• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 25
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
12

Mechanisms of Channel Arrest and Spike Arrest Underlying Metabolic Depression and the Remarkable Anoxia-tolerance of the Freshwater Western Painted Turtle (Chrysemys picta bellii)

Pamenter, Matthew 26 February 2009 (has links)
Anoxia is an environmental stress that few air-breathing vertebrates can tolerate for more than a few minutes before extensive neurodegeneration occurs. Some facultative anaerobes, including the freshwater western painted turtle Chrysemys picta bellii, are able to coordinately reduce ATP demand to match reduced ATP availability during anoxia, and thus tolerate prolonged insults without apparent detriment. To reduce metabolic rate, turtle neurons undergo channel arrest and spike arrest to decrease membrane ion permeability and neuronal electrical excitability, respectively. However, although these adaptations have been documented in turtle brain, the mechanisms underlying channel and spike arrest are poorly understood. The aim of my research was to elucidate the cellular mechanisms that underlie channel and spike arrest and the neuroprotection they confer on the anoxic turtle brain. Using electrophysiological and fluorescent imaging techniques, I demonstrate for the first time that: 1) the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) undergoes anoxia-mediated channel arrest; 2) delta opioid receptors (DORs), and 3) mild mitochondrial uncoupling via mitochondrial ATP-sensitive K+ channels result in an increase in cytosolic calcium concentration and subsequent channel arrest of the N-methyl-D-aspartate receptor, preventing excitotoxic calcium entry, and 4) reducing nitric oxide (NO) production; 5) the cellular concentration of reactive oxygen species (ROS) decreases with anoxia and ROS bursts do not occur during reoxygenation; and 6) spike arrest occurs in the anoxic turtle cortex, and that this is regulated by increased neuronal conductance to chloride and potassium ions due to activation of γ–amino-butyric acid receptors (GABAA and GABAB respectively), which create an inhibitory electrical shunt to dampen neuronal excitation during anoxia. These mechanisms are individually critical since blockade of DORs or GABA receptors induce excitotoxic cell death in anoxic turtle neurons. Together, spike and channel arrest significantly reduce neuronal excitability and individually provide key contributions to the turtle’s long-term neuronal survival during anoxia. Since the turtle is the most anoxia-tolerant air-breathing vertebrate identified, these results suggest that multiple mechanisms of metabolic suppression acting in concert are essential to maximizing anoxia-tolerance.
13

Αλληλεπιδράσεις των επταελικοειδών υποδοχέων με διάφορες πρωτεΐνες. Χαρακτηρισμός νέων σηματοδοτικών μονοπατιών / Protein-protein interactions of the heptahelical receptors. Identification of new signaling pathways

Παπακωνσταντίνου, Μαρία-Παγώνα 07 April 2015 (has links)
Οι οπιοειδείς υποδοχείς (OR), μ, δ, κ και NOP, είναι μέλη των επταελικοειδών υποδοχέων που συζεύγνυνται με G πρωτεΐνες (7ΤΜ ή GPCR), οι οποίοι αποτελούν τη μεγαλύτερη υπεροικογένεια υποδοχέων και έναν από τους κύριους φαρμακολογικούς στόχους λόγω της υψηλής φυσιολογικής τους σημασίας. Οι OR ρυθμίζουν μια ποικιλία φυσιολογικών αποκρίσεων στο νευρικό σύστημα, με κυριότερη την αναλγησία. Τα οπιοειδή φάρμακα είναι τα πιο ισχυρά και αποτελεσματικά αναλγητικά έναντι στον οξύ πόνο, όμως η παρατεταμένη χρήση τους οδηγεί σε φαινόμενα ανοχής και εξάρτησης. Γι’ αυτό υπάρχει έντονο ενδιαφέρον στην αποσαφήνιση των μηχανισμών που εμπλέκονται στα φαινόμενα αυτά προκειμένου να σχεδιαστούν πιο αποτελεσματικά φάρμακα χωρίς τέτοιες παρενέργειες. Η σηματοδότηση των οπιοειδών υποδοχέων γίνεται κυρίως μέσω της ενεργοποίησης των Gi/o πρωτεϊνών που με τη σειρά τους ρυθμίζουν κατάλληλους τελεστές. Πέρα όμως από αυτούς τους κλασσικούς αλληλεπιδρώντες εταίρους οι OR έχουν την ικανότητα να αλληλεπιδρούν και με πολλές άλλες πρωτεΐνες κυρίως μέσω των περιοχών της τρίτης ενδοκυτταρικής τους θηλιάς (i3L) και του καρβοξυτελικού τους άκρου (CT) (Georgoussi et al., 2006- Georgoussi, 2008- Georgoussi et al., 2012). Οι αλληλεπιδράσεις αυτές επηρεάζουν όχι μόνο την σηματοδότηση των OR αλλά και την εν γένει εύρυθμη λειτουργία τους. Μια σημαντική πρωτεϊνική οικογένεια που ελέγχει τη μεταγωγή σήματος από τις G πρωτεΐνες βρέθηκε να είναι οι πρωτεΐνες Ρυθμιστές της κυτταρικής Σηματοδότησης μέσω G πρωτεϊνών ή RGS πρωτεΐνες (Regulators of G protein signaling, RGS). Ο πρωταρχικός τους ρόλος είναι η αλληλεπίδραση τους με τις Gα υπομονάδες των G πρωτεϊνών και η επιτάχυνση της υδρόλυσης του GTP από τις τελευταίες οδηγώντας στη μείωση της σηματοδότησης των GPCR. Μέλη της οικογένειας των RGS πρωτεϊνών είχε δειχθεί ότι πέρα από τις Gα πρωτεΐνες αλληλεπιδρούν επίσης με υποδοχείς GPCR, τελεστές αλλά και με άλλες ρυθμιστικές πρωτεΐνες, προσδίδοντας τους έναν ιδιαίτερο οργανωτικό ρόλο στη λειτουργία του κυττάρου και καθιστώντας τις RGS πρωτεΐνες μόρια υψηλού φαρμακολογικού ενδιαφέροντος. Παρελθόντα πειράματα in vitro συγκατακρήμνισης, του εργαστηρίου Κυτταρικής Σηματοδότησης και Μοριακής Φαρμακολογίας, με τη χρήση GST-χιμαιρικών πεπτιδίων των καρβοξυτελικών άκρων των μ-OR και δ-OR (μ-CT και δ-CT αντίστοιχα) και της τρίτης ενδοκυτταρικής θηλιάς του δ-OR (δ-i3L), έδειξαν ότι η RGS4, ένα μέλος της B/R4 υποοικογένειας, αλληλεπιδρά και με τους δυο υποδοχείς στις περιοχές αυτές (Georgoussi et al., 2006- Leontiadis et al., 2009). Η αλληλεπίδραση της RGS4 στα καρβοξυτελικά άκρα των υποδοχέων αυτών γίνεται στην περιοχή που σχηματίζει μια 8η αμφιπαθική α-έλικα (έλικα VIII), σημείο επαφής των OR και για άλλες πρωτεϊνικές αλληλεπιδράσεις όπως αυτή των STAT5A/B ((Mazarakou and Georgoussi, 2005- Georganta et al., 2010), της σπινοφιλίνης (Fourla et al., 2012) και άλλων πρωτεϊνών (Georgoussi et al., 2012). Βρέθηκε επίσης ότι η RGS4 είναι αρνητικός ρυθμιστής της κυτταρικής σηματοδότησης των μ-OR και δ-OR (Georgoussi et al., 2006- Leontiadis et al., 2009). Τέλος, αποδείχθηκε για πρώτη φορά ότι η RGS4 παίξει το ρόλο «μοριακού φίλτρου» καθοδηγώντας τους μ-OR και δ-OR να αλληλεπιδράσουν με συγκεκριμένο διαφορετικό υποπληθυσμό Gα υπομονάδων των G πρωτεϊνών (Leontiadis et al., 2009). Καμία πληροφορία για τον ρόλο των RGS πρωτεϊνών δεν υπάρχει για τον κ-OR. Για τον λόγο αυτό σκοπός της παρούσας διατριβής ήταν να ελέγξουμε αν οι RGS πρωτεΐνες της Β/R4 υποοικογένειας αλληλεπιδρούν με τον κ-OR και αν ναι, ποιος είναι ο ρόλος τους στη σηματοδότηση του κ-OR και των G πρωτεϊνών με τις οποίες ο τελευταίος συζεύγνυται. Τα αποτελέσματά μας έδειξαν ότι ο κ-OR μπορεί να αλληλεπιδράσει και με την RGS4 και με την RGS2 τόσο in vitro όσο και in vivo. Η δημιουργία GST-χιμαιρικών πεπτιδίων του καρβοξυτελικού άκρου του κ-OR (κ-CT) έδειξε ότι η RGS4 αλληλεπιδρά επίσης εντός της έλικας VIII ενώ η RGS2 αλληλεπιδρά με το τελικό μη συντηρημένο άκρο του κ-CT όσο και του δ-CT. Επιπλέον η συνέκφραση της RGS4 ή της RGS2 σε κύτταρα 293F που εκφράζουν τον κ-OR έδειξε ότι και οι δυο RGS πρωτεΐνες προάγουν την επιλεκτική και διαφορική σύζευξη του κ-OR με συγκεκριμένο υποπληθυσμό των Gαi/o υπομονάδων. Σε ότι αφορά τον φυσιολογικό ρόλο των RGS4 και RGS2 στις ελεγχόμενες από τον κ-OR κυτταρικές αποκρίσεις βρήκαμε ότι τόσο η RGS4 όσο και η RGS2 ανέστειλαν την καταστολή της αδενυλικής κυκλάσης που ελέγχει ο κ-OR, αλλά όχι ο δ-OR, με την RGS2 να έχει ισχυρότερη επίδραση στο μονοπάτι αυτό. Επίσης οι RGS4 και RGS2 μείωσαν την ενεργοποίηση των ERK1,2 κινασών που σηματοδοτούσε ο κ-OR. Τέλος, βρήκαμε ότι παρόλο που καμία από τις δυο RGS δεν επηρεάζει την εσωτερίκευση του κ-OR, η RGS4 επιταχύνει την εσωτερίκευση του δ-OR. Τα ευρήματά μας καταδεικνύουν ότι οι RGS4 και RGS2 πρωτεΐνες είναι δυο νέοι αρνητικοί ρυθμιστές στην σηματοδότηση των κ-OR και δ-OR. Εμφανίζουν διαφορικό ρυθμιστικό ρόλο στα σηματοδοτικά μονοπάτια καθενός OR, με ρόλο κλειδί στην καθοδήγηση της σύζευξής τους με τις Gα υπομονάδες και μπορούν να αποτελέσουν ενδιαφέροντες φαρμακολογικούς στόχους για τον έλεγχο της δράσης των οπιοειδών. / Οpioid receptors (OR) (subtypes μ, δ, κ and NOP) belong to the superfamily of the Heptahelical G protein-coupled receptors (7TM or GPCRs), the largest class of receptors in the human genome and common targets for therapeutics. ORs mediate their responses in the nervous system via coupling to members of the Gi/Go proteins to regulate the activity of various effector systems. Opioids are the most potent analgesics but prolonged administration leads to phenomena of tolerance and dependence thus there is a great interest towards understanding of OR signalling in an effort to develop new drugs devoid of adverse effects. Extended observations have demonstrated that the cytoplasmic face of the ORs is critical in mediating their signal through interactions not only with G proteins but also with multiple other proteins. These regulatory proteins play distinct roles in the regulation of the OR signalling, and in the fine tuning of these receptors. Regulators of G protein signalling (RGS) proteins is a class of proteins that modulate G protein signalling events by directly interacting with Gα subunits and accelerating the GTP hydrolysis, thus reducing GPCR signalling towards their effectors. RGS can also interact with many GPCRs, effectors and auxiliary proteins thus playing a key role in the cell functions, making them highly attractive as pharmacological targets (Abramow-Newerly et al., 2006). Our previous in vitro studies have shown that a member of the B/R4 subfamily of RGS proteins such as RGS4 interacts directly with μ-OR and δ-OR within a conserved region in their C-termini (μ-CT and δ-CT), forming a helix VIII, as well as within the δ-third intracellular loop (δ-i3L). RGS4 associates with μ-OR and δ-OR in living cells and forms selective complexes with Gαi/o proteins in a receptor dependent manner. Expression of RGS4 in HEK293 cells attenuated adenylyl cyclase inhibition mediated by μ-OR and agonist-mediated ERK1,2 phosphorylation for both receptors (Georgoussi et al., 2006- Leontiadis et al., 2009), suggesting for the first time that RGS4 is a negative modulator of μ-OR and δ-OR signalling. To deduce whether similar effects also occur for the κ-opioid receptor (κ-ΟR) and define the ability of other members of the B/R4 subfamily of RGS proteins, such as RGS2, to interact with OR we generated fusion peptides encompassing the C-terminus of κ-OR (κ-CT). Results from pull down experiments indicated that RGS2 interacts with the κ-CT, the δ-CT and the δ-i3L but fails to interact with the μ-CT. RGS4-N-terminal domain is responsible for OR interaction. Mapping the sites of RGS2 interaction indicated that RGS2 interacts with the non conserved portion of the C-termini of ORs exhibiting a different docking site as compared to that of RGS4. Co-precipitation studies in living cells indicated that RGS2 and RGS4 associate with κ-ΟR constitutively and upon receptor activation and confer selectivity for coupling with a specific subset of G proteins in an RGS protein dependent manner. Expression of both RGS2 and/or RGS4, in 293F cells attenuated agonist mediated-adenylyl cyclase inhibition for κ-ΟR, but not δ-OR, with RGS2 exhibiting a more robust effect. RGS4 and RGS2 reduced κ-ΟR-mediated ERK1,2 phosphorylation whereas, RGS4 accelerated agonist-induced internalization of the δ-OR but not of the κ-OR. Collectively, our observations demonstrate that RGS2 and RGS4 are novel interacting partners and negative modulators of κ-ΟR and δ-OR signalling. These two RGS proteins display a differential modulatory effect in each signalling pathway tested and play a key functional role by conferring selectivity for both κ-OR and δ-OR coupling with a specific subset of G proteins. Therefore they can be considered as attractive new pharmacological targets to manipulate opioid receptors signalling.
14

Étude du trafic du récepteur delta-opiacé suite à sa stimulation par différents agonistes

Charfi, Iness 06 1900 (has links)
Les opiacés figurent parmi les analgésiques les plus puissants pour le traitement des douleurs sévères. Les agonistes du DOR (récepteur delta opiacé) induisent moins d'effets secondaires que ceux du mu, ce qui les rend une cible d'intérêt pour le traitement des douleurs chroniques. Cependant, ils induisent la tolérance à l'analgésie. Des hypothèses récentes proposent que le potentiel des drogues à induire la tolérance soit la conséquence de la stabilisation de différentes conformations du récepteur induites par la liaison avec différents ligands, chacune ayant différentes propriétés de trafic. Dans ce contexte, nous avons déterminé si différents ligands du DOR différaient dans leur capacité à induire la signalisation et le trafic du récepteur. Nos résultats indiquent que DPDPE et SNC-80 sont les drogues les plus efficaces à inhiber la production d’AMPc, suivis par UFP-512, morphine et TIPP. DPDPE et SNC-80 induisent à eux seuls l’internalisation du DOR dans les cellules HEK-293 de façon dépendante de la β-arrestine mais pas de la GRK2 ni PKC. Ces deux drogues induisent également l’internalisation du DOR dans les neurones corticaux et c’est seulement le DPDPE qui permet au DOR de regagner la membrane des cellules HEK-293 et des neurones après récupération. Cette capacité de recyclage était suggérée comme un mécanisme protégeant contre la survenue de la tolérance. Ces observations indiquent que le DOR peut subir différentes régulations en fonction du ligand lui étant associé. Cette propriété de sélectivité fonctionnelle des ligands pourrait être utile pour le développement de nouveaux opiacés ayant une activité analgésique plus durable. / Opiates are among the most powerful painkillers to treat severe pain. Delta opioid receptor (DOR) agonists induce fewer side effects than mu opioid receptor agonists, which makes them a target of interest for the treatment of chronic pain. However, they induce tolerance to analgesia. Recent hypotheses suggest that drugs tolerance is the result of stabilization of ligand-specific conformations of the receptor, with distinct traffic properties such as internalization and/or recycling. In this context, we determined whether different DOR ligands differed with respect to their ability to induce signaling and receptor trafficking. Our results indicate that DPDPE and SNC-80 are the most effective drugs to inhibit the production of cAMP, followed by UFP-512, morphine and TIPP. Only DPDPE and SNC-80 manage to induce DOR internalization in HEK-293 cells. This effect is dependent on β-arrestin but not on GRK2 or PKC. Of these two internalizing agonists, only DPDPE allows the DOR to recycle back to the membrane of HEK-293 cells after recovery. DPDPE and SNC-80 also trigger similar DOR internalization in cortical neurons, and as observed in HEK293 cells only DPDPE allowed the receptor to recycle back to the membrane. This recycling capacity was suggested as a mechanism to protect against the onset of tolerance. These observations indicate that the DOR can undergo different regulations depending on the ligand bound to it. This property of functional selectivity of DOR ligands could be useful for the development of new opiates with longer lasting analgesic properties.
15

Développement d'un biosenseur BRET permettant le criblage de drogues qui causent l'activation de canaux Kir3 via les récepteurs couplés aux protéines G

Richard-Lalonde, Mélissa 08 1900 (has links)
Les récepteurs couplés aux protéines G forment des complexes multimériques comprenant protéines G et effecteurs. Nous cherchons à caractériser de tels complexes comprenant les récepteurs opioïdes delta (DOR) et les canaux Kir3, qui nous sont d’intérêt vu leur implication dans l’analgésie des opioïdes. Des expériences d’immunopurification, de BRET et de liaison GTPgS ont été réalisées à l’intérieur de cellules HEK293 transfectées. Les canaux Kir3 ont été co-immunopurifiés avec les DOR, suggérant une interaction spontanée entre récepteur et effecteur. Des essais BRET ont corroboré que l’interaction était présente dans des cellules vivantes et nous ont permis d’identifier une interaction spontanée et spécifique entre DOR/Gg et Gg/Kir3, indiquant leur coexistence en un même complexe. Puisque l’activation du récepteur implique la présence de changements conformationnels à l’intérieur de celui-ci, nous étions intéressés à vérifier si l’information conformationnelle circule à partir du récepteur lié au ligand jusqu’à l’effecteur en aval. Ainsi, nous avons déterminé l’effet de différents ligands sur le signal BRET généré par les paires suivantes : DOR/Gbg, DOR/Kir3 et Kir3/Gbg. Nous avons constaté une modulation de l’interaction DOR/Gbg et Gbg/Kir3 suivant l’ordre d’efficacité des ligands à stimuler la protéine G, ce que nous n’avons pas observé entre DOR et Kir3. Donc, nous concluons que l’information conformationnelle circule du récepteur au canal Kir3 via la protéine Gbg. Ces résultats nous ont permis de développer un biosenseur BRET (EYFP-Gg2/Kir3.1-Rluc) qui pourrait être utilisé dans le criblage à haut débit afin de détecter de nouvelles molécules ayant une grande efficacité à activer les canaux Kir3. / G protein-coupled receptors form multimeric complexes comprising G protein and effectors. We want to characterize such complexes comprising delta opioid receptors (DOR) and Kir3 channels, which interest us due to their involvement in opioid analgesia. Immunopurification, BRET and GTPgS binding experiments were done in transfected HEK293 cells. Kir3 channels were co-immunopurified with DOR, implying a spontaneous interaction between the receptor and effector. BRET assays corroborated the presence of this interaction in living cells and allowed us to identify a spontaneous and specific interaction between DOR/Gg and Gg/Kir3, indicating their co-existence within the same complex. Since the activation of the receptor implies it undergoes conformational changes, we were interested in evaluating if the conformational information flows from the ligand-bound receptor until the downstream effector. Hence, we determined the effect of different ligands on the BRET signal that was generated by the following pairs: DOR/Gbg, DOR/Kir3 and Kir3/Gbg. We noticed a modulation of the DOR/Gbg and Gbg/Kir3 interactions that followed the order of efficacy of the ligands to activate the G protein, which we did not observe between DOR and Kir3. Therefore, we concluded that the conformational information flows from the receptor to the Kir3 channel via the Gbg protein. These results allowed us to develop a BRET biosensor (EYFP-Gg2/Kir3.1-Rluc), which could be used in high throughput screening to detect new molecules that activate Kir3 channels with high efficacy.
16

Uncovering the Functional Implications of Mu- and Delta-opioid Receptor Heteromerization in the Brain

Kabli, Noufissa 20 June 2014 (has links)
Opioid Receptors (ORs) are involved in the pathophysiology of several neuropsychiatric conditions yet remain an untapped therapeutic resource. Although only mu-, delta-, and kappa-OR types have been cloned, additional subtypes result from complexes generated by direct receptor-receptor interactions. Mu- and delta-ORs form a heteromeric receptor complex with unique pharmacological and signalling properties distinct from those of mu- and delta-OR homomers. In these studies, we sought to characterize the ligand binding pocket and agonist-induced internalization profile of the mu-delta heteromer, to investigate mu-delta heteromer-specific signalling in brain, and to interrogate the contribution of this receptor complex to opioid-mediated behavioural effects. In competition radioligand binding studies, delta-agonists displaced high affinity mu-agonist binding from the mu-delta heteromer but not the muOR homomer, suggestive of delta-agonists occupying or allosterically modulating the muOR ligand binding pocket within the heteromer. Delta-agonists induced internalization of the mu-delta heteromer in a dose-dependent, pertussis toxin resistant, and muOR- and deltaOR-dependent manner from the cell surface via the clathrin and dynamin endocytic machinery. Agonist-induced internalization of the mu-delta heteromer persisted following chronic morphine treatment conditions which desensitized the muOR homomer. Using Galpha-specific GTPgammaS binding assays, we demonstrated that mu-delta heteromer signalling previously characterized in cell lines was present in the striatum and hippocampus, and did not desensitize following prolonged morphine treatment conditions which desensitized muOR homomer-mediated signalling. Since delta-agonists which also target the mu-delta heteromer possess antidepressant-like and anxiolytic-like properties, we investigated the role of this receptor complex in mood regulation. We devised a strategy to selectively analyze the effects of the mu-delta heteromer by dissociating it using a specific interfering peptide aimed at a sequence implicated in mu-delta heteromerization. The interfering peptide abolished the unique pharmacological and trafficking properties of delta-agonists at the mu-delta heteromer and dissociated this receptor complex in vitro. Intra-accumbens administration of the interfering peptide disrupted the mu-delta interaction in vivo and allowed for isolation of the mu-delta heteromer contribution to the mood-regulatory effects of a delta-agonist with activity at the heteromer. Activation of the mu-delta heteromer in the nucleus accumbens produced antidepressant-like and anxiolytic-like actions in animal models of depression and anxiety.
17

Uncovering the Functional Implications of Mu- and Delta-opioid Receptor Heteromerization in the Brain

Kabli, Noufissa 20 June 2014 (has links)
Opioid Receptors (ORs) are involved in the pathophysiology of several neuropsychiatric conditions yet remain an untapped therapeutic resource. Although only mu-, delta-, and kappa-OR types have been cloned, additional subtypes result from complexes generated by direct receptor-receptor interactions. Mu- and delta-ORs form a heteromeric receptor complex with unique pharmacological and signalling properties distinct from those of mu- and delta-OR homomers. In these studies, we sought to characterize the ligand binding pocket and agonist-induced internalization profile of the mu-delta heteromer, to investigate mu-delta heteromer-specific signalling in brain, and to interrogate the contribution of this receptor complex to opioid-mediated behavioural effects. In competition radioligand binding studies, delta-agonists displaced high affinity mu-agonist binding from the mu-delta heteromer but not the muOR homomer, suggestive of delta-agonists occupying or allosterically modulating the muOR ligand binding pocket within the heteromer. Delta-agonists induced internalization of the mu-delta heteromer in a dose-dependent, pertussis toxin resistant, and muOR- and deltaOR-dependent manner from the cell surface via the clathrin and dynamin endocytic machinery. Agonist-induced internalization of the mu-delta heteromer persisted following chronic morphine treatment conditions which desensitized the muOR homomer. Using Galpha-specific GTPgammaS binding assays, we demonstrated that mu-delta heteromer signalling previously characterized in cell lines was present in the striatum and hippocampus, and did not desensitize following prolonged morphine treatment conditions which desensitized muOR homomer-mediated signalling. Since delta-agonists which also target the mu-delta heteromer possess antidepressant-like and anxiolytic-like properties, we investigated the role of this receptor complex in mood regulation. We devised a strategy to selectively analyze the effects of the mu-delta heteromer by dissociating it using a specific interfering peptide aimed at a sequence implicated in mu-delta heteromerization. The interfering peptide abolished the unique pharmacological and trafficking properties of delta-agonists at the mu-delta heteromer and dissociated this receptor complex in vitro. Intra-accumbens administration of the interfering peptide disrupted the mu-delta interaction in vivo and allowed for isolation of the mu-delta heteromer contribution to the mood-regulatory effects of a delta-agonist with activity at the heteromer. Activation of the mu-delta heteromer in the nucleus accumbens produced antidepressant-like and anxiolytic-like actions in animal models of depression and anxiety.
18

La comorbidité entre dépendance aux opiacés et dépression : mécanismes sérotoninergiques dans un modèle murin / Comorbidity between opiate addiction and depression : serotonergic mechanisms in a mouse model

Lutz, Pierre-Eric 03 September 2012 (has links)
L’addiction ou dépendance aux substances psychoactives est une affection chronique, fréquente et grave, émaillée de rechutes et de périodes d’abstinence. Les études épidémiologiques montrent que l’abstinence aux opiacés est fortement associée à une prévalence accrue de la dépression. Nous résumons ici les principaux aspects cliniques de la dépendance aux opiacés et de la dépression, en détaillant leurs mécanismes physiopathologiques. Puis, nous présentons notre modèle d’abstinence aux opiacés chez la souris. Suite à un traitement morphinique chronique et au cours de l’abstinence apparaissent progressivement des comportements apparentés à la dépression. Ce traitement morphinique modifie profondément le fonctionnement du système sérotoninergique, notamment dans le noyau du raphé dorsal. De plus, les déficits comportementaux observés peuvent être prévenus par un traitement chronique par la fluoxétine, un antidépresseur ciblant ce système. Nous avons généralisé ce modèle à l’héroïne, un autre opiacé illicite. Nous avons révélé par des approches génétiques de délétion constitutive et conditionnelle les rôles distincts des 3 récepteurs opioïdes (mu, delta et kappa) lors de l’abstinence à l’héroïne. Enfin, nous avons initié une étude de caractérisation, à l’échelle de l’ensemble du génome, des adaptations transcriptomiques (ARN messagers et micro-ARN) dans le noyau du raphé dorsal au cours de l’abstinence à l’héroïne et du traitement antidépresseur. Ce travail devrait permettre d’améliorer notre compréhension des mécanismes neurobiologiques à l’œuvre dans la comorbidité entre dépendance aux opiacés et dépression et pourrait suggérer de nouvelles pistes thérapeutiques. / Addiction is a chronic, frequent and serious brain disease, with relapse alternating with abstinence periods. Epidemiological studies show that abstinence, notably from opiates, is strongly associated with depression.Here we present the main clinical aspects of opiate addiction and depression, and most recent advances in molecular pathophysiology of both disorders. Then, we present our mouse model of opiate abstinence. Following chronic morphine exposure, depressive-like behaviours progressively emerge. Morphine treatment profoundly disrupts serotonergic signalling, notably in the dorsal raphe nucleus. In addition, behavioural deficits can be prevented by chronic treatment with fluoxetine, an antidepressant targeting serotonergic neurons. We then generalized our mouse model to heroin, another major illicit opiate. Using constitutive and conditional knockout strategies, we documented distinct roles for all 3 opioid receptors (mu, delta and kappa) in heroin abstinence. Finally, we initiated a large-scale analysis of transcriptomic regulations (mRNA and micro-RNA) occurring in our model as a function of heroin abstinence and fluoxetine treatment.These studies should reveal an unforeseen contribution of the dorsal raphe nucleus to addiction. They should uncover new molecular mechanisms underlying depressive-like behaviors in mice during opiate abstinence and thus put forward new therapeutic targets in humans.
19

Participação dos receptores delta e kappa -opioides centrais no controle do apetite por sódio em ratos estimulados a ingerir solução salina hipertônica

Nascimento, Ana Isabel Reis January 2015 (has links)
Submitted by Ana Maria Fiscina Sampaio (fiscina@bahia.fiocruz.br) on 2015-10-13T12:34:40Z No. of bitstreams: 1 Ana Isabel Reis Nascimento. Participação...2015.pdf: 1631129 bytes, checksum: d14aa063c882bb96ee29f85751abf2e6 (MD5) / Approved for entry into archive by Ana Maria Fiscina Sampaio (fiscina@bahia.fiocruz.br) on 2015-10-13T12:34:59Z (GMT) No. of bitstreams: 1 Ana Isabel Reis Nascimento. Participação...2015.pdf: 1631129 bytes, checksum: d14aa063c882bb96ee29f85751abf2e6 (MD5) / Made available in DSpace on 2015-10-13T12:34:59Z (GMT). No. of bitstreams: 1 Ana Isabel Reis Nascimento. Participação...2015.pdf: 1631129 bytes, checksum: d14aa063c882bb96ee29f85751abf2e6 (MD5) Previous issue date: 2015 / Fundação Oswaldo Cruz. Centro de Pesquisas Gonçalo Moniz. Salvador, BA, Brasil / Alguns estudos sugerem que as vias opioidérgicas centrais parecem desempenhar um papel regulatório no controle da ingestão de água e sal em mamíferos. As ações dos opioides centrais sobre a regulação do controle hidroeletrolítico são mediadas por vários dos subtipos de receptores opioides. O papel dos receptores delta e kappa-opioides centrais neste processo não está adequadamente elucidado sendo necessário mais estudos que o esclareçam. Objetivo: Este estudo investigou o envolvimento dos receptores delta e kappa-opioides centrais no apetite por sódio em ratos depletados deste íon e em rato ativados centralmente com angiotensina. Material e Métodos: Foram utilizados ratos Wistar (270 ± 20 g), submetidos à cirurgia estereotáxica para implante de cânula guia no ventrículo lateral esquerdo (VL), no órgão subfornical (OSF), no núcleo preóptico mediano (MnPO) e no núcleo basolateral da amígdala (BLA). No protocolo de depleção de sódio os animais foram submetidos à injeção subcutânea de furosemida combinada com dieta hipossódica quatro dias após a cirurgia. Neste modelo de estudo os animais receberam injeção intracerebroventricular (i.c.v.) do antagonista delta-opioide naltrindole no quinto dia pós-cirúrgico, nas doses de 5, 10 e 20 nmol/2 μL e do antagonista kappa-opioide, norbinaltorfimina, injetado no OSF, MnPO e BLA, nas doses de 0,5, 1,0 e 2,0 nmol/0,2 μL.. O agonista específico para os receptores delta-opioides, deltorfina II (2,5, 5,0, 10 e 20 nmol/2 μL), foi injetado i.c.v. em animais depletados de sódio pré-tratados com naltrindole na dose de 20 nmol/2 μL e em animais repletos de sódio na dose de 20 nmol/2 μL. O agonista kappa-opioide, ICI199,441 (2,0 nmol/0,2 μL) foi injetado no OSF, MnPO e BLA em animais depletados de sódio pré-tratados com norbinaltorfimina 2,0 nmol/0,2 μL e em animais repletos de sódio na dose de 2,0 nmol/0,2 μL. Bebedouros de água destilada (H2Od) e de salina foram introduzidos nas caixas15 minutos após a injeção central e tiveram seus volumes monitorados nos tempos 5, 10, 15, 30, 45, 60, 90 e 120 minutos, após a colocação dos bebedouros. No protocolo de ativação angiotensinérgica central, quarto dia após a cirurgia os animais sofreram administração i.c.v. de naltrindole (5, 10 e 20 nmol/2 μL) 15 minutos antes de receberem injeções de angiotensina II na dose de 10 ng/2 μL. Os bebedouros de H2Od e de solução salina foram introduzidos nas caixas logo após a segunda injeção e tiveram seus volumes monitorados nos tempos 5, 10, 15, 30, 45, 60, 90 e 120 minutos, após a colocação dos bebedouros. Para verificar a especificidade de ação dos antagonistas opioides os animais foram submetidos aos testes de sobremesa, campo aberto e medida da pressão arterial. A análise estatística utilizada foi ANOVA modelo misto para medidas repetidas seguida do pós-teste de Bonferroni para múltiplas comparações dos volumes ingeridos e teste “t” de Student não pareado para análise dos testes de comportamento, através do programa GraphPad Prism 6.0. Resultados: Os grupos de ratos que receberam injeções i.c.v. de naltrindole após depleção de sódio e ativação angiotensinérgica central, apresentaram redução estatisticamente significante na ingestão de salina quando comparados ao grupo de animais controles. Os ratos que receberam injeção de norbinaltorfimina no OSF, MnPO e BLA após depleção de sódio apresentaram redução estatisticamente significante na ingestão de salina quando comparados ao grupo de animais controles. A estimulação dos receptores delta-opioides em animais repletos de sódio aumentou a ingestão de salina hipertônica. Conclusões: Os dados presentes sugerem que os receptores delta-opioides centrais e os receptores kappa-opioides localizados no OSF, MnPO e BLA parecem desempenhar papel fundamental na expressão do comportamento de aquisição de sal em ratos que sofreram depleção de sódio e ativação central do apetite por sódio induzido pela via angiotensinérgica. / Central opioid pathways seem to have an important role on the control of water and salt intake in mammals, and brain opioid peptides may influence hydroelectrolyte balance through a myriad of actions mediated by distinct opioid receptors. The specific role of central delta and kappa-opioid receptors (DOR and KOR) in this process is far from being fully understood. In the present work, we investigated the role of those receptors in the control of water and salt intake, in sodium-depleted rats and rats with activation central angiotensinergic. Method: Wistar male rats (250 ± 20 g) were used in the experiment after stereotaxic cannulation of the VL left, SFO, MnPO and BLA. To study the effect of the blockade of central DOR and KOR on water and salt intake in rats were sodium depleted by the concomitant use of s.c. injections of furosemide and were kept in hypossodic diet, five days after surgery. In the sixth day, they received i.c.v. injections of a selective delta-opioid receptor antagonist (naltrindole) at the doses of 5, 10 and 20 nmol/2 μL and injections in the SFO, MnPO and BLA of a selective kappa-opioid receptor antagonist (norbinaltorphimine) at the doses of 0.5, 1.0 and 2.0 nmol/0.2 μL. The specific agonist for delta-opioid receptor deltorphin II (2.5, 5.0, 10 and 20 nmol / 2 !L) was injected i.c.v. in animals depleted pretreated with sodium naltrindole at the dose 20 nmol /2 !L . The kappa-opioid agonist, ICI199,441 (2 nmol /0.2 !L) was injected into the SFO, MnPO and BLA in animals depleted pretreated with sodium norbinaltorphimine 2.0 nmol / 0.2 !L. Bottles containing water or hypertonic saline solution were introduced into the cages 15 min after the central administration. To study the effect of the blockade of central DOR and KOR on water and salt intake in animals after central angiotensinergic stimulation, the animals received intracerebroventricular injections of naltrindole at the doses of 5, 10 and 20 nmol/2 μL 30 min before receiving central injections of angiotensin II at the dose of 10 ng/2 μL. In this case, bottles containing water or hypertonic saline solution were introduced into the cages immediately after the central administration of angiotensin II. Water and salt intake were recorded for the next 2 hours after the introduction of the bottles into the cages. To verify the specificity of action of opioid antagonists animals were submitted to the dessert test, open field and measurement of blood pressure. Data were analyzed by Two-Way ANOVA mixed model followed by Bonferroni as post-hoc test. Results: The groups of rats that received i.c.v. injections naltrindole after sodium depletion and central angiotensinergic activation, showed a statistically significant reduction in salt intake when compared to control animals group. Rats receiving norbialtorphimine injection in the SFO, MnPO and BLA after sodium depletion showed a statistically significant reduction in salt intake when compared to control animals group. The stimulation of delta-opioid receptors in animals full of sodium increased intake of hypertonic saline. Conclusions: The present data suggest that the delta-opioid receptors central, and the kappa-opioid receptors located in the SFO, MnPO and BLA appear to play a key role in the expression of the salt acquisition behavior in rats with sodium appetite.
20

Mechanoreceptor Activation in the Treatment of Drug-Use Disorders: Mechanism and Outcome

Bills, Kyle 01 August 2019 (has links)
The therapeutic benefits attributed to activation of peripheral mechanoreceptors are poorly understood. There is growing evidence that mechanical stimulation modulates substrates in the supraspinal central nervous system (CNS) that are outside the canonical somatosensory circuits. This work demonstrates that activation of peripheral mechnoreceptors via mechanical stimulation (MStim) is sufficient to increase dopamine release in the nucleus accumbens (NAc), alter neuron firing rate in the ventral tegmental area (VTA) and increase membrane translocation of delta opioid receptors (DORs) in the NAc. Further, we demonstrate that these effects are dependent on DORs and acetylcholine receptors. Additionally, MStim can block neuronal markers of chronic ethanol dependence including ethanol-induced changes to VTA GABA neuron firing during withdrawal, and DA release profiles after reinstatement ethanol during withdrawal. These are presented in tandem with evidence that MStim also ameliorates behavioral indices of ethanol withdrawal. Finally, exercise, a modality that includes a mechanosensory component, is shown to alter expression of kappa opioid receptors (KORs) in the NAc. This change substantively depresses KORs influence over evoked DA release in direct contraversion to the effects of chronic ethanol. These changes translate into reduced drinking behavior.

Page generated in 0.0452 seconds