• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 70
  • 23
  • 14
  • Tagged with
  • 259
  • 114
  • 84
  • 76
  • 47
  • 46
  • 46
  • 46
  • 46
  • 39
  • 37
  • 36
  • 34
  • 32
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Nonlinear dynamics and fluctuations in biological systems

Friedrich, Benjamin M. 11 December 2017 (has links)
The present habilitation thesis in theoretical biological physics addresses two central dynamical processes in cells and organisms: (i) active motility and motility control and (ii) self-organized pattern formation. The unifying theme is the nonlinear dynamics of biological function and its robustness in the presence of strong fluctuations, structural variations, and external perturbations. We theoretically investigate motility control at the cellular scale, using cilia and flagella as ideal model system. Cilia and flagella are highly conserved slender cell appendages that exhibit spontaneous bending waves. This flagellar beat represents a prime example of a chemo-mechanical oscillator, which is driven by the collective dynamics of molecular motors inside the flagellar axoneme. We study the nonlinear dynamics of flagellar swimming, steering, and synchronization, which encompasses shape control of the flagellar beat by chemical signals and mechanical forces. Mechanical forces can synchronize collections of flagella to beat at a common frequency, despite active motor noise that tends to randomize flagellar synchrony. In Chapter 2, we present a new physical mechanism for flagellar synchronization by mechanical self-stabilization that applies to free-swimming flagellated cells. This new mechanism is independent of direct hydrodynamic interactions between flagella. Comparison with experimental data provided by experimental collaboration partners in the laboratory of J. Howard (Yale, New Haven) confirmed our new mechanism in the model organism of the unicellular green alga Chlamydomonas. Further, we characterize the beating flagellum as a noisy oscillator. Using a minimal model of collective motor dynamics, we argue that measured non-equilibrium fluctuations of the flagellar beat result from stochastic motor dynamics at the molecular scale. Noise and mechanical coupling are antagonists for flagellar synchronization. In addition to the control of the flagellar beat by mechanical forces, we study the control of the flagellar beat by chemical signals in the context of sperm chemotaxis. We characterize a fundamental paradigm for navigation in external concentration gradients that relies on active swimming along helical paths. In this helical chemotaxis, the direction of a spatial concentration gradient becomes encoded in the phase of an oscillatory chemical signal. Helical chemotaxis represents a distinct gradient-sensing strategy, which is different from bacterial chemotaxis. Helical chemotaxis is employed, for example, by sperm cells from marine invertebrates with external fertilization. We present a theory of sensorimotor control, which combines hydrodynamic simulations of chiral flagellar swimming with a dynamic regulation of flagellar beat shape in response to chemical signals perceived by the cell. Our theory is compared to three-dimensional tracking experiments of sperm chemotaxis performed by the laboratory of U. B. Kaupp (CAESAR, Bonn). In addition to motility control, we investigate in Chapter 3 self-organized pattern formation in two selected biological systems at the cell and organism scale, respectively. On the cellular scale, we present a minimal physical mechanism for the spontaneous self-assembly of periodic cytoskeletal patterns, as observed in myofibrils in striated muscle cells. This minimal mechanism relies on the interplay of a passive coarsening process of crosslinked actin clusters and active cytoskeletal forces. This mechanism of cytoskeletal pattern formation exemplifies how local interactions can generate large-scale spatial order in active systems. On the organism scale, we present an extension of Turing’s framework for self-organized pattern formation that is capable of a proportionate scaling of steady-state patterns with system size. This new mechanism does not require any pre-pattering clues and can restore proportional patterns in regeneration scenarios. We analytically derive the hierarchy of steady-state patterns and analyze their stability and basins of attraction. We demonstrate that this scaling mechanism is structurally robust. Applications to the growth and regeneration dynamics in flatworms are discussed (experiments by J. Rink, MPI CBG, Dresden).:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66 / Das Thema der vorliegenden Habilitationsschrift in Theoretischer Biologischer Physik ist die nichtlineare Dynamik funktionaler biologischer Systeme und deren Robustheit gegenüber Fluktuationen und äußeren Störungen. Wir entwickeln hierzu theoretische Beschreibungen für zwei grundlegende biologische Prozesse: (i) die zell-autonome Kontrolle aktiver Bewegung, sowie (ii) selbstorganisierte Musterbildung in Zellen und Organismen. In Kapitel 2, untersuchen wir Bewegungskontrolle auf zellulärer Ebene am Modelsystem von Zilien und Geißeln. Spontane Biegewellen dieser dünnen Zellfortsätze ermöglichen es eukaryotischen Zellen, in einer Flüssigkeit zu schwimmen. Wir beschreiben einen neuen physikalischen Mechanismus für die Synchronisation zweier schlagender Geißeln, unabhängig von direkten hydrodynamischen Wechselwirkungen. Der Vergleich mit experimentellen Daten, zur Verfügung gestellt von unseren experimentellen Kooperationspartnern im Labor von J. Howard (Yale, New Haven), bestätigt diesen neuen Mechanismus im Modellorganismus der einzelligen Grünalge Chlamydomonas. Der Gegenspieler dieser Synchronisation durch mechanische Kopplung sind Fluktuationen. Wir bestimmen erstmals Nichtgleichgewichts-Fluktuationen des Geißel-Schlags direkt, wofür wir eine neue Analyse-Methode der Grenzzykel-Rekonstruktion entwickeln. Die von uns gemessenen Fluktuationen entstehen mutmaßlich durch die stochastische Dynamik molekularen Motoren im Innern der Geißeln, welche auch den Geißelschlag antreiben. Um die statistische Physik dieser Nichtgleichgewichts-Fluktuationen zu verstehen, entwickeln wir eine analytische Theorie der Fluktuationen in einem minimalen Modell kollektiver Motor-Dynamik. Zusätzlich zur Regulation des Geißelschlags durch mechanische Kräfte untersuchen wir dessen Regulation durch chemische Signale am Modell der Chemotaxis von Spermien-Zellen. Dabei charakterisieren wir einen grundlegenden Mechanismus für die Navigation in externen Konzentrationsgradienten. Dieser Mechanismus beruht auf dem aktiven Schwimmen entlang von Spiralbahnen, wodurch ein räumlicher Konzentrationsgradient in der Phase eines oszillierenden chemischen Signals kodiert wird. Dieser Chemotaxis-Mechanismus unterscheidet sich grundlegend vom bekannten Chemotaxis-Mechanismus von Bakterien. Wir entwickeln eine Theorie der senso-motorischen Steuerung des Geißelschlags während der Spermien-Chemotaxis. Vorhersagen dieser Theorie werden durch Experimente der Gruppe von U.B. Kaupp (CAESAR, Bonn) quantitativ bestätigt. In Kapitel 3, untersuchen wir selbstorganisierte Strukturbildung in zwei ausgewählten biologischen Systemen. Auf zellulärer Ebene schlagen wir einen einfachen physikalischen Mechanismus vor für die spontane Selbstorganisation von periodischen Zellskelett-Strukturen, wie sie sich z.B. in den Myofibrillen gestreifter Muskelzellen finden. Dieser Mechanismus zeigt exemplarisch auf, wie allein durch lokale Wechselwirkungen räumliche Ordnung auf größeren Längenskalen in einem Nichtgleichgewichtssystem entstehen kann. Auf der Ebene des Organismus stellen wir eine Erweiterung der Turingschen Theorie für selbstorganisierte Musterbildung vor. Wir beschreiben eine neue Klasse von Musterbildungssystemen, welche selbst-organisierte Muster erzeugt, die mit der Systemgröße skalieren. Dieser neue Mechanismus erfordert weder eine vorgegebene Kompartimentalisierung des Systems noch spezielle Randbedingungen. Insbesondere kann dieser Mechanismus proportionale Muster wiederherstellen, wenn Teile des Systems amputiert werden. Wir bestimmen analytisch die Hierarchie aller stationären Muster und analysieren deren Stabilität und Einzugsgebiete. Damit können wir zeigen, dass dieser Skalierungs-Mechanismus strukturell robust ist bezüglich Variationen von Parametern und sogar funktionalen Beziehungen zwischen dynamischen Variablen. Zusammen mit Kollaborationspartnern im Labor von J. Rink (MPI CBG, Dresden) diskutieren wir Anwendungen auf das Wachstum von Plattwürmern und deren Regeneration in Amputations-Experimenten.:1 Introduction 10 1.1 Overview of the thesis 10 1.2 What is biological physics? 12 1.3 Nonlinear dynamics and control 14 1.3.1 Mechanisms of cell motility 16 1.3.2 Self-organized pattern formation in cells and tissues 28 1.4 Fluctuations and biological robustness 34 1.4.1 Sources of fluctuations in biological systems 34 1.4.2 Example of stochastic dynamics: synchronization of noisy oscillators 36 1.4.3 Cellular navigation strategies reveal adaptation to noise 39 2 Selected publications: Cell motility and motility control 56 2.1 “Flagellar synchronization independent of hydrodynamic interactions” 56 2.2 “Cell body rocking is a dominant mechanism for flagellar synchronization” 57 2.3 “Active phase and amplitude fluctuations of the flagellar beat” 58 2.4 “Sperm navigation in 3D chemoattractant landscapes” 59 3 Selected publications: Self-organized pattern formation in cells and tissues 60 3.1 “Sarcomeric pattern formation by actin cluster coalescence” 60 3.2 “Scaling and regeneration of self-organized patterns” 61 4 Contribution of the author in collaborative publications 62 5 Eidesstattliche Versicherung 64 6 Appendix: Reprints of publications 66
222

Solution strategies for stochastic finite element discretizations

Ullmann, Elisabeth 23 June 2008 (has links)
The discretization of the stationary diffusion equation with random parameters by the Stochastic Finite Element Method requires the solution of a highly structured but very large linear system of equations. Depending on the stochastic properties of the diffusion coefficient together with the stochastic discretization we consider three solver cases. If the diffusion coefficient is given by a stochastically linear expansion, e.g. a truncated Karhunen-Loeve expansion, and tensor product polynomial stochastic shape functions are employed, the Galerkin matrix can be transformed to a block-diagonal matrix. For the solution of the resulting sequence of linear systems we study Krylov subspace recycling methods whose success depends on the ordering and grouping of the linear systems as well as the preconditioner. If we use complete polynomials for the stochastic discretization instead, we show that decoupling of the Galerkin matrix with respect to the stochastic degrees of freedom is impossible. For a stochastically nonlinear diffusion coefficient, e.g. a lognormal random field, together with complete polynomials serving as stochastic shape functions, we introduce and test the performance of a new Kronecker product preconditioner, which is not exclusively based on the mean value of the diffusion coefficient.
223

Analytical solution of a linear, elliptic, inhomogeneous partial differential equation in the context of a special rotationally symmetric problem of linear elasticity

Eschke, Andy January 2014 (has links)
In addition to previous publications, the paper presents the analytical solution of a special boundary value problem which arises in the context of elasticity theory for an extended constitutive law and a non-conservative symmetric ansatz. Besides deriving the general analytical solution, a specific form for linear boundary conditions is given for user convenience.
224

Lösungsoperatoren für Delaysysteme und Nutzung zur Stabilitätsanalyse

Gehre, Nico 06 April 2018 (has links)
In diese Dissertation werden lineare retardierte Differentialgleichungen (DDEs) und deren Lösungsoperatoren untersucht. Wir stellen eine neue Methode vor, mit der die Lösungsoperatoren für autonome und nicht-autonome DDEs bestimmt werden. Die neue Methode basiert auf dem Pfadintegralformalismus, der aus der Quantenmechanik und von der Analyse stochastischer Differentialgleichungen bekannt ist. Es zeigt sich, dass die Lösung eines Delaysystems zum Zeitpunkt t durch die Integration aller möglicher Pfade von der Anfangsbedingung bis zur Zeit t gebildet werden kann. Die Pfade bestehen dabei aus verschiedenen Schritten unterschiedlicher Längen und Gewichte. Für skalare autonome DDEs können analytische Ausdrücke des Lösungsoperators in der Literatur gefunden werden, allerdings existieren keine für nicht-autonome oder höherdimensionale DDEs. Mithilfe der neuen Methode werden wir die Lösungsoperatoren der genannten DDEs aufstellen und zusätzlich auf Delaysysteme mit mehreren Delaytermen erweitern. Dabei bestätigen wir unsere Ergebnisse sowohl analytisch wie auch numerisch. Die gewonnenen Lösungsoperatoren verwenden wir anschließend zur Stabilitätsanalyse periodischer Delaysysteme. Es werden zwei neue Verfahren präsentiert, die mithilfe des Lösungsoperators den transformierten Monodromieoperator des Delaysystems nähern und daraus die Stabilität bestimmen können. Beide neue Verfahren sind spektrale Methoden für autonome sowie nicht-autonome Delaysysteme und haben keine Einschränkungen wie bei der bekannten Chebyshev-Kollokationsmethode oder der Chebyshev-Polynomentwicklung. Die beiden bisherigen Verfahren beschränken sich auf Delaysysteme mit rationalem Verhältnis zwischen Periode und Delay. Außerdem werden wir eine bereits bekannte Methode erweitern und zu einer spektralen Methode für periodische nicht-autonome Delaysysteme entwickeln. Wir bestätigen alle drei neue Verfahren numerisch. Damit werden in dieser Dissertation drei neue spektrale Verfahren zur Stabilitätsanalyse periodischer Delaysysteme vorgestellt. / In this thesis linear delay differential equations (DDEs) and its solutions operators are studied. We present a new method to calculate the solution operators for autonomous and non-autonomous DDEs. The new method is related to the path integral formalism, which is known from quantum mechanics and the analysis of stochastic differential equations. It will be shown that the solution of a time delay system at time t can be constructed by integrating over all paths from the initial condition to time t. The paths consist of several steps with different lengths and weights. Analytic expressions for the solution operator for scalar autonomous DDEs can be found in the literature but no results exist for non-autonomous or high dimensional DDEs. With the help of the new method we can calculate the solution operators for such DDEs and for time delay systems with several delay terms. We verify our results analytically and numerically. We use the obtained solution operators for the stability analysis of periodic time delay systems. Two new methods will be presented to approximate the transformed monodromy operator with the help of the solution operator and to get the stability. Both new methods are spectral methods for autonomous and non-autonomous delay systems and have no limitations like the known Chebyshev collocation method or Chebyshev polynomial expansion. Both previously known methods are limited to time delay systems with a rational relation between period and delay. Furthermore we will extend a known method to a spectral method for non-autonomous time delay systems. We verify all three new methods numerically. Hence, in this thesis three new spectral methods for the stability analysis of periodic time delay systems are presented.
225

Hierarchical Continuous Time Dynamic Modelling for Psychology and the Social Sciences

Driver, Charles C. 14 March 2018 (has links)
Im Rahmen dieser Dissertation bemühe ich mich, den statistischen Ansatz der zeitkontinuierlichen dynamischen Modellierung, der die Rolle der Zeit explizit berücksichtigt, zu erweitern und praktisch anwendbar zu machen. Diese Dissertation ist so strukturiert, dass ich in Kapitel 1 die Natur dynamischer Modelle bespreche, verschiedene Ansätze zum Umgang mit mehreren Personen betrachte und ein zeitkontinuierliches dynamisches Modell mit Input-Effekten (wie Interventionen) und einem Gaußschen Messmodell detailliert darstelle. In Kapitel 2 beschreibe ich die Verwendung der Software ctsem für R, die als Teil dieser Dissertation entwickelt wurde und die Modellierung von Strukturgleichungen und Mixed-Effects über einen frequentistischen Schätzansatz realisiert. In Kapitel 3 stelle ich einen hierarchischen, komplett Random-Effects beinhaltenden Bayesschen Schätzansatz vor, unter dem sich Personen nicht nur in Interceptparametern, sondern in allen Charakteristika von Mess - und Prozessmodell unterscheiden können, wobei die Schätzung individueller Parameter trotzdem von den Daten aller Personen profitiert. Kapitel 4 beschreibt die Verwendung der Bayesschen Erweiterung der Software ctsem. In Kapitel 5} betrachte ich die Natur experimenteller Interventionen vor dem Hintergrund zeitkontinuierlicher dynamischer Modellierung und zeige Ansätze, die die Art und Weise adressieren, mit der Interventionen auf psychologische Prozesse über die Zeit wirken. Das berührt Fragen, wie: 'Nach welcher Zeit zeigt eine Intervention ihre maximale Wirkung', 'Wie ändert sich die Form des Effektes im Laufe der Zeit' und 'Für wen ist die Wirkung am stärksten oder dauert am längsten an'. Viele Bei-spiele, die sowohl frequentistische als auch bayessche Formen der Software ctsem verwenden, sind enthalten. Im letzten Kapitel fasse ich die Dissertation zusammen, zeige Limitationen der angebotenen Ansätze auf und stelle meine Gedanken zu möglichen zukünftigen Entwicklungen dar. / With this dissertation I endeavor to extend, and make practically applicable for psychology, the statistical approach of continuous time dynamic modelling, in which the role of time is made explicit. The structure of this dissertation is such that in Chapter 1, I discuss the nature of dynamic models, consider various approaches to handling multiple subjects, and detail a continuous time dynamic model with input effects (such as interventions) and a Gaussian measurement model. In Chapter 2, I describe the usage of the ctsem software for R developed as part of this dissertation, which provides a frequentist, mixed effects, structural equation modelling approach to estimation. Chapter 3 details a hierarchical Bayesian, fully random effects approach to estimation, allowing for subjects to differ not only in intercept parameters but in all characteristics of the measurement and dynamic models -- while still benefiting from other subjects data for parameter estimation. Chapter 4 describes the usage of the Bayesian extension to the ctsem software. In Chapter 5 I consider the nature of experimental interventions in the continuous time dynamic modelling framework, and show approaches to address questions regarding the way interventions influence psychological processes over time, with questions such as 'how long does a treatment take to reach maximum effect', `how does the shape of the effect change over time', and 'for whom is the effect strongest, or longest lasting'. Many examples using both frequentist and Bayesian forms of the ctsem software are given. For the final chapter I summarise the dissertation, consider limitations of the approaches offered, and provide some thoughts on possible future developments.
226

The Symbol of a Markov Semimartingale

Schnurr, Alexander 10 June 2009 (has links) (PDF)
We prove that every (nice) Feller process is an It^o process in the sense of Cinlar, Jacod, Protter and Sharpe (1980). Next we generalize the notion of the symbol and define it for this larger class of processes. As examples the solutions of stochastic differential equations are considered. The symbol is then used to derive a quick approach to the semimartingale characteristics as well as the generator of the process under consideration. Finally we give some examples of how our methods work for processes used in mathematical finance. / Wir haben gezeigt, dass jeder (nette) Feller Prozess ein It^o Prozess im Sinne von Cinlar, Jacod, Protter und Sharpe (1980) ist. Es stellt sich heraus, dass man den Begriff des Symbols, der für Feller Prozesse bekannt ist, auf diese größere Klasse verallgemeinern kann. Dieses Symbol haben wir für die Lösungen verschiedener stochastischer Differentialgleichungen berechnet. Außerdem haben wir gezeigt, dass das Symbol einen schnellen Zugang zur Berechnung der Semimartingal-Charakteristiken und des Erzeugers eines It^o Prozesses liefert. Zuletzt wurden die Ergebnisse auf Prozesse angewendet, die in der Finanzmathematik gebräuchlich sind. - (Die Dissertation ist veröffentlicht im Shaker Verlag GmbH, Postfach 101818, 52018 Aachen, Deutschland, http://www.shaker.de, ISBN: 978-3-8322-8244-8)
227

Business Cycle Models with Embodied Technological Change and Poisson Shocks / Konjunkturmodelle mit Investitionsgebundenem Technologischen Fortschritt und Poisson Schocks

Schlegel, Christoph 03 October 2004 (has links) (PDF)
The first part analyzes an Endogenous Business Cycle model with embodied technological change. Households take an optimal decision about their spending for consumption and financing of R&D. The probability of a technology invention occurring is an increasing function of aggregate R&D expenditure in the whole economy. New technologies bring higher productivity, but rather than applying to the whole capital stock, they require a new vintage of capital, which first has to be accumulated before the productivity gain can be realized. The model offers some valuable features: Firstly, the response of output following a technology shock is very gradual; there are no jumps. Secondly, R&D is an ongoing activity; there are no distinct phases of research and production. Thirdly, R&D expenditure is pro-cyclical and the real interest rate is counter-cyclical. Finally, long-run growth is without scale effects. The second part analyzes a RBC model in continuous time featuring deterministic incremental development of technology and stochastic fundamental inventions arriving according to a Poisson process. In a special case an analytical solution is presented. In the general case a delay differential equation (DDE) has to be solved. Standard numerical solution methods fail, because the steady state is path dependent. A new solution method is presented which is based on a modified method of steps for DDEs. It provides not only approximations but also upper and lower bounds for optimal consumption path and steady state. Furthermore, analytical expressions for the long-term equilibrium distributions of the stationary variables of the model are presented. The distributions can be described as extended Beta distributions. This is deduced from a methodical result about a delay extension of the Pearson system.
228

Adaptive Netzverfeinerung in der Formoptimierung mit der Methode der Diskreten Adjungierten

Günnel, Andreas 15 April 2010 (has links) (PDF)
Formoptimierung bezeichnet die Bestimmung der Geometrischen Gestalt eines Gebietes auf dem eine partielle Differentialgleichung (PDE) wirkt, sodass bestimmte gegebene Zielgrößen, welche von der Lösung der PDE abhängen, Extrema annehmen. Bei der Diskret Adjungierten Methode wird der Gradient einer Zielgröße bezüglich einer beliebigen Anzahl von Formparametern mit Hilfe der Lösung einer adjungierten Gleichung der diskretisierten PDE effizient ermittelt. Dieser Gradient wird dann in Verfahren der numerischen Optimierung verwendet um eine optimale Lösung zu suchen. Da sowohl die Zielgröße als auch der Gradient für die diskretisierte PDE ermittelt werden, sind beide zunächst vom verwendeten Netz abhängig. Bei groben Netzen sind sogar Unstetigkeiten der diskreten Zielfunktion zu erwarten, wenn bei Änderungen der Formparameter sich das Netz unstetig ändert (z.B. Änderung Anzahl Knoten, Umschalten der Konnektivität). Mit zunehmender Feinheit der Netze verschwinden jedoch diese Unstetigkeiten aufgrund der Konvergenz der Diskretisierung. Da im Zuge der Formoptimierung Zielgröße und Gradient für eine Vielzahl von Iterierten der Lösung bestimmt werden müssen, ist man bestrebt die Kosten einer einzelnen Auswertung möglichst gering zu halten, z.B. indem man mit nur moderat feinen oder adaptiv verfeinerten Netzen arbeitet. Aufgabe dieser Diplomarbeit ist es zu untersuchen, ob mit gängigen Methoden adaptiv verfeinerte Netze hinreichende Genauigkeit der Auswertung von Zielgröße und Gradient erlauben und ob eventuell Anpassungen der Optimierungsstrategie an die adaptive Vernetzung notwendig sind. Für die Untersuchungen sind geeignete Modellprobleme aus der Festigkeitslehre zu wählen und zu untersuchen. / Shape optimization describes the determination of the geometric shape of a domain with a partial differential equation (PDE) with the purpose that a specific given performance function is minimized, its values depending on the solution of the PDE. The Discrete Adjoint Method can be used to evaluate the gradient of a performance function with respect to an arbitrary number of shape parameters by solving an adjoint equation of the discretized PDE. This gradient is used in the numerical optimization algorithm to search for the optimal solution. As both function value and gradient are computed for the discretized PDE, they both fundamentally depend on the discretization. In using the coarse meshes, discontinuities in the discretized objective function can be expected if the changes in the shape parameters cause discontinuous changes in the mesh (e.g. change in the number of nodes, switching of connectivity). Due to the convergence of the discretization these discontinuities vanish with increasing fineness of the mesh. In the course of shape optimization, function value and gradient require evaluation for a large number of iterations of the solution, therefore minimizing the costs of a single computation is desirable (e.g. using moderately or adaptively refined meshes). Overall, the task of the diploma thesis is to investigate if adaptively refined meshes with established methods offer sufficient accuracy of the objective value and gradient, and if the optimization strategy requires readjustment to the adaptive mesh design. For the investigation, applicable model problems from the science of the strength of materials will be chosen and studied.
229

Optimal Control Problems with Singularly Perturbed Differential Equations as Side Constraints: Analysis and Numerics / Optimale Steuerung mit singulär gestörten Differentialgleichungen als Nebenbedingung: Analysis und Numerik

Reibiger, Christian 27 March 2015 (has links) (PDF)
It is well-known that the solution of a so-called singularly perturbed differential equation exhibits layers. These are small regions in the domain where the solution changes drastically. These layers deteriorate the convergence of standard numerical algorithms, such as the finite element method on a uniform mesh. In the past many approaches were developed to overcome this difficulty. In this context it was very helpful to understand the structure of the solution - especially to know where the layers can occur. Therefore, we have a lot of analysis in the literature concerning the properties of solutions of such problems. Nevertheless, this field is far from being understood conclusively. More recently, there is an increasing interest in the numerics of optimal control problems subject to a singularly perturbed convection-diffusion equation and box constraints for the control. However, it is not much known about the solutions of such optimal control problems. The proposed solution methods are based on the experience one has from scalar singularly perturbed differential equations, but so far, the analysis presented does not use the structure of the solution and in fact, the provided bounds are rather meaningless for solutions which exhibit boundary layers, since these bounds scale like epsilon^(-1.5) as epsilon converges to 0. In this thesis we strive to prove bounds for the solution and its derivatives of the optimal control problem. These bounds show that there is an additional layer that is weaker than the layers one expects knowing the results for scalar differential equation problems, but that weak layer deteriorates the convergence of the proposed methods. In Chapter 1 and 2 we discuss the optimal control problem for the one-dimensional case. We consider the case without control constraints and the case with control constraints separately. For the case without control constraints we develop a method to prove bounds for arbitrary derivatives of the solution, given the data is smooth enough. For the latter case we prove bounds for the derivatives up to the second order. Subsequently, we discuss several discretization methods. In this context we use special Shishkin meshes. These meshes are piecewise equidistant, but have a very fine subdivision in the region of the layers. Additionally, we consider different ways of discretizing the control constraints. The first one enforces the compliance of the constraints everywhere and the other one enforces it only in the mesh nodes. For each proposed algorithm we prove convergence estimates that are independent of the parameter epsilon. Hence, they are meaningful even for small values of epsilon. As a next step we turn to the two-dimensional case. To be able to adapt the proofs of Chapter 2 to this case we require bounds for the solution of the scalar differential equation problem for a right hand side f only in W^(1,infty). Although, a lot of results for this problem can be found in the literature but we can not apply any of them, because they require a smooth right hand side f in C^(2,alpha) for some alpha in (0,1). Therefore, we dedicate Chapter 3 to the analysis of the scalar differential equations problem only using a right hand side f that is not very smooth. In Chapter 4 we strive to prove bounds for the solution of the optimal control problem in the two dimensional case. The analysis for this problem is not complete. Especially, the characteristic layers induce subproblems that are not understood completely. Hence, we can not prove sharp bounds for all terms in the solution decomposition we construct. Nevertheless, we propose a solution method. Numerical results indicate an epsilon-independent convergence for the considered examples - although we are not able to prove this.
230

Pathwise Uniqueness of the Stochastic Heat Equation with Hölder continuous o diffusion coefficient and colored noise / Pfadweise Eindeutigkeit der stochastischen Wärmeleitungsgleichung mit Hölder-stetigem Diffusionskoeffizienten und farbigem Rauschen

Rippl, Thomas 29 October 2012 (has links)
No description available.

Page generated in 0.1021 seconds