141 |
Zur Theorie von Korrelations- undTemperatureffekten in Spektroskopien / Die ferromagnetischen 3d-ÜbergangsmetalleWegner, Torsten 10 October 2000 (has links)
Die Untersuchung von korrelationsinduzierten Effekten, wie beispielsweise der kollektiven magnetischen Ordnung, verlangt einen Einblick in die elektronische Struktur der Festkörper. Hier stehen mit den Ein-Teilchen-Spektroskopien (Photoemission und inverse Photoemission) sowie den Zwei-Teilchen-Spektroskopien (Auger-Elektronen- und Appearance-Potential-Spektroskopien) nützliche experimentelle Werkzeuge zur Verfügung. Eine adäquate Interpretation der experimentell ermittelten Spektren erfordert die Berücksichtigung (i) der elektronischen Korrelationen, (ii) der orbitalen Entartung sowie (iii) der Übergangsmatrixelemente. Der vorliegenden Arbeit liegt ein Multiband-Hubbard-Modell zugrunde, das die Hopping- und Hybridisierungsprozesse der für die 3d-Übergangsmetalle relevanten Orbitale (4s-, 4p- und 3d-Orbitale) und die lokalen Coulomb-Wechselwirkungen der stark lokalisierten 3d-Elektronen beschreibt. Die Hopping- und Hybridisierungsparameter werden Bandstrukturrechnungen (lokale Dichteapproximation der Dichtefunktionaltheorie) entnommen. Als Ein-Teilchen-Basis werden quasiatomare Orbitale verwendet, deren hohe Symmetrie es erlaubt, die vollständige lokale 3d-Coulomb-Matrix mithilfe von lediglich drei Zahlen (effektive Slater-Parameter) zu parametrisieren. Fasst man die effektiven Slater-Parameter zu einer mittleren direkten Wechselwirkungsstärke U und einer mittleren Austauschwechselwirkungsstärke J zusammen, so sind U und J die beiden einzigen Parameter des Modells, die dann an experimentelle Daten (z.B. Spinmoment bei T=0K) angepasst werden können. Für die Berechnung der Ein-Teilchen-Green-Funktion, die die Photoemissionsspektren bestimmt, wird die Störungstheorie zweiter Ordnung um die Hartree-Fock-Lösung verwendet und damit die Magnetisierung als Funktion der Temperatur für Nickel berechnet. Die Kombination der errechneten Green-Funktion mit den Übergangsmatrixelementen der Photoemission gestattet dann einen quantitiven Vergleich mit experimentellen spin- und winkelaufgelösten Daten für endliche Temperaturen und verschiedene Photonenenergien. Die Zwei-Teilchen-Spektren lassen sich als Funktionale der Ein-Teilchen-Green-Funktion auffassen. Durch die Verwendung sogenannter Leiter-Näherungen werden nicht nur die Wechselwirkungen der an den Übergangsprozessen beteiligten Teilchen mit dem Restsystem (Selbstenergieeinschübe) berücksichtigt, sonderen auch die Wechselwirkungen der direkt am Prozess beteiligten Teilchen untereinander (Endzustandskorrelationen). Die Verwendung des Zwei-Stufen-Modells impliziert jedoch, dass die Valenzbandelektronen das Potential des zuvor erzeugten Core-Lochs abschirmen werden, was sich insbesondere auf die Auger-Spektren auswirkt. Am Beispiel der Appearance-Potential-Spektren wird die vielteilchentheoretisch berechnete Green-Funktion mit entsprechenden Übergangsmatrixelementen kombiniert. Die resultierenden Spektren sind für alle betrachteten Temperaturen in sehr guter Übereinstimmung mit gemessenen Spektren. / The investigation of correlation-induced effects, as for example the collective magnetic order, requires an insight into the electronic structure of solids. In this context the one-particle spectroscopies (photoemission and inverse photoemission) as well as the two-particle spectroscopies (Auger electron and appearance potential spectroscopies) represent useful experimental tools. An adequate interpretation of the experimentally determined spectra requires the consideration of (i) electronic correlations, (ii) orbital degeneration as well as (iii) transition-matrix elements. The present work uses a multi-band Hubbard model, which describes the hopping and hybridization processes of the relevant orbitals in the 3d-transition metals (4s, 4p and 3d orbitals) and the local Coulomb interactions of the strongly localized 3d electrons. The hopping and hybridization parameters are taken from band-structure calculations (local density approximation of the density functional theory). As one-particle basis quasi-atomic orbitals are used, whose high symmetry permits it to parameterize the complete local Coulomb-matrix among 3d-electrons by only three numbers (effective Slater parameters). If one combines the effective Slater parameters into an averaged direct interaction strength U and an averaged exchange interaction strength J, then U and J are the only parameters of the model, which can be fitted to experimental data (e.g. spin moment at T=0K). For the calculation of the one-particle Green function, which determines the photoemission spectra, the second order perturbation theory around the Hartree-Fock solution is used. Within this framework the magnetization as function of the temperature is calculated for nickel. The combination of the calculated Green function and the photoemission transition-matrix elements permits a quantitative comparison with spin- and angle-resolved measurements for finite temperatures and different photon energies. The two-particle spectra can be understood as functionals of the one-particle Green function. Due to the usage of so called ladder approximations one is able to account not only for the correlations between the considered particles and the remainder system (self-energy insertations) but also for the correlations among those particles directly involved in the transition (final state correlations). The usage of the two-step model implies, however, that the valence band electrons tend to screen the additional potential of the core hole created before, which in particular affects the Auger spectra. As an example, the appearance potential spectra of nickel are calculated by combining the corresponding Green function with appropriate transition-matrix elements. The resulting spectra are in a very good agreement with measured spectra for all temperatures.
|
142 |
Structure and Dynamics of Core-Excited SpeciesTravnikova, Oksana January 2008 (has links)
<p>In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies.</p><p>We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl<sub>2</sub> and C1s<sup>−1</sup>π*<sup>1</sup> states of allene molecules. The combined use of high-resolution spectroscopy with <i>ab initio</i> calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl<sub>2</sub> which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N<sub>2</sub>O.</p><p>We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH<sub>3</sub>X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.</p>
|
143 |
Photoelectron Spectroscopy on Atoms, Molecules and Clusters : The Geometric and Electronic Structure Studied by Synchrotron Radiation and LasersRander, Torbjörn January 2007 (has links)
<p>Atoms, molecules and clusters all constitute building blocks of macroscopic matter. Therefore, understanding the electronic and geometrical properties of such systems is the key to understanding the properties of solid state objects.</p><p>In this thesis, some atomic, molecular and cluster systems (clusters of O<sub>2</sub>, CH<sub>3</sub>Br, Ar/O<sub>2</sub>, Ar/Xe and Ar/Kr; dimers of Na; Na and K atoms) have been investigated using synchrotron radiation, and in the two last instances, laser light. We have performed x-ray photoelectron spectroscopy (XPS) on all of these systems. We have also applied ultraviolet photoelectron spectroscopy (UPS), resonant Auger spectroscopy (RAS) and near-edge x-ray absorption spectroscopy (NEXAFS) to study many of the systems. Calculations using <i>ab initio</i> methods, namely density functional theory (DFT) and Møller-Plesset perturbation theory (MP), were employed for electronic structure calculations. The geometrical structure was studied using a combination of <i>ab initio</i> and molecular dynamics (MD) methods.</p><p>Results on the dissociation behavior of CH<sub>3</sub>Br and O<sub>2</sub> molecules in clusters are presented. The dissociation of the Na<sub>2</sub> molecule has been characterized and the molecular field splitting of the Na 2<i>p</i> level in the dimer has been measured. The molecular field splitting of the CH<sub>3</sub>Br 3<i>d</i> level has been measured and the structure of CH<sub>3</sub>Br clusters has been determined to be similar to the structure of the bulk solid. The diffusion behavior of O<sub>2</sub>, Kr and Xe on large Ar clusters, as a function of doping rate, has been investigated. The shake-down process has been observed from excited states of Na and K. Laser excited Na atoms have been shown to be magnetically aligned. The shake-down process was used to characterize the origin of various final states that can be observed in the spectrum of ground-state K.</p>
|
144 |
A Treatise on the Geometric and Electronic Structure of Clusters : Investigated by Synchrotron Radiation Based Electron SpectroscopiesLindblad, Andreas January 2008 (has links)
<p>Clusters are finite ensembles of atoms or molecules with sizes in the nanometer regime (<i>i.e.</i> nanoparticles). This thesis present results on the geometric and electronic structure of homogeneous and heterogeneous combinations of atoms and molecules. The systems have been studied with synchrotron radiation and valence, core and Auger electron spectroscopic techniques.</p><p>The first theme of the thesis is that of mixed clusters. It is shown that by varying the cluster production technique both structures that are close to that predicted by equilibrium considerations can be attained as well as far from equilibrium structures.</p><p>Electronic processes following ionization constitute the second theme. The post-collision interaction phenomenon, energy exchange between the photo- and the Auger electrons, is shown to be different in clusters of argon, krypton and xenon. A model is proposed that takes polarization screening in the final state into account. This result is of general character and should be applicable to the analysis of core level photoelectron and Auger electron spectra of insulating and semi-conducting bulk materials as well.</p><p>Interatomic Coloumbic Decay is a process that can occur in the condensed phases of weakly bonded systems. Results on the time-scale of the process in Ne clusters and mixed Ar/Ne clusters are herein discussed, as well observations of resonant contributions to the process. In analogy to Auger <i>vis-à-vis</i> Resonant Auger it is found that to the ICD process there is a corresponding Resonant ICD process possible. This has later been observed in other systems and by theoretical calculations as well in subsequent works by other groups.</p><p>Delocalization of dicationic valence final states in the hydrogen bonded ammonia clusters and aqueous ammonia has also been investigated by Auger electron spectroscopy. With those results it was possible to assign a previously observed feature in the Auger electron spectrum of solid ammonia.</p>
|
145 |
Photoelectron Spectroscopy on Atoms, Molecules and Clusters : The Geometric and Electronic Structure Studied by Synchrotron Radiation and LasersRander, Torbjörn January 2007 (has links)
Atoms, molecules and clusters all constitute building blocks of macroscopic matter. Therefore, understanding the electronic and geometrical properties of such systems is the key to understanding the properties of solid state objects. In this thesis, some atomic, molecular and cluster systems (clusters of O2, CH3Br, Ar/O2, Ar/Xe and Ar/Kr; dimers of Na; Na and K atoms) have been investigated using synchrotron radiation, and in the two last instances, laser light. We have performed x-ray photoelectron spectroscopy (XPS) on all of these systems. We have also applied ultraviolet photoelectron spectroscopy (UPS), resonant Auger spectroscopy (RAS) and near-edge x-ray absorption spectroscopy (NEXAFS) to study many of the systems. Calculations using ab initio methods, namely density functional theory (DFT) and Møller-Plesset perturbation theory (MP), were employed for electronic structure calculations. The geometrical structure was studied using a combination of ab initio and molecular dynamics (MD) methods. Results on the dissociation behavior of CH3Br and O2 molecules in clusters are presented. The dissociation of the Na2 molecule has been characterized and the molecular field splitting of the Na 2p level in the dimer has been measured. The molecular field splitting of the CH3Br 3d level has been measured and the structure of CH3Br clusters has been determined to be similar to the structure of the bulk solid. The diffusion behavior of O2, Kr and Xe on large Ar clusters, as a function of doping rate, has been investigated. The shake-down process has been observed from excited states of Na and K. Laser excited Na atoms have been shown to be magnetically aligned. The shake-down process was used to characterize the origin of various final states that can be observed in the spectrum of ground-state K.
|
146 |
A Treatise on the Geometric and Electronic Structure of Clusters : Investigated by Synchrotron Radiation Based Electron SpectroscopiesLindblad, Andreas January 2008 (has links)
Clusters are finite ensembles of atoms or molecules with sizes in the nanometer regime (i.e. nanoparticles). This thesis present results on the geometric and electronic structure of homogeneous and heterogeneous combinations of atoms and molecules. The systems have been studied with synchrotron radiation and valence, core and Auger electron spectroscopic techniques. The first theme of the thesis is that of mixed clusters. It is shown that by varying the cluster production technique both structures that are close to that predicted by equilibrium considerations can be attained as well as far from equilibrium structures. Electronic processes following ionization constitute the second theme. The post-collision interaction phenomenon, energy exchange between the photo- and the Auger electrons, is shown to be different in clusters of argon, krypton and xenon. A model is proposed that takes polarization screening in the final state into account. This result is of general character and should be applicable to the analysis of core level photoelectron and Auger electron spectra of insulating and semi-conducting bulk materials as well. Interatomic Coloumbic Decay is a process that can occur in the condensed phases of weakly bonded systems. Results on the time-scale of the process in Ne clusters and mixed Ar/Ne clusters are herein discussed, as well observations of resonant contributions to the process. In analogy to Auger vis-à-vis Resonant Auger it is found that to the ICD process there is a corresponding Resonant ICD process possible. This has later been observed in other systems and by theoretical calculations as well in subsequent works by other groups. Delocalization of dicationic valence final states in the hydrogen bonded ammonia clusters and aqueous ammonia has also been investigated by Auger electron spectroscopy. With those results it was possible to assign a previously observed feature in the Auger electron spectrum of solid ammonia.
|
147 |
Structure and Dynamics of Core-Excited SpeciesTravnikova, Oksana January 2008 (has links)
In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies. We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl2 and C1s−1π*1 states of allene molecules. The combined use of high-resolution spectroscopy with ab initio calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl2 which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N2O. We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH3X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.
|
148 |
Theoretical Investigations Of Core-Level Spectroscopies In Strongly Correlated SystemsGupta, Subhra Sen 12 1900 (has links)
Ever since the discovery of exotic phenomena like high temperature (Tc) superconductivity
in the cuprates and colossal magnetoresistance in the manganites, strongly correlated electron systems have become the center of attention in the field of condensed matter physics research. This renewed interest has been further kindled by the rapid development of sophisticated experimental techniques and tremendous computational power. Computation plays
a pivotal role in the theoretical investigation of these systems, because one cannot explain their complicated phase diagrams by simple, exactly solvable models. Among the plethora of experimental techniques, various kinds of high energy electron spectroscopies are fast gaining importance due to the multitude of physical properties and phenomena which they
can access. However the physical processes involved and the interpretation of the spectra obtained from these spectroscopies are extremely complex and require extensive theoretical modelling. This thesis is concerned with the theoretical modelling of a certain class of high energy electron spectroscopies, viz. the core-level electron spectroscopies, for strongly correlated systems of various kinds. The spectroscopies covered are Auger electron spectroscopy
(AES), core-level photoemission spectroscopy (core-level PES) and X-ray absorption spec-
troscopy (XAS), which provide non-magnetic information, and also X-ray magnetic circular
and linear dichroism (XMCD and XMLD), which provide magnetic information.
.
|
149 |
Elektronenspektroskopie und Faktoranalyse zur Untersuchung von ionenbeschossenen Metall (Re, Ir, Cr, Fe)-Silizium-SchichtenReiche, Rainer 29 January 2000 (has links) (PDF)
No description available.
|
150 |
Solvent–Solute Interaction : Studied by Synchrotron Radiation Based Photo and Auger Electron SpectroscopiesPokapanich, Wandared January 2011 (has links)
Aqueous solutions were studied using photoelectron and Auger spectroscopy, based on synchrotron radiation and a liquid micro-jet setup. By varying the photon energy in photoelectron spectra, we depth profiled an aqueous tetrabutylammonium iodide (TBAI) solution. Assuming uniform angular emission from the core levels, we found that the TBA+ ions were oriented at the surface with the hydrophobic butyl arms sticking into the liquid. We investigated the association between ions and their neighbors in aqueous solutions by studying the electronic decay after core ionization. The (2p)−1 decay of solvated K+ and Ca2+ ions was studied. The main features in the investigated decay spectra corresponded to two-hole final states localized on the ions. The spectra also showed additional features, related to delocalized two-hole final states with vacancies on a cation and a neighboring water molecule. These two processes compete, and by comparing relative intensities and using the known rate for the localized decay, we determined the time-scale for the delocalized process for the two ions. We compared to delocalized electronic decay processes in Na+, Mg2+, and Al3+, and found that they were slower in K+ and Ca2+, due to different internal decay mechanisms of the ions, as well as external differences in the ion-solute distances and interactions. In the O 1s Auger spectra of aqueous metal halide solutions, we observed features related to delocalized two-hole final states with vacancies on a water molecule and a neighboring solvated anion. The relative intensity of these feature indicated that the strength of the interaction between the halide ions and water correlated with ionic size. The delocalized decay was also used to investigate contact ion pair formation in high concentrated potassium halide solutions, but no concrete evidence of contact ion pairs was observed. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 726
|
Page generated in 0.0741 seconds