Spelling suggestions: "subject:"discontinue"" "subject:"discontinued""
51 |
Étude d'un schéma différences finies haute précision et d'un modèle de fil mince oblique pour simuler les perturbations électromagnétiques sur véhicule aérospatial / Study of a hight order finite difference scheme and of a thin wire model for simulating electromagnetic agression on a aerospatial vehicleVolpert, Thibault 25 November 2014 (has links)
Les travaux de cette thèse concerne l’étude d’une méthode élément finis d’ordre spatial élevé que l’on peut assimilé à une extension du schéma de Yee. On parle alors de méthode différences finies d’ordre élevé. Après avoir donné, dans un premier chapitre, un historique non exhaustif des principales méthodes utilisées pour résoudre les équations de Maxwell dans le cadre de problèmes de CEM et montré l’ intérêt de disposer d’un solveur de type "différences finies d’ ordre élevé", nous présentons dans un deuxième chapitre le principe de la méthode. Nous donnons pour cela les caractéristiques du schéma spatial et temporel en précisant les conditions de stabilité de la méthode. En outre, dans une étude purement numérique, nous étudions la convergence du schéma. On se focalise ensuite sur la possibilité d’utiliser des ordres spatiaux variable par cellules dans chaque direction de l’espace. Des comparaisons avec le schéma de Yee et un schéma de Galerkin Discontinu particulier sont ensuite effectuées pour montrer les gains en coûts calcul et mémoire et donc l’intérêt de notre approche par rapport aux deux autres. Dans un troisième chapitre, nous nous intéressons à l’étude de modèles physiques indispensable au traitement d’un problème de CEM. Pour cela, nous nous focalisons particulièrement sur un modèle de fil mince oblique, des modèles de matériaux volumiques et minces et enfin sur la prise en compte de sol parfaitement métallique dans une agression de type onde plane. Chaque modèle est détaillé et validé par comparaison avec des solutions analytiques ou résultant de la littérature, sur des exemples canoniques. Le quatrième chapitre est dédié à une technique d’hybridation entre notre méthode et une approche Galerkin Discontinu en vue de traiter des géométries possédant des courbures. Nous donnons pour cela une stratégie d’hybridation basée sur l’échange de flux qui garantie au niveau continue la conservation d’une énergie. Nous présentons ensuite quelques exemples montrant la validité de notre approche dans une stratégie multi-domaines/multi-méthodes que nous précisons. Enfin le dernier chapitre de cette thèse concerne l’exploitation de notre méthode sur des cas industriels en comparaisons avec d’autres méthodes ou des résultats expérimentaux. / This thesis is about the study of a high spatial finite element method whichcan be assimilated at an extension of the Yee schema. In the next, this method is also called high order finite difference method. In the first chapter, we give a non exhaustive recall of the major methods used to treat EMC problems and we show the necessity to have this kind of schema to simulate efficiently some EMC configurations. In the second chapter, the principle of the numerical method is presented and a stability condition is given. A numerical study analysis of the schema convergence is also done. Next, we show the interest to have the possibility to use local spatial order by cell in each direction of the computational domain. Some canonic examples are given to show the advantages interms of CPU time and memory storage of the method by comparison with Yee’s scheme and DG approach. In the third chapter, we define and validate on several examples,some physical models as thin wire, materials and perfectly metallic ground in presence of a plane wave, to have the possibility to treat EMC problems. The fourth chapter is about a hybridization strategy between our high order FDTD method and a DG schema.We focalize our study on a hybrid method which provides an energy conservation of the continuous problem. A numerical example is given to validate the method. Finally, in the last chapter, we present some simulations on industrial problems to show the possibility of the method to treat realistic EMC problems.
|
52 |
Spatio-temporal refinement using a discontinuous Galerkin approach for elastodynamic in a high performance computing framework / Raffinement spatio-temporel par une approche de Galerkin discontinue en élastodynamique pour le calcul haute performanceDudouit, Yohann 08 December 2014 (has links)
Cette thèse étudie le raffinement local de maillage à la fois en espace et en temps pour l’équation de l’elastodynamique du second ordre pour le calcul haute performance. L’objectif est de mettre en place des méthodes numériques pour traiter des hétérogénéités de petite taille ayant un impact important sur la propagation des ondes. Nous utilisons une approche par éléments finis de Galerkin discontinus avec pénalisation pour leur flexibilité et facilité de parallélisation. La formulation éléments finis que nous proposons a pour particularité d’être élasto-acoustique, pour pouvoir prendre en compte des hétérogénéités acoustiques de petite taille. Par ailleurs, nous proposons un terme de pénalisation optimisé qui est mieux adapté à l’équation de l’élastodynamique, conduisant en particulier à une meilleure condition CFL. Nous avons aussi amélioré une formulation PML du second ordre pour laquelle nous avons proposé une nouvelle discrétisation temporelle qui rend la formulation plus stable. En tirant parti de la p-adaptivité et des maillages non-conformes des méthodes de Galerkin discontinues combiné à une méthode de pas de temps local, nous avons grandement réduit le coût du raffinement local. Ces méthodes ont été implémentées en C++, en utilisant des techniques de template metaprogramming, au sein d’un code parallèle à mémoire distribuée (MPI) et partagée (OpenMP). Enfin, nous montrons le potentiel de notre approche sur des cas tests de validation et sur des cas plus réalistes avec des milieux présentant des hydrofractures. / This thesis studies local mesh refinement both in time and space for the second order elastodynamic equation in a high performance computing context. The objective is to develop numerical methods to treat small heterogeneities that have global impact on wave propagation. We use an internal penalty discontinuous Galerkin finite element approach for its flexibity and parallelization capabilities. The elasto-acoustic finite element formulation we discuss is elasto-acoustic in order to handle local acoustic heterogeneities. We also propose an optimized penalty term more suited to the elastodynamic equation that results in better CFL condition. We improve a second order PML formulation with an original time discretization that results in a more stable formulation. Using the p-adaptivity and nonconforming mesh capabilities of discontinuous Galerkin methods combined with a local time stepping method, we greatly reduce the high computational cost of local refinements. These methods have been implemented in C++, using template metaprogramming, in a distributed memory (MPI) and shared memory (OpenMP) parallel code. Finally, we show the potential of our methods on validation test cases and on more realistic test cases with medium including hydrofractures.
|
53 |
Adaptation des méthodes et outils aéroacoustiques pour les jets en interaction dans le cadre des lanceurs spatiaux. / Adaptation of aeroacoustic methods and tools for interacting jets in the context of space launchersLangenais, Adrien 07 February 2019 (has links)
Lors d’un lancement spatial, le bruit des jets supersoniques chauds, générés par les moteurs-fusées au décollage et en interaction avec le pas de tir, est dommageable pour le lanceur et en particulier sa charge utile. Par conséquent, les acteurs du spatial cherchent à renforcer leur compréhension et leur maîtrise de cette ambiance acoustique, entre autres grâce à des méthodes et outils numériques. Toutefois, ils ne disposent pas d’une approche numérique globale capable de prendre en compte simultanément la génération fidèle du bruit, la propagation acoustique non-linéaire, les effets d’installation complexes et les géométries réalistes, pourtant inhérents aux applications spatiales. Dans cette optique, cette étude consiste à mettre en place et valider une méthodologie de simulation numérique par couplage fort Navier-Stokes − Euler, puis à l’appliquer à des cas réalistes de bruit de jet supersonique. L’objectif est d’affiner les capacités de prévision et de contribuer à la compréhension des mécanismes de génération de bruit dans de tels jets. Le solveur Navier-Stokes repose sur une méthode LES sur maillage non-structuré et le solveur acoustique sur une méthode de Galerkine discontinue d’ordre élevé sur maillage non-structuré. La méthodologie est tout d’abord évaluée sur des cas académiques visant à valider la simulation par couplage fort. Après des calculs préliminaires, la méthodologie est appliquée à la simulation du bruit d’un jet libre supersonique à Mach 3.1. Une méthode de déclenchement géométrique de la turbulence est implémentée sous la forme d’une marche à la paroi de la tuyère. La simulation aboutit à des estimations du bruit très proches des mesures réalisées au banc MARTEL et met en évidence des effets non-linéaires significatifs ainsi qu’un mécanisme singulier de rayonnement des ondes de Mach. Dans une démarche de progression vers des cas toujours plus réalistes, l’ensemble de l’approche numérique est finalement adaptée avec succès à la simulation du bruit d’un jet en présence d’un carneau. À terme, elle pourra être étendue à des configurations multi-jets réactifs, avec injection d’eau, voire à l’échelle 1. / During a space launch, the noise from hot supersonic jets, generated by rocket engines at liftoff and interacting with the launch pad, is harmful to the launcher and in particular its payload. Consequently, space actors are seeking to strengthen their understanding and control of this acoustic environment through numerical methods and tools, among the others. However, they do not dispose of a comprehensive numerical strategy that can simultaneously take into account accurate noise generation, nonlinear acoustic propagation, complex installation effects and realistic geometries, which are inherent to space applications. For this purpose, the present study consists in setting up and validating a numerical simulation methodology using a Navier-Stokes − Euler two-way coupling approach, then applying it to realistic cases of supersonic jet noise in order to improve prediction capabilities and contribute to the understanding of the noise generation mechanisms in such jets. The Navier-Stokes solver is based on an LES method on unstructured mesh and the acoustic solver on a high-order discontinuous Galerkin method on unstructured mesh. The methodology is first assessed on academic cases to validate the use of the two-way coupling. After preliminary computations, the methodology is applied to the simulation of the noise from a supersonic free jet at Mach 3.1. A geometric turbulence tripping method is implemented via a step at the nozzle wall. The computation leads to noise predictions very close to the experimental measurements performed at the MARTEL test bench and highlights significant nonlinear effects as well as a quite particular Mach waves radiation mechanism. Targeting even more realistic cases, the entire numerical approach is finally successfully adapted to the simulation of the noise from a supersonic jet configuration including a flame trench. In the future, it may be extended to configurations with clustered reactive jets, water injection devices or even at full scale.
|
Page generated in 0.073 seconds