281 |
Zkoumání závislosti výpočtů v konečném řádu poruchové QCD na faktorizačním schématu / Investigation of the factorization scheme dependence of finite order perturbative QCD calculationsKolář, Karel January 2012 (has links)
Title: Investigation of the factorization scheme dependence of finite order per- turbative QCD calculations Author: Karel Kolář Institute: Institute of Particle and Nuclear Physics Supervisor of the doctoral thesis: prof. Jiří Chýla, CSc., Institute of Physics of the Academy of Sciences of the Czech Republic Abstract: The main aim of this thesis is the investigation of phenomenological implications of the freedom in the choice of the factorization scheme for the de- scription of hard collisions with the potential application for an improvement of current NLO Monte Carlo event generators. We analyze the freedom associated with the definition of parton distribution functions and we derive general formu- lae governing the dependence of parton distribution functions and hard scattering cross-sections on unphysical quantities specifying the renormalization and factor- ization procedure. The issue of the specification of factorization schemes via the corresponding higher order splitting functions is discussed in detail. The main attention is paid to the so called ZERO factorization scheme, which allows the construction of consistent NLO Monte Carlo event generators in which initial state parton showers can be taken formally at the LO. Unfortunately, it has turned out that the practical applicability of the ZERO...
|
282 |
Widening the basin of convergence for the bundle adjustment type of problems in computer visionHong, Je Hyeong January 2018 (has links)
Bundle adjustment is the process of simultaneously optimizing camera poses and 3D structure given image point tracks. In structure-from-motion, it is typically used as the final refinement step due to the nonlinearity of the problem, meaning that it requires sufficiently good initialization. Contrary to this belief, recent literature showed that useful solutions can be obtained even from arbitrary initialization for fixed-rank matrix factorization problems, including bundle adjustment with affine cameras. This property of wide convergence basin of high quality optima is desirable for any nonlinear optimization algorithm since obtaining good initial values can often be non-trivial. The aim of this thesis is to find the key factor behind the success of these recent matrix factorization algorithms and explore the potential applicability of the findings to bundle adjustment, which is closely related to matrix factorization. The thesis begins by unifying a handful of matrix factorization algorithms and comparing similarities and differences between them. The theoretical analysis shows that the set of successful algorithms actually stems from the same root of the optimization method called variable projection (VarPro). The investigation then extends to address why VarPro outperforms the joint optimization technique, which is widely used in computer vision. This algorithmic comparison of these methods yields a larger unification, leading to a conclusion that VarPro benefits from an unequal trust region assumption between two matrix factors. The thesis then explores ways to incorporate VarPro to bundle adjustment problems using projective and perspective cameras. Unfortunately, the added nonlinearity causes a substantial decrease in the convergence basin of VarPro, and therefore a bootstrapping strategy is proposed to bypass this issue. Experimental results show that it is possible to yield feasible metric reconstructions and pose estimations from arbitrary initialization given relatively clean point tracks, taking one step towards initialization-free structure-from-motion.
|
283 |
Bitwise relations between n and φ(n) : A novel approach at prime number factorizationJacobsson, Mattias January 2018 (has links)
Cryptography plays a crucial role in today’s society. Given the influence, cryptographic algorithms need to be trustworthy. Cryptographic algorithms such as RSA relies on the problem of prime number factorization to provide its confidentiality. Hence finding a way to make it computationally feasible to find the prime factors of any integer would break RSA’s confidentiality. The approach presented in this thesis explores the possibility of trying to construct φ(n) from n. This enables factorization of n into its two prime numbers p and q through the method presented in the original RSA paper. The construction of φ(n) from n is achieved by analyzing bitwise relations between the two. While there are some limitations on p and q this thesis can in favorable circumstances construct about half of the bits in φ(n) from n. Moreover, based on the research a conjecture has been proposed which outlines further characteristics between n and φ(n).
|
284 |
Estimation du niveau sonore de sources d'intérêt au sein de mixtures sonores urbaines : application au trafic routier / Estimation of the noise level of sources of interest within urban noise mixtures : application to road trafficGloaguen, Jean-Rémy 03 October 2018 (has links)
Des réseaux de capteurs acoustiques sont actuellement mis en place dans plusieurs grandes villes afin d’obtenir une description plus fine de l’environnement sonore urbain. Un des défis à relever est celui de réussir,à partir d’enregistrements sonores, à estimer des indicateurs utiles tels que le niveau sonore du trafic routier. Cette tâche n’est en rien triviale en raison de la multitude de sources sonores qui composent cet environnement. Pour cela, la Factorisation en Matrices Non-négatives (NMF) est considérée et appliquée sur deux corpus de mixtures sonores urbaines simulés. L’intérêt de simuler de tels mélanges est la possibilité de connaitre toutes les caractéristiques de chaque classe de son dont le niveau sonore exact du trafic routier. Le premier corpus consiste en 750 scènes de 30 secondes mélangeant une composante de trafic routier dont le niveau sonore est calibré et une classe de son plus générique. Les différents résultats ont notamment permis de proposer une nouvelle approche, appelée « NMF initialisée seuillée », qui se révèle être la plus performante. Le deuxième corpus créé permet de simuler des mixtures sonores plus représentatives des enregistrements effectués en villes, dont leur réalisme a été validé par un test perceptif. Avec une erreur moyenne d’estimation du niveau sonore inférieure à 1,2 dB, la NMF initialisée seuillée se révèle, là encore, la méthode la plus adaptée aux différents environnements sonores urbains. Ces résultats ouvrent alors la voie vers l’utilisation de cette méthode à d’autres sources sonores, celles que les voix et les sifflements d’oiseaux, qui pourront mener, à terme, à la réalisation de cartes de bruits multi-sources. / Acoustic sensor networks are being set up in several major cities in order to obtain a more detailed description of the urban sound environment. One challenge is to estimate useful indicators such as the road traffic noise level on the basis of sound recordings. This task is by no means trivial because of the multitude of sound sources that composed this environment. For this, Non-negative Matrix Factorization (NMF) is considered and applied on two corpuses of simulated urban sound mixtures. The interest of simulating such mixtures is the possibility of knowing all the characteristics of each sound class including the exact road traffic noise level. The first corpus consists of 750 30-second scenes mixing a road traffic component with a calibrated sound level and a more generic sound class. The various results have notably made it possible to propose a new approach, called ‘Thresholded Initialized NMF', which is proving to be the most effective. The second corpus created makes it possible to simulate sound mixtures more representatives of recordings made in cities whose realism has been validated by a perceptual test. With an average noise level estimation error of less than 1.3 dB, the Thresholded Initialized NMF stays the most suitable method for the different urban noise environments. These results open the way to the use of this method for other sound sources, such as birds' whistling and voices, which can eventually lead to the creation of multi-source noise maps.
|
285 |
Modèles d'embeddings à valeurs complexes pour les graphes de connaissances / Complex-Valued Embedding Models for Knowledge GraphsTrouillon, Théo 29 September 2017 (has links)
L'explosion de données relationnelles largement disponiblessous la forme de graphes de connaissances a permisle développement de multiples applications, dont les agents personnels automatiques,les systèmes de recommandation et l'amélioration desrésultats de recherche en ligne.La grande taille et l'incomplétude de ces bases de donnéesnécessite le développement de méthodes de complétionautomatiques pour rendre ces applications viables.La complétion de graphes de connaissances, aussi appeléeprédiction de liens, se doit de comprendre automatiquementla structure des larges graphes de connaissances (graphes dirigéslabellisés) pour prédire les entrées manquantes (les arêtes labellisées).Une approche gagnant en popularité consiste à représenter ungraphe de connaissances comme un tenseur d'ordre 3, etd'utiliser des méthodes de décomposition de tenseur pourprédire leurs entrées manquantes.Les modèles de factorisation existants proposent différentscompromis entre leur expressivité, et leur complexité en temps et en espace.Nous proposons un nouveau modèle appelé ComplEx, pour"Complex Embeddings", pour réconcilier expressivité etcomplexité par l'utilisation d'une factorisation en nombre complexes,dont nous explorons le lien avec la diagonalisation unitaire.Nous corroborons notre approche théoriquement en montrantque tous les graphes de connaissances possiblespeuvent être exactement décomposés par le modèle proposé.Notre approche, basées sur des embeddings complexesreste simple, car n'impliquant qu'un produit trilinéaire complexe,là où d'autres méthodes recourent à des fonctions de compositionde plus en plus compliquées pour accroître leur expressivité.Le modèle proposé ayant une complexité linéaire en tempset en espace est passable à l'échelle, tout endépassant les approches existantes sur les jeux de données de référencepour la prédiction de liens.Nous démontrons aussi la capacité de ComplEx àapprendre des représentations vectorielles utiles pour d'autres tâches,en enrichissant des embeddings de mots, qui améliorentles prédictions sur le problème de traitement automatiquedu langage d'implication entre paires de phrases.Dans la dernière partie de cette thèse, nous explorons lescapacités de modèles de factorisation à apprendre lesstructures relationnelles à partir d'observations.De part leur nature vectorielle,il est non seulement difficile d'interpréter pourquoicette classe de modèles fonctionne aussi bien,mais aussi où ils échouent et comment ils peuventêtre améliorés. Nous conduisons une étude expérimentalesur les modèles de l'état de l'art, non pas simplementpour les comparer, mais pour comprendre leur capacitésd'induction. Pour évaluer les forces et faiblessesde chaque modèle, nous créons d'abord des tâches simplesreprésentant des propriétés atomiques despropriétés des relations des graphes de connaissances ;puis des tâches représentant des inférences multi-relationnellescommunes au travers de généalogies synthétisées.À partir de ces résultatsexpérimentaux, nous proposons de nouvelles directionsde recherches pour améliorer les modèles existants,y compris ComplEx. / The explosion of widely available relational datain the form of knowledge graphsenabled many applications, including automated personalagents, recommender systems and enhanced web search results.The very large size and notorious incompleteness of these data basescalls for automatic knowledge graph completion methods to make these applicationsviable. Knowledge graph completion, also known as link-prediction,deals with automatically understandingthe structure of large knowledge graphs---labeled directed graphs---topredict missing entries---labeled edges. An increasinglypopular approach consists in representing knowledge graphs as third-order tensors,and using tensor factorization methods to predict their missing entries.State-of-the-art factorization models propose different trade-offs between modelingexpressiveness, and time and space complexity. We introduce a newmodel, ComplEx---for Complex Embeddings---to reconcile both expressivenessand complexity through the use of complex-valued factorization, and exploreits link with unitary diagonalization.We corroborate our approach theoretically and show that all possibleknowledge graphs can be exactly decomposed by the proposed model.Our approach based on complex embeddings is arguably simple,as it only involves a complex-valued trilinear product,whereas other methods resort to more and more complicated compositionfunctions to increase their expressiveness. The proposed ComplEx model isscalable to large data sets as it remains linear in both space and time, whileconsistently outperforming alternative approaches on standardlink-prediction benchmarks. We also demonstrateits ability to learn useful vectorial representations for other tasks,by enhancing word embeddings that improve performanceson the natural language problem of entailment recognitionbetween pair of sentences.In the last part of this thesis, we explore factorization models abilityto learn relational patterns from observed data.By their vectorial nature, it is not only hard to interpretwhy this class of models works so well,but also to understand where they fail andhow they might be improved. We conduct an experimentalsurvey of state-of-the-art models, not towardsa purely comparative end, but as a means to get insightabout their inductive abilities.To assess the strengths and weaknesses of each model, we create simple tasksthat exhibit first, atomic properties of knowledge graph relations,and then, common inter-relational inference through synthetic genealogies.Based on these experimental results, we propose new researchdirections to improve on existing models, including ComplEx.
|
286 |
Investigação da combinação de filtragem colaborativa e recomendação baseada em confiança através de medidas de esparsidadeAZUIRSON, Gabriel de Albuquerque Veloso 06 August 2015 (has links)
Submitted by Haroudo Xavier Filho (haroudo.xavierfo@ufpe.br) on 2016-03-11T15:25:20Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dissertação_gava_cin.pdf: 1596983 bytes, checksum: 23245c1b65fe3416d3baeeac5e118845 (MD5) / Made available in DSpace on 2016-03-11T15:25:20Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
dissertação_gava_cin.pdf: 1596983 bytes, checksum: 23245c1b65fe3416d3baeeac5e118845 (MD5)
Previous issue date: 2015-08-06 / Sistemas de recomendação têm desempenhado um papel importante em diferentes contextos de aplicação (e.g recomendação de produtos, filmes, músicas, livros, dentre outros). Eles automaticamente sugerem a cada usuário itens que podem ser relevantes, evitando que o usuário tenha que analisar uma quantidade gigantesca de itens para realizar sua escolha. Filtragem colaborativa (FC) é a abordagem mais popular para a construção de sistemas de recomendação, embora sofra com problemas relacionados à esparsidade dos dados (e.g., usuários ou itens com poucas avaliações). Neste trabalho, investigamos a combinação de técnicas de FC, representada pela técnica de Fatoração de Matrizes, e técnicas de recomendação baseada em confiança (RBC) em redes sociais para aliviar o problema da esparsidade dos dados. Sistemas de RBC têm se mostrado de fato efetivos para aumentar a qualidade das recomendações, em especial para usuários com poucas avaliações realizadas (e.g., usuários novos). Entretanto, o desempenho relativo entre técnicas de FC e de RBC pode depender da quantidade de informação útil presente nas bases de dados. Na arquitetura proposta nesse trabalho, as predições geradas por técnicas de FC e de RBC são combinadas de forma ponderada através de medidas de esparsidade calculadas para usuários e itens. Para isso, definimos inicialmente um conjunto de medidas de esparsidade que serão calculadas sobre a matriz de avaliações usuários-itens e matriz de confiança usuários-usuários. Através de experimentos realizados utilizando a base de dados Epinions, observamos que a proposta de combinação trouxe uma melhoria nas taxas de erro e na cobertura em comparação com as técnicas isoladamente. / Recommender systems have played an important role in different application contexts (e.g recommendation of products, movies, music, books, among others). They automatically suggest each user items that may be relevant, preventing the user having to analyze a huge amount of items to make your choice. Collaborative filtering (CF) is the most popular approach for building recommendation systems, although suffering with sparsity of the data-related issues (eg, users or items with few evaluations). In this study, we investigated the combination of CF techniques represented by matrix factorization technique, and trust-based recommendation techniques (TBR) on social networks to alleviate the problem of data sparseness. TBR systems have in fact proven to be effective to increase the quality of the recommendations, especially for users with few assessments already carried out (e.g., cold start users). However, the relative performance between CF and TBR techniques may depend on the amount of useful information contained in the databases. In the proposed architecture in this work, the predictions generated by CF and TBR techniques are weighted combined through sparsity measures calculated to users and items. To do this, first we define a set of sparsity measures that will be calculated on the matrix of ratings users-items and matrix of trust users-users. Through experiments using Epinions database, we note that the proposed combination brought an improvement in error rates and coverage compared to combined techniques.
|
287 |
Aplicações tau(p;q)-somantes e sigma (p)-nucleares / Tau(p;q)-summing and sigma(p)-nuclear mappingsMujica, Ximena 17 February 2006 (has links)
Orientador: Mario Carvalho de Matos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T01:05:18Z (GMT). No. of bitstreams: 1
Mujica_Ximena_D.pdf: 1094334 bytes, checksum: c72f7c14d8c66006d65d81bf2ca3fcfa (MD5)
Previous issue date: 2006 / Resumo: Neste trabalho estendemos os conceitos de operadores t-somantes e s-nucleares apresentados por Pietsch em seu livro Operator Ideals, para aplicações multilineares, polinômios e funções holomorfas, estabelecendo uma relação de dualidade entre os mesmos. Apresentamos também um teorema de dominação para aplicações e polinômios t (p; q)-somantes, mostrando a sua relação com as aplicações e polinômios semi-integrais, bem como um teorema de fatoração para aplicações e polinômios s (p)-nucleares / Abstract: In this work we extend the concepts of t-summing and s-nuclear operators presented by Pietsch in his book Operator Ideals, to multilinear mappings, polynomials and holomorphic functions, thus establishing a duality relation between them. We also present a domination theorem for t(p; q)-summing mappings and polynomials, showing their relation with semi-integral mappings and polynomials, as well as a factorization theorem for s(p)-nuclear mappings and polynomials / Doutorado / Analise Funcional / Doutor em Matemática
|
288 |
Sistemas lineares: métodos de eliminação de Gauss e fatoração LU / Linear systems: methods of gaussian eliminationand LU factorizationAssis, Carmencita Ferreira Silva 20 March 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-07T13:34:15Z
No. of bitstreams: 2
Dissertação - Carmencita Ferreira Silva Assis - 2014.pdf: 1032992 bytes, checksum: dcfbc22b53a2352c6e65a7615ffb72b5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-07T13:40:12Z (GMT) No. of bitstreams: 2
Dissertação - Carmencita Ferreira Silva Assis - 2014.pdf: 1032992 bytes, checksum: dcfbc22b53a2352c6e65a7615ffb72b5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-07T13:40:12Z (GMT). No. of bitstreams: 2
Dissertação - Carmencita Ferreira Silva Assis - 2014.pdf: 1032992 bytes, checksum: dcfbc22b53a2352c6e65a7615ffb72b5 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2014-03-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work aims to present te
hniques for solving systems of linear equations, in its
traditional formulation, where it sought to explore the referen
es
ommonly used in
ourses in linear algebra and numeri
al
omputation, fo
using on the dire
t methods of
Gauss elimination and LU fa
torization. Troubleshooters established in the literature
are
ondu
ted, in order to illustrate the operation and appli
ation of su
h methods to
real problems, thus highlighting the possibility of inserting them in high s
hool. The
ontents were treated and exposed so that exemplify the diversity of areas in
luding
linear systems, su
h as engineering, e
onomi
s and biology, showing the gains that
an
be a
hieved by students if they have
onta
t with the methods as soon as possible.
At the end we suggest the use of
omputational resour
es in math
lasses, sin
e the
redu
tion of time spent in algebrai
manipulation will allow the tea
her to deepen the
on
epts and to address larger systems, to enhan
e the resolution perspe
tive, and
motivate the student in the learning pro
ess. / Este trabalho tem por objetivo apresentar té
ni
as de resolução de sistemas de
equações lineares, em sua formulação tradi
ional, onde se bus
ou explorar as referên
ias
usualmente utilizadas em
ursos de álgebra linear e
ál
ulo numéri
o, enfo
ando os
métodos diretos de Eliminação de Gauss e Fatoração LU. Resoluções de problemas
onsolidados na literatura são realizadas,
om a nalidade de ilustrar o fun
ionamento
e apli
ação de tais métodos em problemas reais, desta
ando assim a possibilidade de
inserção dos mesmos no Ensino Médio. Os
onteúdos foram tratados e expostos de
modo que exempli quem a diversidade de áreas que abrangem os sistemas lineares, tais
omo engenharia, e
onomia e biologia, mostrando os ganhos que podem ser al
ançados
pelos alunos, se tiverem
ontato
om os métodos o quanto antes. Ao nal sugere-
se a utilização de re
ursos
omputa
ionais nas aulas de matemáti
a, uma vez que a
redução do tempo empregado na manipulação algébri
a permitirá que o professor possa
aprofundar os
on
eitos e abordar sistemas de maior porte, que ampliem a perspe
tiva
de resolução, além de motivar o aluno no pro
esso de aprendizagem.
|
289 |
Kernel nonnegative matrix factorization : application to hyperspectral imagery / Factorisation en matrices non négatives à noyaux : application à l'imagerie hyperspectraleZhu, Fei 19 September 2016 (has links)
Cette thèse vise à proposer de nouveaux modèles pour la séparation de sources dans le cadre non linéaire des méthodes à noyaux en apprentissage statistique, et à développer des algorithmes associés. Le domaine d'application privilégié est le démélange en imagerie hyperspectrale. Tout d'abord, nous décrivons un modèle original de la factorisation en matrices non négatives (NMF), en se basant sur les méthodes à noyaux. Le modèle proposé surmonte la malédiction de préimage, un problème inverse hérité des méthodes à noyaux. Dans le même cadre proposé, plusieurs extensions sont développées pour intégrer les principales contraintes soulevées par les images hyperspectrales. Pour traiter des masses de données, des algorithmes de traitement en ligne sont développés afin d'assurer une complexité calculatoire fixée. Également, nous proposons une approche de factorisation bi-objective qui permet de combiner les modèles de démélange linéaire et non linéaire, où les décompositions de NMF conventionnelle et à noyaux sont réalisées simultanément. La dernière partie se concentre sur le démélange robuste aux bandes spectrales aberrantes. En décrivant le démélange selon le principe de la maximisation de la correntropie, deux problèmes de démélange robuste sont traités sous différentes contraintes soulevées par le problème de démélange hyperspectral. Des algorithmes de type directions alternées sont utilisés pour résoudre les problèmes d'optimisation associés / This thesis aims to propose new nonlinear unmixing models within the framework of kernel methods and to develop associated algorithms, in order to address the hyperspectral unmixing problem.First, we investigate a novel kernel-based nonnegative matrix factorization (NMF) model, that circumvents the pre-image problem inherited from the kernel machines. Within the proposed framework, several extensions are developed to incorporate common constraints raised in hypersepctral images analysis. In order to tackle large-scale and streaming data, we next extend the kernel-based NMF to an online fashion, by keeping a fixed and tractable complexity. Moreover, we propose a bi-objective NMF model as an attempt to combine the linear and nonlinear unmixing models. The decompositions of both the conventional NMF and the kernel-based NMF are performed simultaneously. The last part of this thesis studies a supervised unmixing model, based on the correntropy maximization principle. This model is shown robust to outlier bands. Two correntropy-based unmixing problems are addressed, considering different constraints in hyperspectral unmixing problem. The alternating direction method of multipliers (ADMM) is investigated to solve the related optimization problems
|
290 |
Distributed System for Factorisation of Large NumbersJohansson, Angela January 2004 (has links)
This thesis aims at implementing methods for factorisation of large numbers. Seeing that there is no deterministic algorithm for finding the prime factors of a given number, the task proves rather difficult. Luckily, there have been developed some effective probabilistic methods since the invention of the computer so that it is now possible to factor numbers having about 200 decimal digits. This however consumes a large amount of resources and therefore, virtually all new factorisations are achieved using the combined power of many computers in a distributed system. The nature of the distributed system can vary. The original goal of the thesis was to develop a client/server system that allows clients to carry out a portion of the overall computations and submit the result to the server. Methods for factorisation discussed for implementation in the thesis are: the quadratic sieve, the number field sieve and the elliptic curve method. Actually implemented was only a variant of the quadratic sieve: the multiple polynomial quadratic sieve (MPQS).
|
Page generated in 0.1211 seconds