICS 18
2.2.1 Deflectors, Differential Phase Contrast, and Dipoles 18
2.2.2 Electron Vortex Beam 21
2.2.3 Quadrupole Lenses 25
3 DESIGN, FABRICATION, AND TESTING SETUP 29
3.1 DESIGN AND FABRICATION OVERVIEW 30
3.1.1 Micro Electron Optical Systems: Design 30
3.1.2 Fabrication Steps (Flowchart) 36
3.2 WAFER-SCALE FABRICATION 38
3.2.1 Photolithography 38
3.2.2 Self-Assembly: Polymer Platform 45
3.2.3 Deposition Methods: Sputtering and Atomic Layer Deposition 56
3.2.4 Bosch Process (BP) 59
3.3 SINGLE DEVICE COMPLETION AND TESTING 63
3.3.1 Wafer dicing, micro wire insertion and shaping 63
3.3.2 Device Characterization 69
3.3.3 Experiment Setup: TEM Sample Holders 71
4 RESULTS AND DISCUSSION 77
4.1 YIELD OF SELF-ASSEMBLED MICRO COILS ON 6-INCH WAFER 78
4.1.1 Electrical Characterization: Planar versus Rolled 79
4.1.2 Visual Inspection 85
4.1.3 Current Breakdown Test 90
4.2 STATIC ELECTRON OPTICS DEVICES 95
4.2.1 Phase Plate: Electron Vortex Beam Generator 95
4.2.2 Deflector: Miniaturized Dipole 100
4.2.3 Magnetic Quadrupole: Focusing 106
4.3 DYNAMIC ELECTRON OPTICS 111
4.3.1 High-Frequency Deflection 112
4.3.2 Stroboscopic Setup 116
5 SUMMARY AND OUTLOOK 121
BIBLIOGRAPHY I
APPENDICES XI
APPENDIX A XII
APPENDIX B XIV
APPENDIX C XVIII
LIST OF FIGURES AND TABLES XXI
ACKNOWLEDGEMENT XXVI
VERSICHERUNG XXVIII
|
313 |
Resource Allocation in Underlay and Overlay Spectrum SharingLv, Jing 20 January 2015 (has links) (PDF)
As the wireless communication technologies evolve and the demand of wireless services increases, spectrum scarcity becomes a bottleneck that limits the introduction of new technologies and services. Spectrum sharing between primary and secondary users has been brought up to improve spectrum efficiency.
In underlay spectrum sharing, the secondary user transmits simultaneously with the primary user, under the constraint that the interference induced at the primary receiver is below a certain threshold, or a certain primary rate requirement has to be satisfied. Specifically, in this thesis, the coexistence of a multiple-input single-output (MISO) primary link and a MISO/multiple-input multiple-output (MIMO) secondary link is studied. The primary transmitter employs maximum ratio transmission (MRT), and single-user decoding is deployed at the primary receiver. Three scenarios are investigated, in terms of the interference from the primary transmitter to the secondary receiver, namely, weak interference, strong interference and very strong interference, or equivalently three ranges of primary rate requirement. Rate splitting and successive decoding are deployed at the secondary transmitter and receiver, respectively, when it is feasible, and otherwise single-user decoding is deployed at the secondary receiver. For each scenario, optimal beamforming/precoding and power allocation at the secondary transmitter is derived, to maximize the achievable secondary rate while satisfying the primary rate requirement and the secondary power constraint. Numerical results show that rate splitting at the secondary transmitter and successive decoding at the secondary receiver does significantly increase the achievable secondary rate if feasible, compared with single-user decoding at the secondary receiver.
In overlay spectrum sharing, different from underlay spectrum sharing, the secondary transmitter can utilize the knowledge of the primary message, which is acquired non-causally (i.e., known in advance before transmission) or causally (i.e., acquired in the first phase of a two-phase transmission), to help transmit the primary message besides its own message. Specifically, the coexistence of a MISO primary link and a MISO/MIMO secondary link is studied. When the secondary transmitter has non-causal knowledge of the primary message, dirty-paper coding (DPC) can be deployed at the secondary transmitter to precancel the interference (when decoding the secondary message at the secondary receiver), due to the transmission of the primary message from both transmitters. Alternatively, due to the high implementation complexity of DPC, linear precoding can be deployed at the secondary transmitter. In both cases, the primary transmitter employs MRT, and single-user decoding is deployed at the primary receiver; optimal beamforming/precoding and power allocation at the secondary transmitter is obtained, to maximize the achievable secondary rate while satisfying the primary rate requirement and the secondary power constraint. Numerical results show that with non-causal knowledge of the primary message and the deployment of DPC at the secondary transmitter, overlay spectrum sharing can achieve a significantly higher secondary rate than underlay spectrum sharing, while rate loss occurs with the deployment of linear precoding instead of DPC at the secondary transmitter.
When the secondary transmitter does not have non-causal knowledge of the primary message, and still wants to help with the primary transmission in return for the access to the spectrum, it can relay the primary message in an amplify-and-forward (AF) or a decode-and-forward (DF) way in a two-phase transmission, while transmitting its own message. The primary link adapts its transmission strategy and cooperates with the secondary link to fulfill its rate requirement. To maximize the achievable secondary rate while satisfying the primary rate requirement and the primary and secondary power constraints, in the case of AF cooperative spectrum sharing, optimal relaying matrix and beamforming vector at the secondary transmitter is obtained; in the case of DF cooperative spectrum sharing, a set of parameters are optimized, including time duration of the two phases, primary transmission strategies in the two phases and secondary transmission strategy in the second phase. Numerical results show that with the cooperation from the secondary link, the primary link can avoid outage effectively, especially when the number of antennas at the secondary transceiver is large, while the secondary link can achieve a significant rate.
Power is another precious resource besides spectrum. Instead of spectrum efficiency, energy-efficient spectrum sharing focuses on the energy efficiency (EE) optimization of the secondary transmission. The EE of the secondary transmission is defined as the ratio of the achievable secondary rate and the secondary power consumption, which includes both the transmit power and the circuit power at the secondary transmitter. For simplicity, the circuit power is modeled as a constant. Specifically, the EE of a MIMO secondary link in underlay spectrum sharing is studied. Three transmission strategies are introduced based on the primary rate requirement and the channel conditions. Rate splitting and successive decoding are deployed at the secondary transmitter and receiver, respectively, when it is feasible, and otherwise single-user decoding is deployed at the secondary receiver. For each case, optimal transmit covariance matrices at the secondary transmitter are obtained, to maximize the EE of the secondary transmission while satisfying the primary rate requirement and the secondary power constraint. Based on this, an energy-efficient resource allocation algorithm is proposed. Numerical results show that MIMO underlay spectrum sharing with EE optimization can achieve a significantly higher EE compared with MIMO underlay spectrum sharing with rate optimization, at certain SNRs and with certain circuit power, at the cost of the achievable secondary rate, while saving the transmit power. With rate splitting at the secondary transmitter and successive decoding at the secondary receiver if feasible, a significantly higher EE can be achieved compared with the case when only single-user decoding is deployed at the secondary receiver.
Moreover, the EE of a MIMO secondary link in overlay spectrum sharing is studied, where the secondary transmitter has non-causal knowledge of the primary message and employs DPC to obtain an interference-free secondary link. Energy-efficient precoding and power allocation is obtained to maximize the EE of the secondary transmission while satisfying the primary rate requirement and the secondary power constraint. Numerical results show that MIMO overlay spectrum sharing with EE optimization can achieve a significantly higher EE compared with MIMO overlay spectrum sharing with rate optimization, at certain SNRs and with certain circuit power, at the cost of the achievable secondary rate, while saving the transmit power. MIMO overlay spectrum sharing with EE optimization can achieve a higher EE compared with MIMO underlay spectrum sharing with EE optimization. / Aufgrund der rasanten Entwicklung im Bereich der drahtlosen Kommunikation und der ständig steigenden Nachfrage nach mobilen Anwendungen ist die Knappheit von Frequenzbändern ein entscheidender Engpass, der die Einführung neuer Funktechnologien behindert. Die gemeinsame Benutzung von Frequenzen (Spektrum-Sharing) durch primäre und sekundäre Nutzer ist eine Möglichkeit, die Effizienz bei der Verwendung des Spektrums zu verbessern.
Bei der Methode des Underlay-Spektrum-Sharing sendet der sekundäre Nutzer zeitgleich mit dem primären Nutzer unter der Einschränkung, dass für den primären Nutzer die erzeugte Interferenz unterhalb eines Schwellwertes liegt oder gewisse Anforderungen an die Datenrate erfüllt werden. In diesem Zusammenhang wird in der Arbeit insbesondere die Koexistenz von Mehrantennensystemen untersucht. Dabei wird für die primäre Funkverbindung der Fall mit mehreren Sendeantennen und einer Empfangsantenne (MISO) angenommen. Für die sekundäre Funkverbindung werden mehrere Sendeantennen und sowohl eine als auch mehrere Empfangsantennen (MISO/MIMO) betrachtet. Der primäre Sender verwendet Maximum-Ratio-Transmission (MRT) und der primäre Empfänger Einzelnutzerdecodierung. Für den sekundären Nutzer werden außerdem am Sender eine Datenratenaufteilung (rate splitting) und am Empfänger entweder eine sukzessive Decodierung – sofern sinnvoll – oder andernfalls eine Einzelnutzerdecodierung verwendet.
Im Unterschied zur Methode des Underlay-Spektrum-Sharing kann der sekundäre Nutzer beim Verfahren des Overlay-Spektrum-Sharing die Kenntnis über die Nachrichten des primären Nutzers einsetzen, um die Übertragung sowohl der eigenen als auch der primären Nachrichten zu unterstützen. Das Wissen über die Nachrichten erhält er entweder nicht-kausal, d.h. vor der Übertragung, oder kausal, d.h. während der ersten Phase einer zweistufigen Übertragung. In der Arbeit wird speziell die Koexistenz von primären MISO-Funkverbindungen und sekundären MISO/MIMO-Funkverbindungen untersucht. Bei nicht-kausaler Kenntnis über die primären Nachrichten kann der sekundäre Sender beispielsweise das Verfahren der Dirty-Paper-Codierung (DPC) verwenden, welches es ermöglicht, die Interferenz durch die primären Nachrichten bei der Decodierung der sekundären Nachrichten am sekundären Empfänger aufzuheben. Da die Implementierung der DPC mit einer hohen Komplexität verbunden ist, kommt als Alternative auch eine lineare Vorcodierung zum Einsatz. In beiden Fällen verwendet der primäre Transmitter MRT und der primäre Empfänger Einzelnutzerdecodierung. Besitzt der sekundäre Nutzer keine nicht-kausale Kenntnis über die primären Nachrichten, so kann er als Gegenleistung für die Mitbenutzung des Spektrums dennoch die Übertragung der primären Nachrichten unterstützen. Hierfür leitet er die primären Nachrichten mit Hilfe der Amplify-And-Forward-Methode oder der Decode-And-Forward-Methode in einer zweitstufigen Übertragung weiter, währenddessen er seine eigenen Nachrichten sendet. Der primäre Nutzer passt seine Sendestrategie entsprechend an und kooperiert mit dem sekundären Nutzer, um die Anforderungen an die Datenrate zu erfüllen.
Nicht nur das Spektrum sondern auch die Sendeleistung ist eine wichtige Ressource. Daher wird zusätzlich zur Effizienz bei der Verwendung des Spektrums auch die Energieeffizienz (EE) einer sekundären MIMO-Funkverbindung für das Underlay-Spektrum-Sharing-Verfahren analysiert. Wie zuvor wird für den sekundären Nutzer am Sender eine Datenratenaufteilung (rate splitting) und am Empfänger entweder eine sukzessive Decodierung oder eine Einzelnutzerdecodierung betrachtet. Weiterhin wird die EE einer sekundären MIMO-Funkverbindung für das Overlay-Spektrum-Sharing-Verfahren untersucht. Dabei nutzt der sekundäre Nutzer die nicht-kausale Kenntnis über die primären Nachrichten aus, um mittels DPC eine interferenzfreie sekundäre Funkverbindung zu erhalten.
|
314 |
Entwicklung eines Funkfernwirkkonzeptes mit erhöhtem SicherheitsprofilGommel, Christoph 04 December 2012 (has links) (PDF)
Die Öffnung von Toren mit Funkfernbedienungen ist bequem und daher weit verbreitet. Gäbe es eine Sicherheitslücke, die sich bei vielen Toren ausnutzen ließe, dann würde dies ein Risiko für eine Vielzahl von Personen und Gütern darstellen.
Funkfernbediente Tore gibt es schon seit vielen Jahren. Es liegt daher die Vermutung nahe, dass zumindest ältere Systeme einem Angriff mit moderner Technik nicht standhalten. Dass sich Meldungen über geknackte Funkfernbedienungen in Grenzen halten, darf hierbei kein Indiz für deren Sicherheit sein. Gerade die jüngere Vergangenheit hat gezeigt, dass Kriminelle auch hohe technische Hürden meistern. Wurde noch vor wenigen Jahren das Ausrüsten von Geldautomaten mit Skimming-Kameras oder das Manipulieren von EC-Terminals mit Spionagehardware für akademisch gehalten, sind diese Angriffsszenarien heute leider zur alltäglichen Realität geworden.
In dieser Arbeit wird die Sicherheit bestehender Funkfernbediensysteme analysiert. Aus dem Ergebnis dieser Analyse werden Anforderungen an ein besseres System abgeleitet. Schließlich wird ein Konzept und die prototypische Umsetzung einer Funkfernbedienung mit erhöhtem Sicherheitsprofil vorgestellt.
Durch die Kombination preiswert verfügbarer elektronischer Komponenten und erprobter Verschlüsselungsalgorithmen wird ein abgesichertes System vorgestellt, dass bei gleichem Nutzungskomfort wie bestehende Systeme deutlich erhöhte Sicherheit gegen unbefugten Zugang bietet.
Die Arbeit führt zunächst in die Grundlagen der verwendeten Funk- und Kryptografieverfahren ein. Im anschließenden Kapitel werden exemplarisch verschiedenartige Systeme hinsichtlich ihrer Sicherheit analysiert.
Aus den analysierten Stärken und Schwächen werden die Anforderungen an ein neues System abgeleitet. Es wird ein konkretes Konzept für ein neues System vorgestellt. Das darauf folgende Kapitel beschreibt die praktische Umsetzung des zuvor erarbeiteten Konzepts in Form eines Prototyps.
Die Arbeit schließt mit einem Fazit zur Sicherheit bestehender Systeme und des neu konzeptionierten Systems. Es werden weitere Verwendungsmöglichkeiten vorgestellt und schließlich die Praxistauglichkeit und Serienüberführbarkeit dargelegt.
|
315 |
Electrical Characterization of Organic Devices and Solar Cells by Impedance SpectroscopyBurtone, Lorenzo 25 July 2014 (has links) (PDF)
In this work, the capacitive response of organic electronic devices is analysed. Particular attention is given to small-molecule organic solar cells, with the purpose of deriving an equivalent circuit for the small-signal response of these devices. The different components characterising the solar cells electrical response are individuated and discussed and a specific physical meaning is associated with each element of the equivalent circuit.
In the experimental section, the capacitive elements of the equivalent circuit are characterised by analysing organic diodes and solar cells. It is found that the capacitance of an organic solar cell is a combination of four components: the dielectric response of the materials, the depletion regions formed at the interfaces, the accumulation of free and trapped charge carriers.
The depletion regions formed in organic doped semiconductors are characterised by analysing organic p/n homojunction diodes composed of Zinc-Phtalocyanine (ZnPc). The results demonstrate that the mechanisms involved in the formation of depletion zones in organic semiconductors can be described by the classical Mott-Schottky theory. This allows to estimate the free charge carrier density of doped layers with capacitance measurements. In addition, the current-voltage characteristics of organic p/n homojunctions are found not to obey the classical Shockley theory.
It is demonstrated that charge carrier tunnelling is the cause of this discrepancy and an analytic model is used to describe the current-voltage characteristics. The accumulation of free charge carriers is found to induce capacitance effects typical of relaxation semiconductors. In presence of unbalanced charge carriers injection, negative capacitance values are observed.
It is shown that in different organic semiconductor devices, the injection of minority charge carriers induces a depletion in the majority concentration, resulting in a negative value of the accumulation capacitance.
Finally, the capacitance associated to trap states in ZnPc:C60 organic solar cells is analysed. The spatial position and occupation mechanisms of the traps are estimated. The trapping mechanism in small-molecule organic solar cells is clarified and the energetic distribution of these trap states is estimated being a Gaussian function with 55 meV width, a density of 3.5 × 1016 cm−3 and centred 0.458 eV below the electron transport level. Trap states are also found to act as recombination centres, limiting the efficiency of organic solar cells.
|
316 |
Direct Patterning of Optical Coupling Devices in Polymer WaveguidesFinn, Andreas 26 May 2014 (has links) (PDF)
The aim of the present work was to design and fabricate all purpose, positioning-tolerant and efficient interconnects between single-mode fibers and integrated waveguides out of polymers. The developed structures are part of the optical packaging of integrated optical chips. Integrated optics have gathered tremendous interest throughout recent years from research as well as from the industry, and most likely the demand will further grow in the future. Today’s trend is to establish optical data communication not only in far-distance transmission but also in end-user or so called fiber-to-home configurations, or, in the near future, also on board or even chip level. In addition, integrated optical sensors are gaining more and more importance. In the future, lab-on-a-chip systems may be able to simplify and accelerate analysis methods within health care or allow for a continuous monitoring of almost any environmental variable. All these applications call for robust optical packaging solutions. Many integrated optical chips are using a silicon-on-insulator design. Technologies which were originally intended for the manufacturing of integrated circuits can be utilized for the fabrication of such silicon-on-insulator chips. Point-of-care testing, which is a considerable part of bio-sensing, in some cases only allows the use of disposable transducer elements. The fabrication of these transducers, also including almost all other system parts, may be possible using polymers. Alternative fabrication methods like nanoimprint lithography can be applied for the patterning of polymers. With these, the extension of already known working principles or even entirely new device architectures become feasible for mass production.
The direct patterning of polymers by means of nanoimprint was used to fabricate interconnects for integrated waveguides. In contrast to conventional lithography approaches, where a patterned resist layer is used as a masking layer for subsequent process steps, direct patterning allows the immediate use of the structures as functional elements. Firstly, nanoimprint allows diffraction-unlimited patterning with nanometer resolutions as well as the replication of complex three-dimensional patterns. These unique properties were used within this work to pattern shallow gratings atop an integrated waveguide within only one single manufacturing step. The gratings are used as coupling elements and can be utilized either to couple light from external elements to the chip or vice versa. Considerations regarding the optical effects on single-mode polymer waveguides as well as grating couplers were obtained from simulation. They are specific to the chosen design and the used polymer and cannot be found elsewhere so far. Compared to similar designs and fabrication strategies proposed in literature, the ones followed here allow for a higher efficiency.
The dimensions and process windows obtained from simulation did serve as a basis for the subsequent fabrication of the grating couplers. All steps which are necessary to turn the calculated design into reality, ranging from master fabrication, to working mold cast and imprint, are shown in detail. The use of a working mold strategy is of crucial importance for the fabrication process and is discussed in detail. The use of a working mold preserves a costly master and further allows for a cost-efficient production. Parameters which are relevant for the production as well as for the final polymer patterns were analyzed and discussed. On the basis of the obtained data, a process optimization was performed. The optical characterization was also part of the presented work. A comparison with the results obtained from simulation is included and additional effects were revealed. Most of them may be subject to further improvement in future designs.
In summary, the present work contributes to the field of optical packaging. It shows a viable route for the design and fabrication of interconnects of single-mode polymer waveguides. The presented design can be used as a building block which can be placed at almost any positions within an integrated optical chip. The fabrication method includes a minimum number of process steps and is still able to increase performance compared to similar approaches. Moreover, all process steps allow for scaling and are potential candidates for mass production.
|
317 |
High-rate growth of hydrogenated amorphous and microcrystalline silicon for thin-film silicon solar cells using dynamic very-high frequency plasma-enhanced chemical vapor depositionZimmermann, Thomas 29 January 2014 (has links) (PDF)
Thin-film silicon tandem solar cells based on a hydrogenated amorphous silicon (a-Si:H) top-cell and a hydrogenated microcrystalline silicon (μc-Si:H) bottom-cell are a promising photovoltaic technology as they use a combination of absorber materials that is ideally suited for the solar spectrum. Additionally, the involved materials are abundant and non-toxic which is important for the manufacturing and application on a large scale.
One of the most important factors for the application of photovoltaic technologies is the cost per watt. There are several ways to reduce this figure: increasing the efficiency of the solar cells, reducing the material consumption and increasing the throughput of the manufacturing equipment.
The use of very-high frequencies has been proven to be beneficial for the material quality at high deposition rates thus enabling a high throughput and high solar cell efficiencies. In the present work a scalable very-high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique for state-of-the-art solar cells is developed. Linear plasma sources are applied which facilitate the use of very-high frequencies on large areas without compromising on the homogeneity of the deposition process.
The linear plasma sources require a dynamic deposition process with the substrate passing by the electrodes in order to achieve a homogeneous deposition on large areas. State-of-the-art static radio-frequency (RF) PECVD processes are used as a reference in order to assess the potential of a dynamic VHF-PECVD technique for the growth of high-quality a-Si:H and μc-Si:H absorber layers at high rates.
In chapter 4 the influence of the deposition process of the μc-Si:H i-layer on the solar cell performance is studied for static deposition processes. It is shown that the correlation between the i-layer growth rate, its crystallinity and the solar cell performance is similar for VHF- and RF-PECVD processes despite the different electrode configurations, excitation frequencies and process regimes. It is found that solar cells incorporating i-layers grown statically using VHF-PECVD processes obtain a state-of-the-art efficiency close to 8 % for growth rates up to 1.4 nm/s compared to 0.53 nm/s for RF-PECVD processes.
The influence of dynamic deposition processes on the performance of μc-Si:H solar cells is studied. It is found that μc-Si:H solar cells incorporating dynamically grown i-layers obtain an efficiency of 7.3 % at a deposition rate of 0.95 nm/s. There is a small negative influence of the dynamic deposition process on the solar cell efficiency compared to static deposition processes which is related to the changing growth conditions the substrate encounters during a dynamic i-layer deposition process.
The changes in gas composition during a dynamic i-layer deposition process using the linear plasma sources are studied systematically using a static RF-PECVD regime and applying a time-dependent gas composition. The results show that the changes in the gas composition affect the solar cell performance if they exceed a critical level.
In chapter 5 dynamic VHF-PECVD processes for a-Si:H are developed in order to investigate the influence of the i-layer growth rate, process parameters and deposition technique on the solar performance and light-induced degradation. The results in this work indicate that a-Si:H solar cells incorporating i-layers grown dynamically by VHF-PECVD using linear plasma sources perform as good and better as solar cells with i-layers grown statically by RF-PECVD at the same deposition rate. State-of-the-art stabilized a-Si:H solar cell efficiencies of 7.6 % are obtained at a growth rate of 0.35 nm/s using dynamic VHF-PECVD processes.
It is found that the stabilized efficiency of the a-Si:H solar cells strongly decreases with the i-layer deposition rate. A simplified model is presented that is used to obtain an estimate for the deposition rate dependent efficiency of an a-Si:H/μc-Si:H tandem solar cell based on the photovoltaic parameters of the single-junction solar cells. The aim is to investigate the individual influences of the a-Si:H and μc-Si:H absorber layer deposition rates on the performance of the tandem solar cell.
The results show that a high deposition rate of the μc-Si:H absorber layer has a much higher potential for reducing the total deposition time of the absorber layers compared to high deposition rates for the a-Si:H absorber layer. Additionally, it is found that high deposition rates for a-Si:H have a strong negative impact on the tandem solar cell performance while the tandem solar cell efficiency remains almost constant for higher μc-Si:H deposition rates.
It is concluded that the deposition rate of the μc-Si:H absorber layer is key to reduce the total deposition time without compromising on the tandem solar cell performance. The developed VHF-PECVD technique using linear plasma sources is capable of meeting this criterion while promoting a path to scale the processes to large substrate areas.
|
318 |
Propagation effects influencing polarimetric weather radar measurements / Ausbreitungseffekte beeinflussen polarimetrische WetterradarmessungenOtto, Tobias 10 August 2011 (has links) (PDF)
Ground-based weather radars provide information on the temporal evolution and the spatial distribution of precipitation on a macroscopic scale over a large area. However, the echoes measured by weather radars are always a superposition of forward and backward scattering effects which complicates their interpretation. The use of polarisation diversity enhances the number of independent observables measured simultaneously. This allows an effective separation of forward and backward scattering effects. Furthermore, it extends the capability of weather radars to retrieve also microphysical information about the precipitation. The dissertation at hand introduces new aspects in the field of polarimetric, ground-based, monostatic weather radars at S-, C-, and X-band. Relations are provided to change the polarisation basis of reflectivities. A fully polarimetric weather radar measurement at circular polarisation basis is analysed. Methods to check operationally the polarimetric calibration of weather radars operating at circular polarisation basis are introduced. Moreover, attenuation correction methods for weather radar measurements at linear horizontal / vertical polarisation basis are compared to each other, and the robustly working methods are identified. / Bodengebundene Wetterradare bieten Informationen über die zeitliche Entwicklung und die räumliche Verteilung von Niederschlag in einer makroskopischen Skala über eine große Fläche. Die Interpretation der Wetterradarechos wird erschwert, da sie sich aus einer Überlagerung von Vorwärts- und Rückwärtsstreueffekten ergeben. Die Anzahl der unabhängigen Wetterradarmessgrößen kann durch den Einsatz von Polarisationsdiversität erhöht werden. Dies ermöglicht eine effektive Trennung von Vorwärts- und Rückwärtsstreueffekten. Desweiteren erlaubt es die Bestimmung von mikrophysikalischen Niederschlagsparametern. Die vorliegende Dissertation betrachtet neue Aspekte für polarimetrische, bodengebundene, monostatische Wetterradare im S-, C- und X-Band. Gleichungen zur Polarisationsbasistransformation von Reflektivitätsmessungen werden eingeführt. Eine vollpolarimetrische Wetterradarmessung in zirkularer Polarisationsbasis wird analysiert. Neue Methoden, die eine Überprüfung der polarimetrischen Kalibrierung von Wetterradarmessungen in zirkularer Polarisationsbasis erlauben, werden betrachtet. Weiterhin werden Methoden zur Dämpfungskorrektur von Wetterradarmessungen in linearer horizontaler / vertikaler Polarisationsbasis miteinander verglichen und Empfehlungen von zuverlässigen Methoden gegeben.
|
319 |
Resilience of the Critical Communication Networks Against Spreading FailuresMurić, Goran 14 September 2017 (has links) (PDF)
A backbone network is the central part of the communication network, which provides connectivity within the various systems across large distances. Disruptions in a backbone network would cause severe consequences which could manifest in the service outage on a large scale. Depending on the size and the importance of the network, its failure could leave a substantial impact on the area it is associated with. The failures of the network services could lead to a significant disturbance of human activities. Therefore, making backbone communication networks more resilient directly affects the resilience of the area. Contemporary urban and regional development overwhelmingly converges with the communication infrastructure expansion and their obvious mutual interconnections become more reciprocal.
Spreading failures are of particular interest. They usually originate in a single network segment and then spread to the rest of network often causing a global collapse. Two types of spreading failures are given focus, namely: epidemics and cascading failures. How to make backbone networks more resilient against spreading failures? How to tune the topology or additionally protect nodes or links in order to mitigate an effect of the potential failure? Those are the main questions addressed in this thesis.
First, the epidemic phenomena are discussed. The subjects of epidemic modeling and identification of the most influential spreaders are addressed using a proposed Linear Time-Invariant (LTI) system approach. Throughout the years, LTI system theory has been used mostly to describe electrical circuits and networks. LTI is suitable to characterize the behavior of the system consisting of numerous interconnected components. The results presented in this thesis show that the same mathematical toolbox could be used for the complex network analysis.
Then, cascading failures are discussed. Like any system which can be modeled using an interdependence graph with limited capacity of either nodes or edges, backbone networks are prone to cascades. Numerical simulations are used to model such failures. The resilience of European National Research and Education Networks (NREN) is assessed, weak points and critical areas of the network are identified and the suggestions for its modification are proposed.
|
320 |
Properties of timebased local OctoMapsWeissig, Peter 22 August 2017 (has links) (PDF)
Autonomous navigation of our rough-terrain rovers implies the need of a good representation of their near surrounding. In order to archive this we fuse several of their sensors into one representation called OctoMap. But moving obstacles can produce artefacts, leading to untraversable re- gions. Furthermore the map itself is increasing in size while discovering new places. Even though we are only interested in the near surrounding of the rovers. Our approach to these problems is the usage of timestamps within the map. If a certain region was not updated within a given interval, it will be set to free space or deleted from the map. This first option is an existing solution and the second option reflects our new alternative.
|
Page generated in 0.0404 seconds