• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 1
  • Tagged with
  • 25
  • 23
  • 20
  • 18
  • 16
  • 15
  • 14
  • 14
  • 13
  • 11
  • 9
  • 9
  • 8
  • 8
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Finding the QRS Complex in a Sampled ECG Signal Using AI Methods / Hitta QRS komplex in en samplad EKG signal med AI metoder

Skeppland Hole, Jeanette Marie Victoria January 2023 (has links)
This study aimed to explore the application of artificial intelligence (AI) and machine learning (ML) techniques in implementing a QRS detector forambulatory electrocardiography (ECG) monitoring devices. Three ML models, namely long short-term memory (LSTM), convolutional neural network (CNN), and multilayer perceptron (MLP), were compared and evaluated using the MIT-BIH arrhythmia database (MITDB) and the MIT-BIH noise stress test database (NSTDB). The MLP model consistently outperformed the other models, achieving high accuracy in R-peak detection. However, when tested on noisy data, all models faced challenges in accurately predicting R-peaks, indicating the need for further improvement. To address this, the study emphasized the importance of iteratively refining the input data configurations for achieving accurate R-peak detection. By incorporating both the MITDB and NSTDB during training, the models demonstrated improved generalization to noisy signals. This iterative refinement process allowed for the identification of the best models and configurations, consistently surpassing existing ML-based implementations and outperforming the current ECG analysis system. The MLP model, without shifting segments and utilizing both datasets, achieved an outstanding accuracy of 99.73 % in R-peak detection. This accuracy exceeded values reported in the literature, demonstrating the superior performance of this approach. Furthermore, the shifted MLP model, which considered temporal dependencies by incorporating shifted segments, showed promising results with an accuracy of 99.75 %. It exhibited enhanced accuracy, precision, and F1-score compared to the other models, highlighting the effectiveness of incorporating shifted segments. For future research, it is important to address challenges such as overfitting and validate the models on independent datasets. Additionally, continuous refinement and optimization of the input data configurations will contribute to further advancements in ECG signal analysis and improve the accuracy of R-peak detection. This study underscores the potential of ML techniques in enhancing ECG analysis, ultimately leading to improved cardiac diagnostics and better patient care. / Syftet med denna studie var att utforska användningen av AI- och ML-tekniker för att implementera en QRS-detektor i EKG-övervakningsenheter. Tre olika ML-modeller, LSTM, CNN och MLP jämfördes och utvärderades med hjälp av MITDB och NSTDB. Resultaten visade att MLP-modellen konsekvent presterade bättre än de andra modellerna och uppnådde hög noggrannhet vid detektion av R-toppar i EKG-signalen. Trots detta stötte alla modeller på utmaningar när de testades på brusig realtidsdata, vilket indikerade behovet av ytterligare förbättringar. För att hantera dessa utmaningar betonade studien vikten av att iterativt förbättra konfigurationen av indata för att uppnå noggrann detektering av R toppar. Genom att inkludera både MITDB och NSTDB under träningen visade modellerna förbättrad förmåga att generalisera till brusiga signaler. Denna iterativa process möjliggjorde identifiering av de bästa modellerna och konfigurationerna, vilka konsekvent överträffade befintliga ML-baserade implementeringar och presterade bättre än den nuvarande EKG-analysystemet. MLP-modellen, utan användning av skiftade segment och med båda databaserna, uppnådde en imponerande noggrannhet på 99,73 % vid detektion av R-toppar. Denna noggrannhet överträffade tidigare studier och visade på den överlägsna prestandan hos denna metod. Dessutom visade den skiftade MLP-modellen, som inkluderade skiftade segment för att beakta tidsberoenden, lovande resultat med en noggrannhet på 99,75 %. Modellen uppvisade förbättrad noggrannhet, precision och F1-score jämfört med de andra modellerna, vilket betonar vikten av att inkludera skiftade segment. För framtida studier är det viktigt att hantera utmaningar som överanpassning och att validera modellerna med oberoende datamängder. Dessutom kommer en kontinuerlig förfining och optimering av konfigurationen av indata att bidra till ytterligare framsteg inom EKG-signalanalys och förbättrad noggrannhet vid detektion av R-toppar. Denna studie understryker potentialen hos ML-modeller för att förbättra EKG-analysen och därigenom bidra till förbättrad diagnostik av hjärtsjukdomar och högre kvalitet inom patientvården.
22

Investigating Multi-Objective Reinforcement Learning for Combinatorial Optimization and Scheduling Problems : Feature Identification for multi-objective Reinforcement Learning models / Undersökning av förstärkningsinlärning av flera mål för kombinatorisk optimering och schemaläggningsproblem : Funktionsidentifiering för förstärkningsinlärning av flera mål för kombinatorisk optimering och schemaläggningsproblem

Fridsén Skogsberg, Rikard January 2022 (has links)
Reinforcement Learning (RL) has in recent years become a core method for sequential decision making in complex dynamical systems, being of great interest to support improvements in scheduling problems. This could prove important to areas in the newer generation of cellular networks. One such area is the base stations scheduler which allocates radio resources to users. This is posed as large-scale optmization problem which needs to be solved in millisecond intervals, while at the same time accounting for multiple, sometimes conflicting, objectives like latency or Quality of Service requirements. In this thesis, multi-objective RL (MORL) solutions are proposed and evaluated in order to identify desired features for novel applications to the scheduling problem. The posed solution classes were tested in common MORL benchmark environments such as Deep Sea Treasure for efficient and informative evaluation of features. It was ultimately tested in environments to solve combinatorial optmization and scheduling problems. The results indicate that outer-loop multi-policy solutions are able to produce models that comply with desired features for scheduling. A multi-policy multi-objective deep Q-network was implemented and showed it can produce an adaptive-at-run-time discrete model, based on an outer-loop approach that calls a single-policy algorithm. The presented approach does not increase in complexity when adding objectives but generally requires larger sampling quantities for convergence. Differing scalarization techniques of the reward was tested, indicating effect on variance that could effect performance in certain environment characteristics. / Försärkningsinlärning som en gångbar metod för sekventiellt beslutsfattande i komplexa dynamiska system har ökat under de senaste åren tack vare förbättrade hårdvaru möjligheter. Intressenter av denna teknik finns bland annat inom telekom-indistrin vars aktörer har som mål att uteveckla nya generationens mobilnätverk. En av de grundläggande funktionerna i en basstation är scheduleraren vars uppgift är att allokera radio resurser till användare i nätverket. Detta ställs med fördel upp som ett optimeringsproblem som nödvändiggör att problemet måste lösas på millisekund nivå samtidigt som den kan ta flera typer av mål i beaktning, såsom QoS krav och latens. I detta examensarbete så presenteras och utvärderas förstärningsinlärnings algoritmer för flera mål inom flera lösningsklasser i syfte att identifiera önskvärda funktioner för nya tillämpningar inom radio resurs schemaläggning. De presenterade lösningsklasserna av algoritmer testades i vanligt förekommande riktmärkesmiljöer för denna typ av teknik såsom Deep Sea Treasure för att på effektivt sätt utvärdera de kvalitéer och funktioner varje algoritm har. Slutligen testades lösningen i miljöer inom kombinatorisk optimering och schemaläggning. Resultaten indikerar att fler-policy lösningar har kapaciteten att producera modeller som ligger inom de krav problemet kräver. Fler-policy modeller baserade på djupa Q-närverk av flera mål kunde framställa adaptiva, diskreta realtidsmodeller. Denna lösning ökar inte komplexiteten när fler mål läggs till men har generellt behov av större mängder samplade preferenser för att konvergera. Olika skaläriseringstekniker av belöningen testades och indikerade att dessa påverkade variansen, vilket i vissa typer av miljö konfigurationer påverkade resultaten.
23

Scene Reconstruction From 4D Radar Data with GAN and Diffusion : A Hybrid Method Combining GAN and Diffusion for Generating Video Frames from 4D Radar Data / Scenrekonstruktion från 4D-radardata med GAN och Diffusion : En Hybridmetod för Generation av Bilder och Video från 4D-radardata med GAN och Diffusionsmodeller

Djadkin, Alexandr January 2023 (has links)
4D Imaging Radar is increasingly becoming a critical component in various industries due to beamforming technology and hardware advancements. However, it does not replace visual data in the form of 2D images captured by an RGB camera. Instead, 4D radar point clouds are a complementary data source that captures spatial information and velocity in a Doppler dimension that cannot be easily captured by a camera's view alone. Some discriminative features of the scene captured by the two sensors are hypothesized to have a shared representation. Therefore, a more interpretable visualization of the radar output can be obtained by learning a mapping from the empirical distribution of the radar to the distribution of images captured by the camera. To this end, the application of deep generative models to generate images conditioned on 4D radar data is explored. Two approaches that have become state-of-the-art in recent years are tested, generative adversarial networks and diffusion models. They are compared qualitatively through visual inspection and by two quantitative metrics: mean squared error and object detection count. It is found that it is easier to control the generative adversarial network's generative process through conditioning than in a diffusion process. In contrast, the diffusion model produces samples of higher quality and is more stable to train. Furthermore, their combination results in a hybrid sampling method, achieving the best results while simultaneously speeding up the diffusion process. / 4D bildradar får en alltmer betydande roll i olika industrier tack vare utveckling inom strålformningsteknik och hårdvara. Det ersätter dock inte visuell data i form av 2D-bilder som fångats av en RGB-kamera. Istället utgör 4D radar-punktmoln en kompletterande datakälla som representerar spatial information och hastighet i form av en Doppler-dimension. Det antas att vissa beskrivande egenskaper i den observerade miljön har en abstrakt representation som de två sensorerna delar. Därmed kan radar-datan visualiseras mer intuitivt genom att lära en transformation från fördelningen över radar-datan till fördelningen över bilderna. I detta syfte utforskas tillämpningen av djupa generativa modeller för bilder som är betingade av 4D radar-data. Två metoder som har blivit state-of-the-art de senaste åren testas: generativa antagonistiska nätverk och diffusionsmodeller. De jämförs kvalitativt genom visuell inspektion och med kvantitativa metriker: medelkvadratfelet och antalet korrekt detekterade objekt i den genererade bilden. Det konstateras att det är lättare att styra den generativa processen i generativa antagonistiska nätverk genom betingning än i en diffusionsprocess. Å andra sidan är diffusionsmodellen stabil att träna och producerar generellt bilder av högre kvalité. De bästa resultaten erhålls genom en hybrid: båda metoderna kombineras för att dra nytta av deras respektive styrkor. de identifierade begränsningarna i de enskilda modellerna och kurera datan för att jämföra hur dessa modeller skalar med större datamängder och mer variation.
24

Incorporating Scene Depth in Discriminative Correlation Filters for Visual Tracking

Stynsberg, John January 2018 (has links)
Visual tracking is a computer vision problem where the task is to follow a targetthrough a video sequence. Tracking has many important real-world applications in several fields such as autonomous vehicles and robot-vision. Since visual tracking does not assume any prior knowledge about the target, it faces different challenges such occlusion, appearance change, background clutter and scale change. In this thesis we try to improve the capabilities of tracking frameworks using discriminative correlation filters by incorporating scene depth information. We utilize scene depth information on three main levels. First, we use raw depth information to segment the target from its surroundings enabling occlusion detection and scale estimation. Second, we investigate different visual features calculated from depth data to decide which features are good at encoding geometric information available solely in depth data. Third, we investigate handling missing data in the depth maps using a modified version of the normalized convolution framework. Finally, we introduce a novel approach for parameter search using genetic algorithms to find the best hyperparameters for our tracking framework. Experiments show that depth data can be used to estimate scale changes and handle occlusions. In addition, visual features calculated from depth are more representative if they were combined with color features. It is also shown that utilizing normalized convolution improves the overall performance in some cases. Lastly, the usage of genetic algorithms for hyperparameter search leads to accuracy gains as well as some insights on the performance of different components within the framework.
25

Medical image captioning based on Deep Architectures / Medicinsk bild textning baserad på Djupa arkitekturer

Moschovis, Georgios January 2022 (has links)
Diagnostic Captioning is described as “the automatic generation of a diagnostic text from a set of medical images of a patient collected during an examination” [59] and it can assist inexperienced doctors and radiologists to reduce clinical errors or help experienced professionals increase their productivity. In this context, tools that would help medical doctors produce higher quality reports in less time could be of high interest for medical imaging departments, as well as significantly impact deep learning research within the biomedical domain, which makes it particularly interesting for people involved in industry and researchers all along. In this work, we attempted to develop Diagnostic Captioning systems, based on novel Deep Learning approaches, to investigate to what extent Neural Networks are capable of performing medical image tagging, as well as automatically generating a diagnostic text from a set of medical images. Towards this objective, the first step is concept detection, which boils down to predicting the relevant tags for X-RAY images, whereas the ultimate goal is caption generation. To this end, we further participated in ImageCLEFmedical 2022 evaluation campaign, addressing both the concept detection and the caption prediction tasks by developing baselines based on Deep Neural Networks; including image encoders, classifiers and text generators; in order to get a quantitative measure of my proposed architectures’ performance [28]. My contribution to the evaluation campaign, as part of this work and on behalf of NeuralDynamicsLab¹ group at KTH Royal Institute of Technology, within the school of Electrical Engineering and Computer Science, ranked 4th in the former and 5th in the latter task [55, 68] among 12 groups included within the top-10 best performing submissions in both tasks. / Diagnostisk textning avser automatisk generering från en diagnostisk text från en uppsättning medicinska bilder av en patient som samlats in under en undersökning och den kan hjälpa oerfarna läkare och radiologer, minska kliniska fel eller hjälpa erfarna yrkesmän att producera diagnostiska rapporter snabbare [59]. Därför kan verktyg som skulle hjälpa läkare och radiologer att producera rapporter av högre kvalitet på kortare tid vara av stort intresse för medicinska bildbehandlingsavdelningar, såväl som leda till inverkan på forskning om djupinlärning, vilket gör den domänen särskilt intressant för personer som är involverade i den biomedicinska industrin och djupinlärningsforskare. I detta arbete var mitt huvudmål att utveckla system för diagnostisk textning, med hjälp av nya tillvägagångssätt som används inom djupinlärning, för att undersöka i vilken utsträckning automatisk generering av en diagnostisk text från en uppsättning medi-cinska bilder är möjlig. Mot detta mål är det första steget konceptdetektering som går ut på att förutsäga relevanta taggar för röntgenbilder, medan slutmålet är bildtextgenerering. Jag deltog i ImageCLEF Medical 2022-utvärderingskampanjen, där jag deltog med att ta itu med både konceptdetektering och bildtextförutsägelse för att få ett kvantitativt mått på prestandan för mina föreslagna arkitekturer [28]. Mitt bidrag, där jag representerade forskargruppen NeuralDynamicsLab² , där jag arbetade som ledande forskningsingenjör, placerade sig på 4:e plats i den förra och 5:e i den senare uppgiften [55, 68] bland 12 grupper som ingår bland de 10 bästa bidragen i båda uppgifterna.

Page generated in 0.0395 seconds