• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymer-based conductive fibers

Karlsson, Fredrik, Söderlöv, Erik January 2016 (has links)
Conductive polymers, since from their discovery, have become a prominent area of research and found many useful applications in all fields of our daily life. Examples are light emitting diodes, heat generation, chemical sensors and electro-active membranes. Polymer coated textile substrates give flexible and lightweight materials. One well utilized and thoroughly explored conductive polymer is poly(3,4-ethylenedioxythiophene) also known as PEDOT. Although there are different ways to produce PEDOT one of the most common is the VPP technique. The typical procedure when using VPP is to introduce the monomer vapor to an oxidant coated substrate so that it polymerizes on the surface of the substrate. Throughout this study, the VPP technique has been used to produce PEDOT on different textile fibers. Aim was first of all optimizing the process gaining low electric resistance, i. e. high conductivity, of produced coated fibers but also multilayer coatings of fibers. Outcome indicates some parameters not having a clear influence over the results while others had a more distinct impact. A noteworthy result was obtained by coating a substrate, namely lyocell fiber, multiple times with layers deposited directly on each other. This decreased the resistance from 5.1 (± 1.6) kΩ/10 cm to 1.0 (± 0.1) kΩ/10 cm, for one layer and multiple layers respectively. Adding 15 wt. % of the copolymer PEG-PPG-PEG to the oxidant solution decreased the resistance from 6.8 (± 1.2) kΩ/10 cm to 3.9 (± 0.8) kΩ/10 cm. Final conclusion is that among the ways, to improve conductivity for PEDOT coated fibers, applied in this study are best results obtained by multi-layer coating.
2

Synthesis and characterization of hybrid materials containing gold or platinum nanoparticles and poly(3,4-ethylenedioxythiophenes) for electrochemistry / Síntese e caracterização de materiais híbridos contendo nanopartículas de ouro ou platina e poli(3,4-etilenodioxitiofenos) para eletroquímica

Minadeo, Marco Antonio de Oliveira Santos 14 December 2018 (has links)
Among the organic electronic conducting organic polymers PEDOT (poly(3,4- ethylenedioxythiophene)) is largely used in the making of electrodes for miniaturized, light and portable devices. The chemical, mechanical, electrochemical and optical properties of the conducting polymers are essential to plan the future research with them, as in, e.g., electrochromic devices (transmissive and reflective), chronoamperometric sensors, voltammetric sensors and controlled drug release systems. Degradability is also an important factor considering the environmental impact of the materials. Nanoparticles (NPs) of Au or Pt (1−100 nm size), when surrounded by a stabilizer, are stable, have reactive and functionalizable surfaces and catalyze many electron transfer reactions. Combinations of noble metal nanoparticles with PEDOTs (PEDOT and its derivatives) have been studied in the last years to obtain singular characteristics of the materials. The goals of this work are to study the synthesis of new inorganic/organic hybrids and their electrochemical behavior. Through 1-step oxidoreduction reaction in aqueous media, hybrids of core-shell Au@PEDOT nanoparticles were synthesized. Through this same strategy, nanoparticles of Pt dispersed in a matrix of PEDOT were synthesized. The Au@PEDOT nanoparticles had their electrochromic behavior studied. With the biodegradable macromonomer EDOTpoly(lactic acid) (EDOT-PLA) were prepared hybrids of NPsAu/(oligomers of EDOTPLA) and also of NPsAu with the new polymer PEDOT-PLA. The produced materials were analyzed. The nanoparticles are very small, with a maximum of distribution in less than 10 nm. Its observed that PEDOT-PLA is conducting, electronically similar to PEDOT and insoluble in water. It is also more stable as a film than PEDOT. NPsAu/PEDOT-PLA demonstrates to have electrocatalytic towards the reduction of hydrogen peroxide. Electrodes of high performance towards the reduction of hydrogen peroxide were thus obtained (sensitivity 8.4x10-3 A cm-2 mol-1 L; linear range (5.1x10-4 − 4.5x10-2) mol L-1; limit of detection 1.7x10-4 mol L-1). Syntheses of acrylic hydrogels and the insertion of nanoparticles/PEDOT in them were also performed, modifying their properties. / Entre os polímeros orgânicos condutores eletrônicos o PEDOT (poli(3,4- etilenodioxitiofeno)) é largamente utilizado na fabricação de eletrodos em dispositivos miniaturizados, leves e portáteis. As propriedades químicas, mecânicas, eletroquímicas e ópticas dos polímeros condutores são essenciais para planejar a pesquisa futura com eles, e.g., em dispositivos eletrocrômicos transmissivos e reflexivos, sensores cronoamperométricos, sensores voltamétricos e sistemas de liberação controlada de drogas. Degradabilidade também é um fator importante ao considerar o impacto ambiental dos materiais. Nanopartículas (NPs) de Au ou Pt (1−100 nm de tamanho), quando revestidas por um estabilizante, são estáveis, possuem superfícies reativas e funcionalizáveis e catalisam muitas reações de transferência de elétrons. As combinações de nanopartículas de metais nobres com PEDOTs (PEDOT e seus derivados) vêm sendo bastante estudadas nos últimos anos de forma a obter características singulares dos materiais. Os objetivos deste trabalho são estudar a síntese de novos híbridos inorgânicos/orgânicos e o seu comportamento eletroquímico. Foram sintetizados, por reação de oxidorredução em uma etapa em meio aquoso, híbridos de nanopartículas core-shell de Au@PEDOT. Por esta mesma estratégia, nanopartículas de Pt dispersas em matrizes de PEDOT foram sintetizadas. As nanopartículas de Au@PEDOT tiveram o seu comportamento eletrocrômico estudado. Com o macromonômero biodegradável EDOT-poli(ácido lático) (EDOT-PLA) foram preparados híbridos de NPsAu/(oligômeros de EDOT-PLA) e também de NPsAu com o novo polímero PEDOT-PLA. Os materiais produzidos foram analisados. As nanopartículas são muito pequenas, com um máximo de distribuição em menos de 10 nm. Observa-se que o PEDOT-PLA é um condutor, de estrutura eletrônica semelhante ao PEDOT e insolúvel em água. Ele também é mais estável em filme do que o PEDOT. NPsAu/PEDOT-PLA demonstra ter atividade eletrocatalítica de redução do peróxido de hidrogênio. Eletrodos de alto desempenho para a redução de peróxido de hidrogênio foram, portanto, obtidos (sensibilidade 8,4x10-3 A cm-2 mol-1 L; faixa linear (5,1x10-4 4,5x10-2) mol L-1; limite de detecção 1,7x10-4 mol L-1). Foram feitas também sínteses de hidrogeis acrílicos e a inserção de nanopartículas/PEDOT neles, modificando as suas propriedades.
3

Electrochemical Studies Of PEDOT : Microscopy, Electrooxidation Of Small Organic Molecules And Phenol, And Supercapacitor Studies

Patra, Snehangshu 04 1900 (has links)
Following the discovery of electronic conductivity in doped polyacetylene, various studies on conducting polymers have been investigated. These polymers are essentially characterized by the presence of conjugated bonding on polymer backbone, which facilitates formation of polarons and bipolarons as charge carriers. Poly(3,4-ethylenedioxythiophene) (PEDOT) is an interesting polymer because of high electronic conductivity, ease of synthesis and high chemical stability. Electrochemically prepared PEDOT is more interesting than the polymer prepared by chemical routes because it adheres to the electrodes surface and the PEDOT coated electrodes can directly be used for various applications such as batteries, supercapacitor, sensors, etc. A majority of the studies described in the thesis are based on PEDOT. Studies on polyanthanilic acid and reduction of hydrogen peroxide on stainless steel substrate are also included. Chapter 1 provides an introduction to conducting polymers with a focus on synthesis, electrochemical characterization and applications of PEDOT. In Chapter 2, microscopic and impedance spectroscopic characterization of PEDOT coated on stainless steel (SS) and indium tin oxide (ITO) coated glass substrates are described. Electrosynthesis of PEDOT is carried out on SS electrodes by three different techniques, namely, potentiostatic, galvanostatic and potentiodynamic techniques. The SEM images of PEDOT prepared by the galvanostatatic and potentiostatic routes indicate globular morphology. However, it is seen that porosity increases by increasing the current or the potential. In the cases of both galvanostatic and potentiostatic routes, the oxidation of EDOT to form PEDOT takes place continuously during preparation. However, in the case of potentiodynamic experiment between 0 and 0.9 V vs. SCE (saturated calomel electrode), the formation of PEDOT occurs only when the potential is greater than 0.70 V. During multicycle preparation to grow thicker films of PEDOT, formation of PEDOT takes place layer by layer, a layer of PEDOT being formed in each potential cycle. PEDOT prepared in the potential ranges 0-0.90 V and 0-1.0 V show globular morphology similar to the morphology of the galvanostatically and potentiostatically prepared polymer. If prepared in the potential ranges 0-1.1 V and 0-1.2 V, the PEDOT films have rod-like and fibrous morphology. This is attributed to larger amount of PEDOT formed in each cycle in comparison with lower potential ranges and also to partial oxidation of PEDOT at potentials ≥ 1.10 V. PEDOT is also electrochemically prepared on ITO coated glass substrate. Preparation is carried out under potentiostatic conditions in the potential range between 0.9 and 1.2 V. Atomic force microscopy (AFM) studies indicate a globular topography for PEDOT films prepared on ITO coated glass plates. The height and width of globules increase with an increase in deposition potential. The PEDOT coated SS electrodes are subjected to electrochemical impedance spectroscopy studies in 0.1 M H2SO4. The Nyquist plot of impedance consists of a depressed semicircle, which arises due to a parallel combination of the polymer resistance and double-layer capacitance (Cdl). Impedance data are analyzed. Studies on electrooxidation of methanol, formic acid, formaldehyde and ethanol on nanocluster of Pt and Pt-Ru deposited on PEDOT/C electrode are reported in Chapter 3. Studies on electrooxidation of small molecules are important in view of their promising applications in fuel cells. Films of PEDOT are electrochemically deposited on carbon paper. Nanoclusters of Pt and bimetallic Pt-Ru catalysts are potentiostatically deposited on PEDOT/C electrodes. Catalysts are also prepared on bare carbon paper for studying the effect of PEDOT. The presence of PEDOT film on carbon paper allows the formation of uniform, well dispersed nanoclusters of Pt as well as Pt-Ru catalysts. TEM studies suggest that the nanoclusters of about 50 nm consist of nanoparticles of about 5 nm in diameter. Electrooxidation of methanol, formic acid, formaldehyde and ethanol are studied on Pt-PEDOT/C and PtRu-PEDOT/C electrodes by cyclic voltammetry and chronoamperometry. The data for oxidation of these small organic molecules reveal that PEDOT imparts a greater catalytic activity for the Pt and Pt-Ru catalysts. Results of these studies are described in Chapter 3. In Chapter 4, PEDOT is coated on SS substrate to investigate phenol oxidation. Studies on electrochemical oxidation of phenol are interesting because it is important to remove phenol from contaminated water or industrial effluents. Deactivation of the anode due to the formation and adsorption of polyoxyphenylene on its surface is a common problem for a variety of electrode materials, during phenol oxidation. Investigations on suitable anode materials, which can undergo no or moderate poisoning by polyoxyphenylene, are interesting. In the present study, it is shown that the electrooxidation rate of phenol is greater on PEDOT/SS electrodes than on Pt. Deactivation of PEDOT/SS electrode is slower in relation to Pt. The oxidation of phenol on PEDOT/SS electrode occurs to form both polyoxyphenylene and benzoquinone in parallel. Cyclic voltammetry of phenol oxidation is studied by varying the concentration of phenol, sweep rate and thickness of PEDOT. Ac impedance studies indicate a gradual increase in polymer resistance due to adsorption of polyoxyphenylene during multi sweep cyclic voltammetry. This investigation reveals that PEDOT coated on a common metal or alloy such as SS is useful for studying electrooxidation of phenol, which is generally studied on a noble metal based electrodes. Electrochemically prepared PEDOT is used for supercapacitor studies and the results are presented in Chapter 5. Generally, electronically conducting polymers possess high capacitive properties due to pseudo-faradaic reactions. PEDOT/SS electrodes prepared in 0.1 M H2SO4 are found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H2SO4, concentration of SDS, potential of deposition and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes are studied. Specific capacitance values as high as 250 F g-1 in 1 M oxalic acid are obtained during the initial stages of cycling. However, there is a decrease in SC on repeated charge-discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. Self-doped PANI is expected to possess superior electrochemical characteristics in relation to PANI. The self-doping is due to the presence of an acidic group on the polymer chain. However, self-doped PANI is soluble in acidic solutions against insolubility of PANI. In the present study, poly(anthranilic acid), PANA, is encapsulated in porous Nafion membrane by chemical and a novel electrochemical methods. PANA present in solid form in Nafion membrane does not undergo dissolution in acidic solutions. The methods of preparation and various electrochemical, optical and spectroscopic characterizations studies of PANA-Nafion are described in Chapter 6. Electroreduction of H2O2 is studied on sand-blasted stainless steel (SSS) electrode in an aqueous solution of NaClO4 and the details are reported in Chapter 7. The cyclic voltammetric reduction of H2O2 at low concentrations is characterized by a cathodic peak at -0.40 V versus standard calomel electrode (SCE). Cyclic voltammetry is studied by varying the concentration of H2O2 in the range from 0.2 mM to 20 mM and the sweep rate in the range from 2 to 100 mV s-1. Cyclic voltammograms at concentrations of H2O2 higher than 2 mM or at high sweep rates consist of an additional current peak, which may be due to the reduction of adsorbed species formed during the reduction of H2O2. Amperometric determination of H2O2 at -0.50 V vs. SCE provides the detection limit of 5 μM H2O2. A plot of current density versus concentration has two linear segments suggesting a change in the mechanism of H2O2 reduction at concentrations of H2O2 ≥ 2 mM. From the rotating disc electrode study, diffusion co-efficient of H2O2 and rate constant for reduction of H2O2 are evaluated. Thus, stainless steel, which is inexpensive and a common alloy, is useful for studying electrochemical reduction of H2O2 and also for analytical application. This work is initiated to study the reduction of H2O2 on PEDOT/SS electrodes. As a result of preliminary experiments, it is found that PEDOT does not exhibit any influence on the kinetics of H2O2 reduction. Therefore studies conducted using bare stainless steel are included in this chapter. Results of the above studies are described in the thesis.
4

Electrochemical Polymerization of Thiophene Derivatives and its Applicability as the Cathode Material of Li-Ion Battery

Her, Li-jane 07 February 2006 (has links)
Electrochemical copolymerizations of thiophene (Th) and 3,4-ethylenedioxythiophene (EDOT) was performed in this study. Incorporation of Th with EDOT units have accelerated deposition rate in relative to the simple polymerization behavior of EDOT. The electrochemical properties of poly(thiophene-co-3,4-ethylenedioxythiophene) (PTh-EDOT) are different from the homopolymers of polythiophene (PTh) and poly(3,4-ethylenedioxythiophene) (PEDOT). PTh-EDOT were then served as cathode materials of lithium-ion (Li-ion) batteries to test their capability to transfer lithium ion in 1.0 M LiPF6/ethylene carbonate/dimethyl carbonate solution. PTh-EDOT copolymer prepared from the monomer ratio of 1/1 (Th/EDOT) shows better stability than PEDOT and PTh homopolymers, polymer property enhancement by copolymerization is thus demonstrated. A composite electrode material PEDOT/LiCoO2 was prepared from the electrochemical polymerization of EDOT on LiCoO2 electrode was primarily prepared to inspect the influence of PEDOT on the electrochemical features of LiCoO2. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) show the successful deposition of PEDOT over LiCoO2 particles. Compared to the simple LiCoO2 electrode, PEDOT/LiCoO2 composite cathode shows enhanced properties including rate capability and cycle stability for potential Li-ion battery application. Nevertheless, differential scanning calorimetry (DSC) scans on the fully charged cathodes imply that PEDOT may reduce the thermal stability of LiCoO2. Two carbon materials, vapor grown carbon fibers (VGCF) and nano-scaled Ketjen black EC (KB), were implemented into LiCoO2 electrode. The influence of different carbon additive and their content on the performance of LiCoO2 such as rate capability and cycle ability has been evaluated. KB shows more positive effects than VGCF even in the case of a low 1 wt% content. Furthermore, incorporation of PEDOT was made by electrochemical deposition of EDOT on the preformed LiCoO2-VGCF and LiCoO2-KB composite electrodes. The influence of the carbon additives and the conductive PEDOT polymer on LiCoO2 was then investigated. Compared to the electrodes without PEDOT coating, PEDOT-incorporated composite electrodes show larger capacity, better transfer rate of lithium ions in electrolytes, and enhanced cycle ability. The electrochemical deposition of PEDOT on the LiCoO2/nano-carbon cathodes provides a new approach to implement the conducting polymers in Li-ion batteries.
5

Lithographic fabrication, electrical characterization and proof-of-concept demonstration of sensor circuits comprising organic electrochemical transistors for in vitro and in vivo diagnostics / Fabrication lithographique, caractérisation électrique et preuve de concept des circuits de capteurs comprenant des transistors organiques électrochimiques, à des fins diagnostiques in vitro et in vivo

Braendlein, Marcel 24 March 2017 (has links)
Grâce à leurs excellentes propriétés mécaniques, électriques et chimiques, les dispositifs organiques électroniques à base de polymères conducteurs peuvent résoudre l’incompatibilité entre les modules électroniques rigides en silicone et les exigences des tissus mous qui constituent l’environnement biologique. Les avancées en matière de semiconducteurs organiques et en microélectronique ont donné naissance à la bioélectronique. Cette discipline emploie des capteurs à des fins diagnostiques, telles que la détection des métabolites ou la mesure d’un potentiel d’action neuronal, et des actionneurs à des fins thérapeutiques, comme l’application locale d’un traitement à l’intérieur même du corps, ou la stimulation cérébrale profonde afin de guérir un trouble neurologique. En bioélectronique, l’utilisation de matériaux organiques, tels que le polymère conducteur poly(3,4-éthylènedioxythiophène) polystyrène sulfonate de sodium (PEDOT:PSS) a permis de développer des composants électroniques biomédicaux de qualité exceptionnelle, comme par exemple le transistor organique électrochimique (OECT), qui ont été testés in vitro et in vivo. Ce manuscrit explique en détail la fabrication, la fonctionnalisation et la caractérisation du OECT à base de PEDOT:PSS. Afin de pouvoir intégrer ce capteur à des systèmes de mesure biomédicaux déjà établis, l’OECT est intégré à des circuits simples, tels qu’un amplificateur de tension ou un pont de Wheatstone. Ces circuits sont mis à l’épreuve de la pratique clinique, dans le cas de mesures électrocardiographiques, ou de détection de métabolites dans des cellules cancéreuses. Cela permet d’apprécier à la fois leur applicabilité, et leurs limites. / Due to their outstanding mechanical, electrical and chemical properties, organic electronic devices based on conducting polymers can bridge the gap between the rigid silicon based read-out electronics and the soft biological environment and will have a huge impact on the medical healthcare sector. The recent advances in the field of organic semiconductors and microelectronics gave rise to a new discipline termed bioelectronics. This discipline deals with sensors for diagnostic purposes, ranging from metabolite detection and DNA recognition all the way to single neuronal firing events, and actuators for therapeutic purposes, through for example active local drug delivery inside the body or deep brain stimulation to cure neurological disorder. The use of organic materials such as the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) in the field of bioelectronics has brought about a variety of outstanding electronic biomedical devices, such as the organic electrochemical transistor (OECT), that have been implemented for both in vitro and in vivo applications. The present manuscript gives a detailed explanation of the fabrication, functionalization and characterization of OECTs based on PEDOT:PSS. To be able to intercept this sensor element with traditional biomedical recording systems, the OECT is implemented into simple circuit layouts such as a voltage amplifier or a Wheatstone bridge. These sensor circuits are then applied to real-life biomedical challenges, such as electrocardiographic recordings or metabolite detection in tumor cell cultures, to demonstrate their applicability as well as their limitations.
6

Charge transport in organic multi-layer devices under electric and optical fields

Park, June Hyoung 17 July 2007 (has links)
No description available.
7

Conjugated Polymer-based Conductive Fibers for Smart Textile Applications

Bashir, Tariq January 2013 (has links)
Electrically conductive or electro-active fibers are the key components of smart and interactive textiles, which could be used in medical, sports, energy, and military applications in the near future. The functionalization of high-performance textile yarns/fibers with conjugated polymers can produce conductive fibers with better electro-mechanical properties, which is difficult with commonly used spinning techniques. In this thesis work, textile-based conductive yarns/fibers were prepared by coating viscose and polyester (PET) yarns with the conjugated polymer PEDOT. For coating purposes, an efficient technique called chemical vapor deposition (CVD) was used, which is a solventless technique and can produce PEDOT polymer layers with high conductivity values. The polymerization of EDOT monomer vapors and coating of oxidant (FeCl3 or FepTS) enriched viscose and PET yarns took place simultaneously. The PEDOT-coated viscose and polyester yarns showed relatively high conductivity values, which could be sufficient for many electronic applications. The polymerization process and the quality of PEDOT polymer strongly depends on different reaction conditions. In this research work, the impact of most of these reaction parameters on the electrical, mechanical, and thermal properties of PEDOT-coated conductive yarns was considered separately. Under specific reaction conditions, it was found that viscose fibers were successfully coated with PEDOT polymer and showed rather high electrical conductivity (≥ 15 S/cm). However, due to the acid hydrolysis of viscose fibers in FeCl3 solutions, the mechanical properties were drastically reduced. In order to improve the mechanical properties of conductive yarns, a relatively stable and chemical-resistant substrate (PET) was coated with PEDOT polymer. Comparative studies between PEDOT-coated viscose and PET conductive yarns showed that the electrical and mechanical properties were enhanced by changing the substrate material. Later on, PEDOT-coated conductive fibers were treated with silicone elastomer solution and due to the thin silicone layers, the hydrophobic properties, flexibility, and durability of coated yarns was improved. Furthermore, a novel electrical resistance-measuring setup was developed, which can be used not only for fibers but also for fabric structures. The electrical characterization of PEDOT-coated conductive yarns showed that it can be used effectively for sensitive fibers without damaging their surface morphology. Finally, the use of conductive yarns as stretch sensors was evaluated. For this purpose, small rectangular knitted patches of conductive yarns were prepared and then the change in electrical resistance values at different extension percentages (5–50%) was investigated. The constant variations in electrical resistance values at different extension and relaxation cycles for longer periods of time revealed that the conductive yarns produced have the potential to be used as stretch sensors for monitoring of vital signs in medical and sports applications. / <p>Thesis for the Degree of Doctor of Philosophy to be presented on March 08, 2013, 10.00 in KA-salen, Kemigården 4, Chalmers University of Technology, Gothenburg</p>
8

In situ Charakterisierung der viskoelastischen und elektrochemischen Eigenschaften von Poly(3,4-ethylendioxythiophen)

Peipmann, Ralf 29 February 2012 (has links) (PDF)
Poly(3,4-ethylendioxythiophen) (PEDOT) ist ein Kunststoff der zur Gruppe der intrinsisch leitfähigen Polymere (ILP) zählt. Aufgrund seiner chemischen und thermischen Stabilität findet er Verwendung in antistatischen Verkleidungen und als Elektrodenmaterial. PEDOT (und andere ILP) zeigen aufgrund ihrer Schaltbarkeit zwischen (reduzierten, ) neutralen und oxidierten Zuständen unterschiedliche Eigenschaften wie Leitfähigkeit, Farbe oder Viskoelastizität. Im Rahmen dieser Arbeit wurden die elektrochemischen und viskoelastischen Eigenschaften von PEDOT-Filmen untersucht. Dabei wurde die Quarzmikrowaage (QCM) in Verbindung mit potentiostatischen (Potentialsprung, PS) und potentiodynamischen (Cyclovoltammetrie, CV) elektrochemischen Methoden verwendet, so dass in situ elektrochemische und mechanische Eigenschaften der Filme zugänglich waren. Zur Bestimmung der viskoelastischen Eigenschaften wurde ein Auswertealgorithmus entwickelt, welcher auf ein mathematisches Modell zur Bestimmung des Schermoduls nach Efimov zurückgreift. Während der Herstellung wurden Parameter wie Lösungsmittel, Leitsalz, Vorpolarisations- und Abscheidungspotential variiert und die erhaltenen Filme bezüglich Schermodul und Morphologie charakterisiert. Es konnte gezeigt werden, dass die Elektrolytzusammensetzung einen entscheidenden Einfluss auf die viskoelastischen Eigenschaften der Filme besitzt, welche mit der Morphologie der Filme korrelieren. Des Weiteren wurden die Änderungen der viskoelastischen Eigenschaften dieser Filme untersucht, welche während dem elektronischen Schalten zwischen neutralem und oxidiertem Zustand aufgrund des Ionenaustausches erfolgen. CV- und PS-Experimente zeigten, dass die viskoelastischen Eigenschaften durch Konzentration und pH-Wert des Elektrolyten beeinflusst werden und in unterschiedlicher Weise auf die Potentialänderungen reagieren. Durch den Einbau von Magnetit-Partikeln in die Schichten konnten Hybridfilme erhalten werden, deren Eigenschaften durch das Anlegen eines äußeren Magnetfeldes beeinflusst werden können. Solche Filme zeigten in einem äußeren Magnetfeld (0,7T) höhere Schermodule und einen stark unterdrückten Ionenaustausch.
9

Développement et optimisation de matériaux à base de poly (3,4-éthylène dioxythiophène) pour des applications thermoélectriques. / Development and optimization of poly(3,4-ethylenedioxythiophene) based materials for thermoelectric applications

Massonnet, Nicolas 12 September 2014 (has links)
Les matériaux à propriétés thermoélectriques sont utilisés pour des applications de récupération d'énergie thermique, de génération de froid ou encore de détection de flux de chaleur. L'efficacité de ces matériaux, caractérisée par les facteurs de mérite et de puissance thermoélectriques, est optimale lorsque le coefficient Seebeck, la conductivité électrique, et la résistivité thermique sont élevés. Aux températures ambiantes, les meilleurs rendements sont atteints pour des alliages basés sur le tellurure de bismuth Bi2Te3 dont le coût et la toxicité sont des verrous pour le développement d'applications à grande échelle. Dans l'optique du développement d'alternatives à ces matériaux, les polymères conjugués sont envisagés depuis quelques années. Leurs propriétés sont toutefois largement inférieures à celles du Bi2Te3.Cette thèse a pour objectif l'étude et l'amélioration des performances thermoélectriques de matériaux basés sur le poly(3,4-éthylènedioxythiophène) ou PEDOT. Elle s'organise principalement autour de trois axes de travail. La première partie présente l'étude de propriétés thermoélectriques de formulations commerciales de PEDOT. L'influence de divers paramètres (l'ajout d'inclusions, l'utilisation d'un dopant secondaire, la modification de son taux d'oxydation…) sur les propriétés thermoélectriques est mesurée. Notamment, l'efficacité du dopage secondaire pour améliorer le facteur de puissance du matériau, ainsi que la relation entre le taux d'oxydation et le coefficient Seebeck du matériau, sont mis en évidence.Dans un second temps, le PEDOT est synthétisé avec des contre-ions à faible encombrement stérique et peu coordinants. Les propriétés thermoélectriques des matériaux obtenus sont supérieures à celles offertes par les formulations commerciales. La forte dépendance entre le transport de charge et la structure du matériau est mise en évidence. De plus, une méthode de dopage primaire du matériau permettant une forte augmentation de la conductivité électrique a été étudiée.Enfin, des pistes de réflexion pour l'intégration des matériaux développés dans cette thèse ont été explorées. Dans ce cadre, des méthodes de mises en forme originales ont notamment été démontrées.Cette thèse a permis d'apporter des éléments de compréhension sur les relations entre les propriétés thermoélectriques des polymères conjugués, leur taux d'oxydation, la nature de leurs dopants, et leur structure. Les résultats obtenus laissent envisager plusieurs voies d'optimisation des propriétés des matériaux organiques qui devront faire l'objet de futurs travaux. / Thermoelectric materials are useful for applications such as heat waste recovery, cold production or heat flux detection. The factor of merit and the power factor of the materials characterize their efficiency. These factors are optimal for high Seebeck coefficient, electrical conductivity, and thermal resistivity. The higher yields for room-temperature applications are achieved with materials based on bismuth telluride alloys, but the cost and the toxicity of these materials prevent the development of large-scale applications. In recent years, conjugated polymers have been contemplated as alternatives for Bi2Te3, however, their thermoelectric properties are significantly lower.This thesis aims at studying and improving the thermoelectric performances of materials based on poly3,4-ethylene dioxythiophene) or PEDOT. It consists of three areas of work. In the first part the thermoelectric properties of commercial formulations of PEDOT is presented. The influence of various parameters (such as additional loads, secondary doping species or redox reactions) on the thermoelectric properties is studied. Notably, the propensity of secondary doping to improve the power factor of the material, and the relationship between the oxidation and the Seebeck coefficient of the material rate, are set evidences.In a second part of the work, PEDOT is synthetized with less sterically hindered, poorly coordinating counter-ions. Thermoelectric properties of the resulting materials are higher than those offered by commercial formulations and the strong dependence of the charge transport and the material structure are highlighted. Moreover, a method of doping the primary material allowing great increases of the electrical conductivity was also studied.Finally, several routes for the integration of the above mentioned materials in thermoelectric modules are explored. Original shaping methods have been demonstrated.This thesis provides understandings on the relationship between the thermoelectric properties, the oxidation rate and the structure of conjugated polymers. The results suggest that several ways can be considered in order to improve the thermoelectric efficiency of these materials. These routes will be the subject of future work.
10

Compréhension des propriétés électro-réflectrices dans l'infrarouge de poly(3,4-éthylènedioxythiophène) électropolymérisé : Des couches modèles aux premiers dispositifs / Study of the electro-reflective properties in the infrared of electropolymerized poly(3,4-ethylenedioxythiophene) : From a model layer to the first device.

Louet, Charlotte 23 July 2015 (has links)
L'objectif de cette thèse est l'élaboration d'un dispositif électro-émissif (DEE) à base de poly(3,4-éthylènedioxythiophène) (PEDOT), obtenu par électropolymérisation, pouvant être envisagé pour une application de régulation thermique des satellites. Pour une meilleure compréhension du comportement optique du PEDOT dans l'IR, des couches modèles ont été élaborées avant la réalisation d'un dispositif complet.La première partie de ce travail a permis de caractériser des couches modèles de PEDOT obtenues par synthèse électrochimique sur ITO dans deux sels différents : le perchlorate de lithium (LiClO4) et le bis-trifluorométhylsulfonylimide de lithium (LiTFSI) dans l'acétonitrile (ACN) comme solvant. La morphologie, la conductivité électronique et les propriétés de réflectivité dans l'IR (gamme de longueur d'onde 8-20µm) du PEDOT ont été étudiées en fonction de l'état d'oxydation du PEDOT. La réflectivité dans l'IR du PEDOT à l'état dopé diminue fortement lorsque la rugosité augmente. Ceci a été attribué à l'augmentation du coefficient d'absorption pour une surface rugueuse comme cela a déjà été reporté pour les métaux. De plus, pour une morphologie identique, il a été montré que la réflectivité des couches modèles de PEDOT évolue avec la conductivité électronique de la même manière, quel que soit le sel utilisé ou la méthode d'élaboration des films. A l'état dopé, les films ont pu être décrits par le modèle de Drude, confirmant le caractère pseudo-métallique du PEDOT. Enfin, un pourcentage de réflectivité maximal de 67% a été obtenu à l'état oxydé et de 21% à l'état réduit, ces résultats donnent une idée des performances pouvant être atteintes dans les DEE à base de PEDOT.La seconde partie de ce travail a permis l'incorporation du PEDOT par électropolymérisation au sein d'une matrice hôte à base de réseau interpénétré de polymère (RIP) combinant le caoutchouc nitrile(NBR) et le poly(oxyde d'éthylène) (POE). Le DEE obtenu est basé sur une architecture tricouches "monobloc". Ainsi, la réalisation d'un DEE à base de RIP conducteur où le PEDOT est incorporé par électropolymérisation simultanément dans les deux faces du dispositif a été validée avec succès. Une fois gonflé d'électrolyte (LiClO4 dans le carbonate de propylène), les propriétés de réflectivité dans l'IR des dispositifs ont été comparées à celles des DEE dans lesquels le PEDOT est synthétisé chimiquement. Les propriétés de réflectivité dans l'IR et de conductivité électronique ont été corrélées de la même manière que pour les couches modèles, prouvant que le comportement du PEDOT varie peu quel que soit la méthode ou le support de synthèse utilisés. / The aim of this work is the elaboration of an electro-emissive (EED) device based on electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) for thermal control of satellites. PEDOT layers were prepared before the realization of the device in order to have a better understanding of the PEDOT optical behavior in the IR range.In the first section of this work, PEDOT model layers obtained on ITO electrodes using lithium perchlorate (LiClO4) or lithium bis-trifluoromethylsulfonylimide (LiTFSI) as supporting electrolytes and acetonitrile (ACN) as solvent were characterized. Morphology, electronic conductivity and IR reflectance properties (in the wavelength range 8-20 µm)were studied as a function of the PEDOT doping state. The IR reflectivity of doped PEDOT decreases drastically upon increasing surface roughness. This was attributed to enhanced absorption in the same way as reported for metallic surfaces. In addition, for the same morphology, the IR reflectivity is shown to follow the same trend as a function of the electronic conductivity for both salts. In the oxidized state, the layers can be described by the Drude model, confirming quasi-metallic behavior of PEDOT. Finally, the highest and lowest reflectance obtained for these PEDOT layers is 67% in the doped state ant 21% for the dedoped state respectively, which opens up interesting perspectives in terms of performances for the PEDOT-based EED.In the second part of this work, PEDOT was incorporated by electropolymerization in a host matrix based on interpenetrated polymer network (IPN) combining nitrile butadiene rubber (NBR) and poly(ethylene oxide) (PEO). The obtained EED is based on a monoblock architecture similar to a three-layer device. Thus, the elaboration of conducting IPN based EED by electropolymerization of EDOT has been made simultaneously on both faces of the device. Once the system is swollen by an electrolyte (LiClO4 in propylene carbonate), reflectivity properties of the devices were compared to those obtained by chemical oxidative polymerization of EDOT within the matrix. IR reflectivity and electronic conductivity properties were correlated following the same trend as in PEDOT layers, this means that PEDOT behavior remains the same whatever the synthesis conditions or the electrodes used for electropolymerization.

Page generated in 0.0784 seconds