• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 13
  • 8
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 286
  • 286
  • 172
  • 109
  • 83
  • 58
  • 54
  • 50
  • 50
  • 50
  • 40
  • 38
  • 35
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Problèmes de placement, de coloration et d'identification

Valicov, Petru 09 July 2012 (has links) (PDF)
Dans cette thèse, nous nous intéressons à trois problèmes issus de l'informatique théorique, à savoir le placement de formes rectangulaires dans un conteneur (OPP), la coloration dite "forte" d'arêtes des graphes et les codes identifiants dans les graphes. L'OPP consiste à décider si un ensemble d'items rectangulaires peut être placé sans chevauchement dans un conteneur rectangulaire et sans dépassement des bords de celui-ci. Une contrainte supplémentaire est prise en compte, à savoir l'interdiction de rotation des items. Le problème est NP-difficile même dans le cas où le conteneur et les formes sont des carrés. Nous présentons un algorithme de résolution efficace basé sur une caractérisation du problème par des graphes d'intervalles, proposée par Fekete et Schepers. L'algorithme est exact et utilise les MPQ-arbres - structures de données qui encodent ces graphes de manière compacte tout en capturant leurs propriétés remarquables. Nous montrons les résultats expérimentaux de notre approche en les comparant aux performances d'autres algorithmes existants. L'étude de la coloration forte d'arêtes et des codes identifiants porte sur les aspects structurels et de calculabilité de ces deux problèmes. Dans le cas de la coloration forte d'arêtes nous nous intéressons plus particulièrement aux familles des graphes planaires et des graphes subcubiques. Nous montrons des bornes optimales pour l'indice chromatique fort des graphes subcubiques en fonction du degré moyen maximum et montrons que tout graphe planaire subcubique sans cycles induits de longueur 4 et 5 est coloriable avec neuf couleurs. Enfin nous confirmons la difficulté du problème de décision associé, en prouvant qu'il est NP-complet dans des sous-classes restreintes des graphes planaires subcubiques. La troisième partie de la thèse est consacrée aux codes identifiants. Nous proposons une caractérisation des graphes identifiables dont la cardinalité du code identifiant minimum est n − 1, où n est l'ordre du graphe. Nous étudions la classe des graphes adjoints et nous prouvons des bornes inférieures et supérieures serrées pour la cardinalité du code identifiant minimum dans cette classe. Finalement, nous montrons qu'il existe un algorithme linéaire de calcul de ce paramètre dans la classe des graphes adjoints L(G) où G a une largeur arborescente bornée par une constante. En revanche nous nous apercevons que le problème est NP-complet dans des sous-classes très restreintes des graphes parfaits.
262

The Quantum Dialectic

Kelley, Logan 15 May 2011 (has links)
A philosophic account of quantum physics. The thesis is divided into two parts. Part I is dedicated to laying the groundwork of quantum physics, and explaining some of the primary difficulties. Subjects of interest will include the principle of locality, the quantum uncertainty principle, and Einstein's criterion for reality. Quantum dilemmas discussed include the double-slit experiment, observations of spin and polarization, EPR, and Bell's theorem. The first part will argue that mathematical-physical descriptions of the world fall short of explaining the experimental observations of quantum phenomenon. The problem, as will be argued, is framework of the physical descriptive schema. Part I includes in-depth discussions of mathematical principles. Part II will discuss the Copenhagen interpretation as put forth by its founders. The Copenhagen interpretation will be expressed as a paradox: The classical physical language cannot describe quantum phenomenon completely and with certainty, yet this language is the only possible method of articulating the physical world. The paradox of Copenhagen will segway into Kant's critique of metaphysics. Kant's understanding of causality, things-in-themselves, and a priori synthetic metaphysics. The thesis will end with a conclusion of the quantum paradox by juxtaposing anti-materialist Martin Heidegger with quantum founder Werner Heisenberg. Our conclusion will be primarily a discussion of how we understand the world, and specifically how our understanding of the world creates potential for truth.
263

RSA-kryptografi för gymnasiet

Gustafsson, Jonas, Olofsson, Isac January 2011 (has links)
Denna bok riktar sig till gymnasieelever som vill fördjupa sig i ämnet RSA-kryptografi . RSA-kryptografi är en avancerad metod för att kommunicera med hemliga meddelanden och används flitigt inom t.ex. bankvärlden. När du handlar med ditt kort eller använder din e-legitimation används RSA-kryptogra fi för att allt du gör ska vara skyddat och säkert. Vid stora transaktioner mellan olika banker används också RSA-kryptogra fi för att både den som betalar och den som får betalt ska vara säkra att allt går rätt till.Boken är uppdelad i fyra kapitel. Kapitel 3 och 4 är betydligt mer avancerade än kapitel 1 och 2. Kapitel 1 består mestadels av exempel och övningar som behandlar matematiken som krävs för att kunna utföra RSA-kryptogra fi med små tal. Kapitel 2 använder matematiken i kapitel 1 för att genom exempel och övingar metodiskt lära ut hur RSA-kryptogra fi med små tal går till. Kapitel 3 visar matematiken som ligger till grund för att RSA-kryptografi fungerar. Detta visas med hjälp av exempel, satser, förtydligade bevis samt några enstaka övningar. Kapitel 4 förklarar varför RSA-kryptografi är säkert och enkelt att använda. Primtalstester utgör det viktigaste ämnet i detta sista kapitel.
264

Nouveaux outils pour l'animation et le design : système d'animation de caméra pour la stop motion, fondée sur une interface haptique et design de courbes par des courbes algébriques-trigonométriques à hodographe pythagorien

Saini, Laura 13 June 2013 (has links) (PDF)
Dans la première partie de la thèse, nous présentons un nouveau système permettant de produire des mouvements de caméra réalistes pour l'animation stopmotion. Le système permettra d'enrichir les logiciels d'animation 3D classiques (comme par exemple Maya et 3D Studio Max) afin de leur faire contrôler des mouvements de caméra pour la stop motion, grâce à l'utilisation d'une interface haptique. Nous décrivons le fonctionnement global du système. La première étapeconsiste à récupérer et enregistrer les données envoyées par le périphérique haptique de motion capture. Dans la seconde étape, nous réélaborons ces données par un procédé mathématique, puis les exportons vers un logiciel de 3D pour prévisualiser les mouvements de la caméra. Finalement la séquence est exécutée avec un robot de contrôle de mouvement et un appareil photo. Le système est évalué par un groupe d'étudiants du Master "Art plastiques et Création numérique" de l'Université de Valenciennes. Dans la deuxième partie, nous définissons une nouvelle classe de courbes à partir des courbes polynomiales paramétriques à hodographe pythagorien (PH) construite sur un espace algébrique-trigonométrique. Nous montrons leurs propriétés fondamentaleset leurs avantages importants par rapport à leur équivalent polynomial, grâce à l'utilisation d'un paramètre de forme. Nous introduisons une formulation complexe et nous résolvons le problème d'interpolation de Hermite.
265

Décompositions de graphes : quelques limites et obstructions

Chapelle, Mathieu 05 December 2011 (has links) (PDF)
Les décompositions de graphes, lorsqu'elles sont de petite largeur, sont souvent utilisées pour résoudre plus efficacement des problèmes étant difficiles dans le cas de graphes quelconques. Dans ce travail de thèse, nous nous intéressons aux limites liées à ces décompositions, et à la construction d'obstructions certifiant leur grande largeur. Dans une première partie, nous donnons un algorithme généralisant et unifiant la construction d'obstructions pour différentes largeurs de graphes, en temps XP lorsque paramétré par la largeur considérée. Nous obtenons en particulier le premier algorithme permettant de construire efficacement une obstruction à la largeur arborescente en temps O^{tw+4}. La seconde partie de notre travail porte sur l'étude du problème Ensemble [Sigma,Rho]-Dominant, une généralisation des problèmes de domination sur les graphes et caractérisée par deux ensembles d'entiers Sigma et Rho. Les diverses études de ce problème apparaissant dans la littérature concernent uniquement les cas où le problème est FPT, lorsque paramétré par la largeur arborescente. Nous montrons que ce problème ne l'est pas toujours, et que pour certains cas d'ensembles Sigma et Rho, il devient W[1]-difficile lorsque paramétré par la largeur arborescente. Dans la dernière partie, nous étudions la complexité d'un nouveau problème de coloration appelé k-Coloration Additive, combinant théorie des graphes et théorie des nombres. Nous montrons que ce nouveau problème est NP-complet pour tout k >= 4 fixé, tandis qu'il peut être résolu en temps polynomial sur les arbres pour k quelconque et non fixé.
266

Déformations homotopiques dans les images digitales n-aires

Mazo, Loïc 01 December 2011 (has links) (PDF)
De nombreux domaines applicatifs utilisent des techniques de traitement d'images basées sur l'analyse de la topologie des images discrètes, en particulier pour des opérations devant préserver cette topologie. Si beaucoup de travaux théoriques et méthodologiques ont été menés dans le cadre des images binaires, les questions relatives à la modélisation et à la gestion simultanées des propriétés topologiques de plusieurs éléments sémantiques dans une même image discrète reste à l'heure actuelle un problème peu exploré. Dans cette thèse, nous avons porté notre attention sur la définition de déformations homotopiques compatibles avec la présence de plusieurs éléments non hiérarchisés dont les relations spatiales peuvent être significatives. Après avoir décrit le cadre théorique retenu pour les images binaires, et après avoir montré sa compatibilité avec les approches les plus fréquentes en imagerie, nous proposons des modélisations des images n-aires appuyées sur ce cadre théorique et dont les objets d'intérêts forment un sous-treillis de l'ensemble des parties de la partition initiale en régions de sémantiques distinctes. Ainsi, nous sommes en mesure de décrire quelques transformations élémentaires des images n-aires respectueuses non seulement des topologies individuelles des différents objets mais aussi des topologies "collectives" qui traduisent les inter-relations des objets.
267

Techniques combinatoires pour les algorithmes paramétrés et les noyaux, avec applications aux problèmes de multicoupe.

Daligault, Jean 05 July 2011 (has links) (PDF)
Dans cette thèse, nous abordons des problèmes NP-difficiles à l'aide de techniques combinatoires, en se focalisant sur le domaine de la complexité paramétrée. Les principaux problèmes que nous considérons sont les problèmes de Multicoupe et d'Arbre Orienté Couvrant avec Beaucoup de Feuilles. La Multicoupe est une généralisation naturelle du très classique problème de coupe, et consiste à séparer un ensemble donné de paires de sommets en supprimant le moins d'arêtes possible dans un graphe. Le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles consiste à trouver un arbre couvrant avec le plus de feuilles possible dans un graphe dirigé. Les résultats principaux de cette thèse sont les suivants. Nous montrons que le problème de Multicoupe paramétré par la taille de la solution est FPT (soluble à paramètre fixé), c'est-à-dire que l'existence d'une multicoupe de taille k dans un graphe à n sommets peut être décidée en temps f(k) ∗ poly(n). Nous montrons que Multicoupe dans les arbres admet un noyau polynomial, c'est-à-dire est réductible aux instances de taille polynomiale en k. Nous donnons un algorithme en temps O∗(3.72k) pour le problème d'Arbre Orienté Couvrant avec Beaucoup de Feuilles et le premier algorithme exponentiel exact non trivial (c'est-à-dire meilleur que 2n). Nous fournissons aussi un noyau quadratique et une approximation à facteur constant. Ces résultats algorithmiques sont basés sur des résultats combinatoires et des propriétés structurelles qui concernent, entre autres, les décompositions arborescentes, les mineurs, des règles de réduction et les s−t numberings. Nous présentons des résultats combinatoires hors du domaine de la complexité paramétrée: une caractérisation des graphes de cercle Helly comme les graphes de cercle sans diamant induit, et une caractérisation partielle des classes de graphes 2-bel-ordonnées.
268

[en] GEOMETRIC DISCRETE MORSE COMPLEXES / [pt] COMPLEXOS DE MORSE DISCRETOS E GEOMÉTRICOS

THOMAS LEWINER 26 October 2005 (has links)
[pt] A geometria diferencial descreve de maneira intuitiva os objetos suaves no espaço. Porém, com a evolução da modelagem geométrica por computador, essa ferramenta se tornou ao mesmo tempo necessária e difícil de se descrever no mundo discreto. A teoria de Morse ficou importante pela ligação que ela cria entre a topologia e a geometria diferenciais. Partindo de um ponto de vista mais combinatório, a teoria de Morse discreta de Forman liga de forma rigorosa os objetos discretos à topologia deles, abrindo essa teoria para estruturas discretas. Este trabalho propõe uma definição construtiva de funções de Morse geométricas no mundo discreto e do complexo de Morse-Smale correspondente, onde a geometria é definida como a amostragem de uma função suave nos vértices da estrutura discreta. Essa construção precisa de cálculos de homologia que se tornaram por si só uma melhoria significativa dos métodos existentes. A decomposição de Morse- Smale resultante pode ser eficientemente computada e usada para aplicações de cálculo da persistência, geração de grafos de Reeb, remoção de ruído e mais. . . / [en] Differential geometry provides an intuitive way of understanding smooth objects in the space. However, with the evolution of geometric modeling by computer, this tool became both necessary and difficult to transpose to the discrete setting. The power of Morse theory relies on the link it created between differential topology and geometry. Starting from a combinatorial point of view, Forman´s discrete Morse theory relates rigorously discrete objects to their topology, opening Morse theory to discrete structures. This work proposes a constructive definition of geometric discrete Morse functions and their corresponding discrete Morse-Smale complexes, where the geometry is defined as a smooth function sampled on the vertices of the discrete structure. This construction required some homology computations that turned out to be a significant improvement over existing methods by itself. The resulting Morse-Smale decomposition can then be efficiently computed, and used for applications to persistence computation, Reeb graph generation, noise removal. . .
269

Interactions entre les Cliques et les Stables dans un Graphe / Interactions between Cliques and Stable Sets in a Graph

Lagoutte, Aurélie 23 September 2015 (has links)
Cette thèse s'intéresse à différents types d'interactions entre les cliques et les stables, deux objets très importants en théorie des graphes, ainsi qu'aux relations entre ces différentes interactions. En premier lieu, nous nous intéressons au problème classique de coloration de graphes, qui peut s'exprimer comme une partition des sommets du graphe en stables. Nous présentons un résultat de coloration pour les graphes sans triangles ni cycles pairs de longueur au moins 6. Dans un deuxième temps, nous prouvons la propriété d'Erdös-Hajnal, qui affirme que la taille maximale d'une clique ou d'un stable devient polynomiale (contre logarithmique dans les graphes aléatoires) dans le cas des graphes sans chemin induit à k sommets ni son complémentaire, quel que soit k.Enfin, un problème moins connu est la Clique-Stable séparation, où l'on cherche un ensemble de coupes permettant de séparer toute clique de tout stable. Cette notion a été introduite par Yannakakis lors de l’étude des formulations étendues du polytope des stables dans un graphe parfait. Il prouve qu’il existe toujours un séparateur Clique-Stable de taille quasi-polynomiale, et se demande si l'on peut se limiter à une taille polynomiale. Göös a récemment fourni une réponse négative, mais la question se pose encore pour des classes de graphes restreintes, en particulier pour les graphes parfaits. Nous prouvons une borne polynomiale pour la Clique-Stable séparation dans les graphes aléatoires et dans plusieurs classes héréditaires, en utilisant notamment des outils communs à l'étude de la conjecture d'Erdös-Hajnal. Nous décrivons également une équivalence entre la Clique-Stable séparation et deux autres problèmes  : la conjecture d'Alon-Saks-Seymour généralisée et le Problème Têtu, un problème de Satisfaction de Contraintes. / This thesis is concerned with different types of interactions between cliques and stable sets, two very important objects in graph theory, as well as with the connections between these interactions. At first, we study the classical problem of graph coloring, which can be stated in terms of partioning the vertices of the graph into stable sets. We present a coloring result for graphs with no triangle and no induced cycle of even length at least six. Secondly, we study the Erdös-Hajnal property, which asserts that the maximum size of a clique or a stable set is polynomial (instead of logarithmic in random graphs). We prove that the property holds for graphs with no induced path on k vertices and its complement.Then, we study the Clique-Stable Set Separation, which is a less known problem. The question is about the order of magnitude of the number of cuts needed to separate all the cliques from all the stable sets. This notion was introduced by Yannakakis when he studied extended formulations of the stable set polytope in perfect graphs. He proved that a quasi-polynomial number of cuts is always enough, and he asked if a polynomial number of cuts could suffice. Göös has just given a negative answer, but the question is open for restricted classes of graphs, in particular for perfect graphs. We prove that a polynomial number of cuts is enough for random graphs, and in several hereditary classes. To this end, some tools developed in the study of the Erdös-Hajnal property appear to be very helpful. We also establish the equivalence between the Clique-Stable set Separation problem and two other statements: the generalized Alon-Saks-Seymour conjecture and the Stubborn Problem, a Constraint Satisfaction Problem.
270

O ensino dos modelos probabilísticos discretos no ensino médio

Santana, Jailson Santos 16 April 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work aims to support Basic Education teachers by providing a detailed materials for teaching Combinatorial Analysis, Probability and Probabilistic Models, taking into account aspects related to day-to- day using mathematical concepts in problem situations. We also propose a teaching sequence on the topics mentioned above for the Basic Education teachers to broaden and diversify their strategies education. / Este trabalho tem como objetivo dar suporte ao professor da Educação Básica fornecendo um material detalhado para o ensino da Análise Combinatória, Probabilidade e Modelos Probabilísticos, levando-se em consideração aspectos relacionados ao dia-a-dia, utilizando conceitos matemáticos em situações problemas. Propomos ainda uma sequência didática sobre os temas acima citados para que os professores da Educação Básica possam ampliar e diversificar as suas estratégias de ensino.

Page generated in 0.1112 seconds