431 |
Synthese und Charakterisierung von nano-SrF2 und -YbF3 für Anwendungen in der DentalmedizinSchmidt, Larisa 30 July 2015 (has links)
Das Ziel der Promotionsarbeit ist es optisch transparente, nanoskalige Strontiumfluorid- und Ytterbiumfluorid-Sole hoher Konzentration für mögliche Anwendung in der Dentalmedizin zu synthetisieren. Über die fluorolytische Sol-Gel-Synthese ist es gelungen nanoskalige MFn-Sole (M=Sr, Yb) erfolgreich herzustellen. Die Umsetzung der Metallpräkursoren mit alkoholischer HF-Lösung im organischen Lösungsmittel führt zu transparenten, niedrig viskosen Solen. Mittels DLS, XRD und TEM wurden die Sole hinsichtlich ihrer Partikelgröße und ihres Alterungsverhaltens untersucht. Mittels WAXS-Messungen wurde das Alterungsverhalten der SrF2-Sole analysiert. Mit Hilfe der XRD und 19F-MAS-NMR-Spektroskopie wurde eine fluorhaltige, kristalline Spezies als Intermediat in der fluorolytischen Sol-Gel-Synthese des SrF2 nachgewiesen. DLS-Untersuchungen an Ytterbium-Solen zeigen eine Bildung von Partikeln im unteren Nanometerbereich sowie eine konzentrationsabhängige Partikelgrößenverteilung der Solpartikel. Die erhaltenen Xerogele sind röntgenamorph. Zudem konnten neue Yb(III)-Komplexe isoliert und strukturanalytisch charakterisiert werden. Die vorliegende Arbeit zeigt eine Möglichkeit, wie Kompositmaterialien auf Basis von nano-MFn (M=Sr, Yb) hergestellt werden können. Ausgehend von transparenten Solen konnten transparente Komposite mit einem großen Anteil an anorganischen Komponenten synthetisiert werden. Des Weiteren wurde die fluorolytische Sol-Gel-Synthese auf die Synthese von Nanopartikeln im System SrF2-YbF3 übertragen. Die Untersuchungen mittels DLS und TEM zeigen die Bildung von monodispersen Partikeln mit Partikelgrößen im unteren Nanometerbereich. Die nichtstöchiometrischen Phasen Sr1-xYbxF2+x sind durch einen weiten Homogenitätsbereich (bis ca. 50 mol-% Yb) charakterisiert und zeigen Anwendungspotential auf den Gebieten der Medizin, Zahnmedizin und Optik. / The focus of this thesis is the synthesis and characterization of nanoscopic metal fluorides for dental applications. Nanoscopic metal fluorides MFn (M = Sr, Yb) have been successfully synthesized via the fluorolytic sol-gel synthesis. The reaction of the metal precursors with alcoholic HF solution in organic solvents yields in transparent sols of high concentrations and low viscosity. DLS, TEM and XRD confirmed the formation of sol particles in the lower nm range and were used to characterize the particles as well as the aging behavior of the sols. Mechanistic insights were gained by following the reaction progress. A fluorine-containing crystalline species was detected by XRD and solid state 19F MAS NMR spectroscopy indicating the formation of an intermediate phase during the fluorolysis reaction. The investigation by DLS and TEM revealed the existence of ytterbium fluoride sol particles with diameter of approximately 5 nm. Additionally, DLS studies show a concentration dependency on particle size. XRD revealed total amorphousness of the product. In addition, new ytterbium(III) complexes were isolated and structurally characterized by X-ray analysis. Furthermore, the fluorolytic sol-gel synthesis has been modified for the preparation of transparent nanocomposite bulk materials. Large amounts of nanoscopic metal fluorides MFn (M=Sr, Yb) can be embedded in the organic polymer matrix commonly used in dentistry without facing loss of visual optical transparency. A new approach to prepare nanoparticles in SrF2-YbF3 systems via the fluorolytic sol-gel synthesis is presented. The investigations by DLS and TEM revealed the presence of monodisperse solid particles with sizes in the lower nm range. The Sr1-xYbxF2+x nonstoichiometric fluorite phases are characterized by a wide range of homogeneity (up to approx. 50 mol % Yb) and show promise of a wide range of applicability in the areas of medicine, dentistry and optics.
|
432 |
Control de fluoruros con recuperación de productoAldaco García, Rubén 29 July 2005 (has links)
La meta de esta tesis es impulsar las tendencias de desarrollo de la industria química que promueven la sostenibilidad de la misma. El objetivo es un control integrado de la contaminación que permita reducir las emisiones a fin de promover las actividades de producción sostenibles.En este sentido, el tratamiento de efluentes industriales con fluoruros consiste en una precipitación química. Sin embargo, el proceso genera elevadas cantidades de lodos con elevada humedad y bajo riqueza en fluoruro cálcico, por lo que su reutilización en la fabricación de HF no es viable técnica y económicamente.En esta tesis se presenta la recuperación de fluoruros de aguas industriales fluoradas mediante cristalización en un reactor de lecho fluidizado. Las principales ventajas de esta tecnología respecto del tratamiento convencional son la no generación de lodos, la reducción de residuos y la recuperación de fluoruro para su posterior valorización. / The aim of this thesis is to support the trends of the chemical industry development that promote sustainability. The goal is an integrated pollution control to reduce the emissions in order to promote sustainable production activities.In this sense, the common methods for fluoride removal from industrial wastewater involve chemical precipitation. The process generates large amounts of a water rich sludge requiring disposal with increasing costs. Due to the high water content and the low quality of the sludge, reuse of fluoride is not an economical option. The removal of fluoride in a fluidized bed reactor by crystallization has been presented in this thesis as an alternative to the chemical precipitation. When it is compared with the conventional precipitation process, the major advantage of this new clean technology is the elimination of sludge formation, the materials recovery and the reduction of solid waste.
|
433 |
Non-Cp Metal complexes Supported by Nitrogen Donor Ligands / Precursors for the Synthesis of New Metal Fluorides / Nicht-Cp Metall Kompexe Supported bei Nitro-Donor Liganden / Prekursor für die Synthese von neuen MetallfluoridenHao, Haijun 28 June 2001 (has links)
No description available.
|
434 |
Efeitos da exposição concomitante a 100 ppm de ácido fluorsilícico e 30 ppm de chumbo nas concentrações de flúor e chumbo no osso, dentina, esmalte e sangue de ratos de 81 dias expostos desde o período pré-natal / Effects of the concomitant exposure to fluosilicic acid and lead in the bone, dentine, enamel and blood lead and fluoride concentrations of 81-days-old rats exposed to lead and fluoride since gestational ageRosângela Morais Marques Sawan 21 September 2009 (has links)
A exposição a baixos níveis de chumbo é associada a desordens cognitivas e neurológicas em crianças. Foi descrito um aumento dos níveis de chumbo no sangue de crianças que vivem em comunidades que recebem água fluoretada. Este estudo testou se flúor a 100 ppm na forma de ácido fluorsilícico na água induziria aumento na concentração de chumbo no sangue e tecidos calcificados de ratos Wistar expostos a baixos níveis de chumbo desde a idade gestacional. Ratas foram separadas em quatro grupos: controle e grupos que receberam água que continham 100 mg/L de fluoreto (F), 30 mg/L de chumbo (Pb), ou 100 mg/L de F e 30 mg/L de Pb (F+Pb), desde uma semana antes do acasalamento até que os filhotes completassem 81 dias. Todos os animais foram pesados ao longo do experimento. Sangue e tecidos calcificados foram coletados com 81 dias para análise de chumbo, flúor e fósforo em esmalte, dentina, osso total, osso superficial e sangue. Chumbo foi determinado por ICP-MS (Inductively Coupled Plasma Mass Spectrometry). Flúor foi medido através de elétrodo íon-específico e fósforo foi determinado por reação colorimétrica. As concentrações de chumbo triplicaram no grupo F+Pb (76.7±11.0 µg/dL) em comparação ao grupo Pb (22.6±8.5 µg/dL)(p <0.001), com a mesma tendência observada em todos os tecidos calcificados analisados (p <0.001 para todas as comparações). No esmalte, as concentrações de chumbo analisadas foram 2.5 vezes mais altas no grupo F+Pb em comparação ao grupo Pb (4,369±1,353 µg/g versus 1,768±1,892 µg/g). Na dentina, a concentração de chumbo encontrada no grupo F+Pb era 8.5±2.0 µg/g versus 4.9±1.7 µg/g no grupo Pb. Na superfície óssea, a concentração de chumbo encontrada no grupo F+Pb era 3.1 vezes maior do que as determinadas no grupo Pb, com 28.0±10.6 e 9.0±3.7 µg/g nos grupos F+Pb e Pb, respectivamente. No osso total, os valores de chumbo dobraram no grupo F+Pb (14.2±2.6 µg/g) em comparação com o grupo Pb (6.8±1.7 µg/g). Os valores de chumbo estavam abaixo do limite de detecção na maioria das amostras dos grupos Controle e F. As concentrações de flúor aumentaram em ambos os grupos expostos a flúor (F e F+Pb), com diferenças estatisticamente significantes dos grupos controle e Pb, mas nenhuma diferença foi encontrada nas concentrações de F entre os grupos F e F+Pb em quaisquer dos tecidos calcificados testados. Em conclusão, este estudo mostra um aumento nas concentrações de chumbo no sangue total, esmalte, dentina, superfície óssea e osso total em ratas com 81 dias expostas ao flúor e chumbo desde o período pré-natal. / Low-level lead exposure is linked to cognitive and neurological disorders in children. An increased risk for higher blood lead levels was described for children living in communities that receive fluoridated-water. This study tested whether water fluoride would induce increases in the blood and calcified tissue lead concentrations in Wistar rats exposed to low lead levels since gestational age. Female rats were allocated in four groups: control, and 3 groups that received water containing 100 mg/L of fluoride (F), 30 mg/L of lead (Pb), or 100 mg/L of F and 30 mg/L of Pb (F+Pb). Females mated and delivered their pups receiving the same water treatment. Female pups were maintained on the same water regimen until day 81. Lead was determined by ICP-MS (Inductively Coupled Plasma Mass Spectrometry), and fluoride was measured by ion-specific electrode in the whole blood, superficial enamel, dentine, surface bane, and whole bane. Mean whole blood lead concentrations triplicated in the F+Pb group (76.7±11.0 µg/dL) in comparison to the Pb group (22.6±8.5 µg/dL)(p < 0.001), with the same trend observed in all calcified tissues analyzed (p < 0.001 for all comparisons). In the enamel, mean lead concentrations were 2.5 times higher in the F+Pb group compared with the Pb group (4,369±1,353 µg/g versus 1,768±892 µg/g). In dentine, mean lead concentration found in F+Pb group was 8.5 ±2.0 µg/g versus 4.9±1.7 µg/g in the Pb group. In the bane surface, the mean lead concentration found in the F+Pb group was 3.1 times that determined in the Pb animals, with 28.0±10.6 and 9.0±3.7 µg/g in the F+Pb and Pb groups, respectively. In whole bane, mean lead values doubled in the F+Pb group (14.2±2.6 µg/g) in comparison with the Pb group (6.8±1.7 µg/g). Lead values were below detection limit in most Control and F group samples. Fluoride concentrations were increased in both groups exposed to fluoride (F and F+Pb), with statistically significant differences from the control and Pb groups, but no differences in the F concentrations were found between the F and F+Pb group in any of the calcified tissues tested. In conclusion, this study shows a fluoride-induced increase in the concentrations of lead of whole blood, enamel, dentine, surface bane and whole bane of 81-day female rats exposed to lead since gestational age, suggesting that a biological effect not recognized so far may underlie the epidemiological association between increased blood lead levels in children living in water-fluoridated communities.
|
435 |
Design and Syntheses of Triarylborane Decorated Luminescent Dyes : Intriguing Optical Properties and Anion Sensing ApplicationsSwamy, Chinna Ayya P January 2014 (has links) (PDF)
The main thrust of this thesis is the development of new triarylborane containing luminescent molecules as well as utilizing triarylboron center as a receptor for the selective detection of biologically, environmentally and industrially important anions such as fluoride and cyanide in aqueous and non-aqueous solutions. The thesis contains nine chapters. The contents of each chapter are described below.
Chapter 1
The first chapter is an introduction to the theme of the thesis and presents a general review on the techniques, theories and photochemistry relevant to the present work with emphasis on photochemistry of triarylboranes and their importance in the field of anion sensor chemistry. A review on various boron based luminophores is also presented.
Chapter 2
The second chapter deals with the general experimental techniques and synthetic procedures utilized in this work.
Chapter 3
This chapter deals with the synthesis of boryl-BODIPY dyads (1-8) in which triarylborane acts as anion receptor and BODIPY as a signalling unit. The absorption spectra of all boryl-BODIPY dyads shows similar pattern. However, the fluorescence spectra of 1, 2, 3, 6 and 7 shows dual emission bands whereas 4, 5 and 8 exhibit a single emission band. These interesting photophysical properties of boryl-BODIPYs (1-8) depends on the dihedral angle between two chromophores and partial energy transfer from donor (triarylborane) to acceptor (BODIPY) unit. The energy transfer efficiency of compounds 4, 5 and 8 is higher (close to 100%) compared to other series of boryl-BODIPYs (1-3, 6 and 7), due to the orthogonal arrangement of chromophores with high dihedral angles. To better understand photophysical properties and energy transfer process, anion binding studies were carried out since triarylborane acts as receptor for fluoride and cyanide ions. Anion binding studies of boryl-BODIPYs were (1-5) carried out in dichloromethane solutions and using tetrabutylammonium salt of fluoride/cyanide. All boryl-BODIPY dyads (1-5) were sensitive and selective sensor of fluoride, whereas the presence of only excess amounts (20 equv or more amounts) of cyanide made any changes in absorption and emission spectra. Other anions even above 100 eq were unable to cause any change. The quenching efficiency of compounds 4 and 5 was found to be more than that of other boryl-BODIPYs (1 and 3). The binding of fluoride with boryl-BODIPY (1-5) was entirely reversible; addition of BF3•Et2O to the fluoride adducts of compounds (1-5) regenerated the parent compounds.
Chapter 4
In chapter 3, it was established that linear boryl-BODIPY dyads (1-8) show dual/single fluorescence bands depending on the dihedral angle between triarylborane and BODIPY unit. This Chapter describes the synthesis of three new “V” shaped boryl-BODIPY dyads (9, 10 and 11) their optical properties, Compound 9-11 are structurally similar differing only in the number of methyl substituents on the BODIPY moiety which were found to play major role in determining their optical behavior. The dyads show rare forms of multiple channel emission characteristics arising from different extents of electronic energy transfer (EET) processes between the two covalently linked fluorescent chromophores (triarylborane and BODIPY units). Owing to the presence of Lewis acidic triarylborane moiety, the dyads function as highly selective and sensitive fluoride sensors with vastly different response behavior. Upon binding of fluoride to the tricoordinate borane centre, dyad 9 shows gradual quenching of its BODIPY dominated emission due to the cessation of (borane to BODIPY) EET process. Dyad 10 shows ratiometric changes in its emission behavior upon addition of fluoride. Dyad 11 forms fluoride induced nanoaggregates which result in fast and effective quenching of its emission intensity upon addition of even small quantities of analyte (i.e. 0.1 equivalent of fluoride). When the solution is allowed to stand, disaggregation of the molecules results in partial recovery of the initial fluorescence bands. Thus, small structural alterations in these three structurally close dyads (9-11) result in exceptionally versatile and unique photophysical behavior and remarkably diverse responses towards a single analyte i.e. fluoride anion.
Chapter 5
This chapter deals with intermolecular charge transfer (ICT) process in borane containing donor-acceptor triads and tetrads to realize colorimetric response for small anions such as fluoride and cyanide. Triad 12 and tetrad 13 incorporating –B(Mes)2, BDY (borondipyrromethene), and TPA (triphenylamine) were synthesized. Introduction of two dissimilar acceptors (triarylborane and BODIPY) on a single donor (TPA) resulted in two distinct ICT process (amine to borane and amine to BDY). The absorption and emission properties of new triad and tetrad are highly dependent on individual building units. The nature of electronic communication among the individual fluorophore units has been comprehensively
investigated and compared with building units. Compounds 12 and 13 showed chromogenic and fluorogenic response towards small anions such as fluoride and cyanide.
Chapter 6
In the previous chapter, it was demonstrated that although triphenylamine-triarylborane-BODIPY donor-acceptor conjugates show colorimetric response towards fluoride and cyanide. They could not distinguish these two interfering anions. To overcome the anion interference peripherally triarylborane decorated porphyrin (14) and its Zn(II) complex (15) were designed and synthesized and this forms the subject matter of this Chapter. Compound 15 contains two different Lewis acidic binding sites (Zn(II) and boron centre). Unlike all previously known triarylborane based sensors, the optical responses of 15 towards fluoride and cyanide are distinctively different thus enabling the discrimination of these two interfering anions. Metalloporphyrin 15 shows a multiple channel fluorogenic response towards fluoride and cyanide and also a selective visual colorimetric response towards cyanide. By comparison with model systems and from detailed photophysical studies on 14 and 15, it was concluded that the preferential binding of fluoride occurs at the peripheral borane moieties resulting in the cessation of the EET (electronic energy transfer) process from triarylborane to porphyrin core and with negligible negative cooperative effects. On the other hand, cyanide binding occurs at the Zn(II) core leading to drastic changes in its absorption behavior which can be followed by the naked eye. Such changes are not observed when the boryl substituent is absent (e.g. tetraphenyl-Zn(II)-porphyrin or TPP). The conjugates 14 and 15 showed reversible binding interaction towards CN and F and they are capable of extracting fluoride from aqueous media.
Chapter 7
This Chapter deals with the design of a sensor which can detect fluoride colorimetrically in aqueous medium. Detecting fluoride in aqueous solution is an important area of current research owing to both positive and negative health and environmental effects associated with the fluoride ion. Although numerous fluoride sensors are reported, the colorimetric sensing (visual detection without the need of costly equipment and complicated analytical of fluoride at recommended levels
0.7 ppm) has not realized. Here
we report the design, optical and fluoride sensing ability of two new water soluble Lewis acidic triarylborane-triarylamine conjugates 16 and 17 (containing one or two ammonium cations (-C6H4-NMe3). Compound 17 shows selective colorimetric response for aqueous inorganic fluoride at as low a level as 0.1 ppm
Chapter 8
The synthesis and optical properties of four new triarylborane–dipyrromethane (TAB– DPM) conjugates (19a–d) containing dual binding sites (hydrogen bond donor and Lewis acid) have been reported. The new compounds exhibit a selective fluorogenic response towards the F− ion. The NMR titrations show that the fluoride ions bind to the TAB–DPM conjugates via the Lewis acidic triarylborane centre in preference to the hydrogen bond donor (dipyrromethane) units.
Chapter 9
A new triarylborane-aza-BODIPY conjugate is reported (22). The conjugate molecule consists of two blue emissive dimesitylarylborane moiety and a NIR (near infra-red) emissive aza-BOIDPY core and shows panchromatic absorption spanning over ~300-800 nm region. The presence of two different fluorophore units in the conjugate leads to a broad dual-emissive feature covering a large part of visible and NIR region. DFT computational studies suggest limited electronic communication between the individual fluorophore units which may be responsible for the intriguing optical features of the conjugate molecule. Further, the broadband emissive conjugate can act as a selective sensor for fluoride anion as a result of fluorescence quenching response in both visible as well as in NIR spectral region.
|
436 |
Investigations of the anti-caries potential of fluoride varnishesAl Dehailan, Laila Adel 12 November 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The majority of currently marketed fluoride varnishes (FV) have not been
evaluated for their effectiveness in preventing dental caries. Fundamental research on
FVs and how different formulations affect adherence to teeth, fluoride release into saliva
and uptake by teeth is virtually non-existent. The objective of this work was to
investigate the anti-caries potential, measured as fluoride release into saliva, change in
surface microhardness of early enamel caries lesions, and enamel fluoride uptake,
of multiple commercially available FVs. We have found that FVs differed in their release
characteristics, rehardening capability, and ability to deliver fluoride to demineralized
lesions. In addition to our in vitro work, we have conducted a clinical study that aimed to
compare saliva and plaque fluid fluoride concentrations following the application of three
commercially available FV treatments at predetermined post application time points. We
also investigated the change in fluoride concentration in saliva and plaque fluid fluoride
from baseline to each post application predetermined time point. We found that FVs
varied in their release of fluoride into saliva and plaque fluid but shared common trends
in release characteristics. The outcomes of our in vitro and in vivo investigations
demonstrate a great variation in anti-caries potential of FVs. This may be attributed
to different compositions and physical properties of the tested FVs.
|
437 |
SYNTHESES AND STRUCTURES OF RHENIUM(VII) AND MANGANESE(VII) OXIDE FLUORIDES, MANGANESE(V, IV) FLUORIDES, AND THE FIRST OXIDE OF XENON(II)Ivanova, Maria January 2016 (has links)
This Thesis extends the chemistry of group VII transition metal oxide fluorides, namely ReO3F and MnO3F. The fundamental chemistry of ReO3F has been significantly extended with the development of its high-yield and high-purity synthesis. This has been achieved by solvolysis of Re2O7 in anhydrous HF (aHF) followed by reaction of the water formed with dissolved F2 at room temperature. The improved synthesis has allowed the Lewis acid and fluoride-ion donor-acceptor properties of ReO3F to be further investigated. The Lewis acid-base complex, (HF)2ReO3F·HF, was obtained by dissolution of ReO3F in aHF at room temperature and was characterized by vibrational spectroscopy with aid of quantum-chemical calculations and single-crystal X-ray diffraction at −173 °C. The HF molecules are F-coordinated to rhenium, representing the only known example of an HF complex with rhenium. The study of the fluoride-ion acceptor properties of ReO3F resulted in the syntheses and characterization of the [{ReO3(μ-F)}3(μ3-O)]2−, [ReO3F3]2−, and [ReO3F2]− anions. The [{ReO3(μ-F)}3(μ3-O)]2− anion was obtained as the [N(CH3)4]+ salt by the reaction of stoichiometric amounts of ReO3F and [N(CH3)4]F in CH3CN solvent. The anion was structurally characterized in CH3CN solution by 1D and 2D 19F NMR spectroscopy and in the solid state by Raman spectroscopy and a single-crystal X-ray structure determination of [N(CH3)4]2[{ReO3(μ-F)}3(μ3-O)]·CH3CN. The structure of the [{ReO3(μ-F)}3(μ3-O)]2– anion consists of three ReO3F units linked to each other through dicoordinate bridging fluorine atoms (F) and a central tricoordinate bridging oxygen atom (O3). Calculated vibrational frequencies and Raman intensities of the [{MO3(μ-F)}3(μ3-O)]2− (C3v) and [{MO3(μ-F)}3(μ3-F)]− (C3v) anions (M = Re, Tc) have been used to assign the Raman spectrum of [N(CH3)4]2[{ReO3(μ-F)}3(μ3-O)]·CH3CN. The fac-[ReO3F3]2− and [ReO3F2]− anions have been synthesized by the reactions of ReO3F with CsF and KF in aHF, and by reaction of ReO3F with NOF. Additionally, the [ReO3F2]− anion has been synthesized by the reaction of ReO3F with [NH4]F in aHF. Both anions were characterized by Raman spectroscopy in the solid state and single-crystal X-ray diffraction. The calculated vibrational frequencies of the fac-[ReO3F3]2− (C3v) and [(µ-F)4(ReO3F)4]4− (C4v) anions were used to assign the Raman spectra of fac-[ReO3F3]2− and [ReO3F2]−, respectively. The rhenium atoms in the open-chain, fluorine-bridged [ReO3F2]− anion and the monomeric fac-[ReO3F3]2− anion are six-coordinate with a facial arrangement of the oxygen ligands. The fluoride-ion donor properties were established by the reactions of ReO3F with excess AsF5 and SbF5/SO2ClF. Both reactions resulted in the formation of white friable solids, µ-O(ReO2F)(AsF5)∙2AsF5 and [ReO3][Sb3F16]. The [ReO3][Sb3F16] salt is stable at room temperature and decomposes to [ReO2F2][SbF5], when maintained at 45 oC under dynamic vacuum. The µ-O(ReO2F)(AsF5)∙2AsF5, however, slowly decomposes at 0 oC to ReO3F and AsF5. Both products were characterized by Raman spectroscopy in the solid state with aid of quantum-chemical calculations. The vibrational analyses revealed that the geometry of [ReO3][Sb3F16] is consistent with a trigonal pyramidal arrangement of oxygen atoms around rhenium, whereas in µ-O(ReO2F)(AsF5)∙2AsF5, ReO3F interacts with one of the AsF5 molecules through an O-bridge, which represents the first example of such type of bonding. The reactions of µ-O(ReO2F)(AsF5)∙2AsF5 and [ReO3][Sb3F16] with CH3CN resulted in the formation of the white salts, [O3Re(NCCH3)3][PnF6] (Pn = As, Sb), which were characterized by Raman spectroscopy.
The reactivity of ReO3F has been extended to the synthesis of a new Re(VII) oxide fluoride, (μ-F)4{[μ-O(ReO2F)2](ReO2F2)2}, which was synthesized by the reaction of 1:3 molar ratio of ReO3F and ReO2F3. The compound, (μ-F)4{[μ-O(ReO2F)2](ReO2F2)2}, a rare example of an O-bridged rhenium oxide fluoride, has been characterized by single-crystal X-ray diffraction and solid-state Raman spectroscopy. The vibrational assignments of (μ-F)4{[μ-O(ReO2F)2](ReO2F2)2} were confirmed by 18O-enrichment and quantum-chemical calculations.
The improved synthesis of ReO3F has also led to the synthesis and characterization of the novel [XeOXeOXe]2+ cation as its [μ-F(ReO2F3)2]− salt by the low-temperature reaction of ReO3F and XeF2 in aHF. The [XeOXeOXe]2+ cation provides an unprecedented example of a xenon(II) oxide and a noble-gas oxocation as well as a rare example of a noble-gas dication. The crystal structure of [XeOXeOXe][µ-F(ReO2F3)2]2 consists of a planar, zigzag-shaped [XeOXeOXe]2+ cation (C2h symmetry) that is fluorine bridged through its terminal xenon atoms to two [µ-F(ReO2F3)2]– anions. The Raman spectra of the natural abundance and 18O-enriched [XeOXeOXe]2+ salts are consistent with a centrosymmetric (C2h) cation geometry. Quantum-chemical calculations were used to aid in the vibrational assignments of [Xe16/18OXe16/18OXe][µ-F(Re16/18O2F3)2]2 and to assess the bonding in [XeOXeOXe]2+ by NBO, QTAIM, ELF, and MEPS analyses. Ion pair interactions occur through Re–Fμ---Xe bridges, which are predominantly electrostatic in nature and result from polarization of the Fμ-atom electron densities by the exposed core charges of the terminal xenon atoms. Each xenon(II) atom is surrounded by a torus of xenon valence electron density comprised of the three valence electron lone pairs. The positive regions of the terminal xenon atoms and associated fluorine bridge bonds correspond to the positive σ-holes and donor interactions that are associated with “halogen bonding”.
The reactions of MnO3F with noble-gas fluorides, KrF2 and XeF6, have been studied as the possible synthetic routes to MnOF5 and MnO2F3. The reaction of MnO3F with KrF2 yielded a red solid, which was isolated as a crystalline solid at room temperature and its crystal structure was assigned to manganese(V) fluoride, MnF5. The crystal structure of polymeric MnF5 consists of MnF6-octahedra which are trans-coordinated through fluorine bridges. The geometrical parameters of MnF5 could not be reliably determined due to unresolved twinning issues. The reaction of MnO3F with KrF2 in the presence of K[HF2] yielded a red-orange solid mixture of K[MnF6] (soluble in HF) and MnF3 (insoluble in HF). The HF solution of the solid mixture was characterized by 19F NMR spectroscopy and the resonance observed in the 19F NMR spectrum was preliminary assigned to [MnF6] by comparison with the chemical shift observed in the 19F NMR spectrum of MnO3F. Additionally, MnO3F was characterized by 19F−55Mn COSY NMR and 55Mn NMR spectroscopies, the latter provided the first 1J(19F−55Mn) coupling constant. The K[MnF6] salt was also characterized by single-crystal X-ray diffraction. The resulting octahedral geometry is imposed by symmetry, therefore, the anticipated Jahn-Teller distortion, which would result in D4h symmetry for the [MnF6] anion, could not be observed. The reaction of MnO3F with XeF6 resulted in the isolation of [Xe2F11]2[MnF6] and [XeF5]2[MnF6]. Both salts were characterized by low-temperature single-crystal X-ray diffraction. The [Xe2F11]2[MnF6] salt was additionally characterized by low-temperature Raman spectroscopy with the aid of quantum-chemical calculations, whereas the assignment of the known Raman spectrum of [XeF5]2[MnF6] has been improved in the present work. / Thesis / Doctor of Philosophy (PhD)
|
438 |
Mammalian brain acetylcholinesterase : a study of its solubilization, purification, molecular state and interactions with cholinergic ligands including an endogenous modulatorNiklasson, Bertil January 1981 (has links)
Membrane bound AChE from calf brain caudate nucleus was solubilized by use of ion-free media in presence of 10~ M EDTA and 10“5M tetracaine. The irreversible release of AChE was more effectively inhibited by divalent ions compared to monovalent ions added to the medium. EDTA appears to chelate divalent ions released from the tissue while tetracaine competes with the same ions at the membrane. The tetracaine effect is restricted to the procaine series of local anesthetics. Small amounts of soluble AChE are present in the cytosol fraction. In fresh preparations most of the enzyme appeared in a form having a molecular weight of 80.000 daltons as determined by gel filtration. The enzyme seems to be released in this form. It is proposed that this form represents the monomer form of the enzyme. In solution the AChE aggregates seemingly together with a factor that is released from the membrane in amounts stafchio- metric to the enzyme. By treatment with DEAE-Sephadex the enzyme preparation can be made non-aggregating. A highly purified nonaggregating monomeric AChE Specific activity 17150 micromoles acetylthiocholine hydrolyzed per minute at 27° C per mg protein) was obtained by affinity chromatography. Some anomalous binding phenomena was observed during the affinity chromatographic purification. The main observation was that edrophonium eluted crude enzyme preparation adsorbed to the affinity gel in a biphasic manner. It was found that in the crude preparation there is present besides unspecific material competing with the enzyme for the affinity gels a factor that increases the affinity of AChE to certain cholinergic ligands. Since the enzyme could be titrated by the factor it seems to have a very high affinity to the enzyme and the biphasic elution curve is explained by the presence of free as well as factor- bound enzyme in the preparation. In search for compounds having a similar effect it was found that fluoride ion too increased the affinity of AChE to the same ligands as the factor. The affinity of edrophonium to the site defined by the binding of AChE to MTA-CH (65x10“5m) is lower than that defined by the enzyme inhibitory constant (1.8xlO“7M). As an explanation of this finding it is proposed that the substrate induces a conformation having high affinity to edrophonium, a conformation that has a comparatively low relaxation rate. Thus acetylcholinesterase may be added to the list of enzymes that have hystere- tic properties. / <p>S. 1-54: sammanfattning, s. 55-100: 4 uppsatser</p> / digitalisering@umu
|
439 |
Fluoride in surface water and groundwater in southeast Sweden : sources, controls and risk aspectsBerger, Tobias January 2016 (has links)
The aim of this thesis is to determine the sources, controls and risk aspects of fluoride in surface water and groundwater in a region of southeastern Sweden where the fluorine-rich 1.45 Ga circular Götemar granite (5 km in diameter) crops out in the surrounding 1.8 Ga granites and quartz monzodiorites (TIB rocks). The materials of this thesis include both primary data, collected for the purpose of this thesis, and a large set of secondary data, retrieved from the Swedish Nuclear Fuel and Waste Management Co., the Swedish Geological Survey and the Kalmar County Council. A characteristic feature of the area is high fluoride concentrations in all kinds of natural waters, including surface waters (such as streams) and groundwater in both the Quaternary deposits (regolith groundwater) and bedrock fractures (fracture groundwater). A number of potential sources and controls of the high fluoride concentrations were investigated, including a variety of geological, mineralogical, mineral-chemical and hydrological features and processes. For the stream waters and regolith groundwater, high fluoride concentrations were correlated with the location of the Götemar granite. This finding is explained by the discharge of fluoride-rich groundwater from fractures in the bedrock and/or the release of fluoride due to the weathering of fluorine-bearing minerals in the Quaternary deposits; however, the Quaternary deposits had considerably lower fluoride concentrations than the underlying bedrock. The high fluoride concentrations in the fresh fracture groundwater (up to 7.4 mg/L) in the TIB-rocks are proposed to be the result of long residence times and the alteration/dissolution of fluorine-bearing primary and secondary minerals along the fracture walls. In terms of risk aspects, this thesis shows that fluoride can add to the transport and inorganic complexation of aluminium in humic-rich, acidic streams. Additionally, 24 % of the children in households with private wells in Kalmar County were assessed to be at risk of excess fluoride intake based on the WHO drinking water guideline value (1.5 mg/L). However, the risk increased significantly when instead the US EPA reference dose (0.06 mg/kg-day) was used, both when all relevant exposure pathways were taken into account as well as water consumption alone. Hence, it is shown that the risk of an excess intake of fluoride is strongly dependent on the basis for evaluation.
|
440 |
Avaliação in situ do potencial da solução de AmF/NaF/SnCl2, associada ou não ao laser de CO2, em prevenir a erosão em esmalte dental bovino / In situ assessment of the potential of AmF/NaF/SnCl2 solution, associated or not to CO2 laser irradiation, on preventing dental enamel erosionOliveira, Thayanne Monteiro Ramos 15 December 2015 (has links)
Apesar de vários estudos terem demonstrado resultados promissores do uso da solução de AmF/NaF/SnCl2 no controle da erosão do esmalte dental, não existem relatos da sua associação com a irradiação do substrato com o laser de CO2, de comprimento de onda de 9,6 ?m. Desta forma, o presente estudo teve como objetivo avaliar o potencial da solução de AmF/NaF/SnCl2, associada ou não ao laser de CO2 (4,5 J/cm2, 20 Hz, 20 ?s), em controlar a erosão em esmalte dental bovino. Treze voluntários participaram desse estudo in situ, de delineamento cruzado, em 02 fases (04 dias cada), onde 04 tratamentos foram testados utilizando réplicas (n = 13): GC - nenhum tratamento (controle negativo); GF - solução de AmF/NaF/SnCl2 (controle positivo); GL - irradiação com laser de CO2 (9,6 ?m); GLF - laser de CO2 associado à solução de AmF/NaF/SnCl2. Os voluntários usaram dispositivos intra-bucais removíveis contendo 08 amostras de esmalte bovino. Na primeira fase, 07 voluntários utilizaram dispositivos intra-bucais contendo amostras dos grupos GC e GL, e outros 06 voluntários utilizaram dispositivos contendo amostras dos grupos GF e GLF. Na segunda fase, os voluntários foram cruzados, permitindo que todos os grupos experimentais fossem avaliados no meio bucal dos 13 voluntários da pesquisa. Os dispositivos intra-bucais foram removidos da boca para ciclagem erosiva ex-situ em ácido cítrico 0,65%, pH 3,6, durante 4 minutos, 2x/dia, em horários pré-determinados. As amostras foram avaliadas em perfilômetro óptico de não-contato (n = 13) para análise da perda de tecido mineral após o desafio erosivo, e um ensaio de ultramicrodureza transversal (n = 13) foi realizado com o objetivo de determinar a profundidade da área de desmineralização abaixo da superfície do esmalte erodido. A análise morfológica foi realizada utilizando microscopia eletrônica de varredura (MEV) (n = 3). Os dados foram analisados estatisticamente por meio do modelo ANOVA 2 fatores para medidas repetidas, com subsequente comparação entre os diferentes tratamentos (? = 0,05). A ciclagem ácida realizada no presente estudo provocou perda de esmalte significativamente maior (p < 0,001) nos grupos GC (4,8 ± 1,4A ?m) e GL (4,4 ± 2,0A ?m). Não houve diferença estatística entre a perda de superfície nos grupos GF (1,9 ± 0,9B ?m) e GLF (1,7 ± 0,9B ?m). Os resultados de ultramicrodureza transversal mostraram que as amostras tratadas com a solução fluoretada (grupo GF) apresentaram uma zona parcialmente desmineralizada com média de dureza semelhante às amostras do grupo que não recebeu qualquer tipo de tratamento (grupo GC), com ambos os grupos apresentando média de dureza significativamente maior que os grupos que foram irradiados com o laser de CO2 (GL e GLF) (p < 0,001). As micrografias mostraram que as características morfológicas superficiais do esmalte nos grupos irradiados com laser de CO2 apresentaram-se semelhantes nos grupos GL e GLF, verificando-se a presença de áreas sugestivas de derretimento, resolidificação, microporos e microtrincas, sem evidências de precipitados fluoretados no grupo GFL. Uma camada amorfa pôde ser observada nas superfícies de esmalte tratadas apenas com a solução fluoretada contendo estanho. Pode-se concluir que o uso do enxaguatório bucal fluoretado contendo estanho (500 ppm F-, 800 ppm Sn2+, pH = 4,5) mostrou potencial de prevenção da erosão de esmalte dental. A irradiação do esmalte dental com o laser associado à solução fluoretada mostrou-se eficaz, mas seu efeito não foi sinérgico. O laser de CO2 (9,6 ?m), nos parâmetros utilizados, não foi capaz de prevenir a erosão em esmalte causada por ácido cítrico. / Although several studies have shown promising results using the AmF/NaF/SnCl2 solution in preventing the erosion of dental enamel, there are no reports of their association with the irradiation of the substrate with the CO2 laser, working at 9.6 ?m. Thus, this study aimed to evaluate the potential of AmF/NaF/SnCl2 solution, associated or not to CO2 laser irradiation (4.5 J/cm2, 20 Hz, 20 ?s), to prevent erosion on dental enamel. Thirteen volunteers participated in this 2-phase (4 days each), crossover study, where 04 treatments were tested using replicas (n = 13): GC - no treatment (negative control); GF - AmF/NaF/SnCl2 solution (positive control); GL - CO2 laser irradiation (9.6 ?m); GLF - CO2 laser irradiation associated with AmF/NaF/SnCl2 solution. The volunteers wore removable intra-buccal appliances containing eight bovine enamel samples. In the first phase, seven volunteers used intra-oral appliances containing samples of groups GC and GL and 6 volunteers, appliances containing samples of groups GF and GLF. In the second phase volunteers were crossed over, allowing all experimental groups were evaluated in the buccal environment of the 13 volunteers. Intra-buccal appliances were removed from the mouth and were exposed to a daily ex-situ erosive cycling (0.65% citric acid, pH 3.6, for 4 minutes, 2x/day) at pre-determined times. Samples were evaluated for surface loss using an optical non-contact profilometer (n = 13) for analysis of loss of mineral after the erosive challenge and a cross-sectional nanohardness test (n = 13) was carried out in order to determine the depth of demineralized area below the erosive lesion. Morphological analysis was carried out using scanning electron microscopy (SEM) (n = 3). The data were statistically analyzed by two-way ANOVA repeated measures with subsequent pairwise comparison test (? = 0.05). Erosive challenge significantly increased enamel wear (p < 0.001) in GC (4.8 ± 1.4A ?m) and GL (4.4 ± 2.0A ?m) groups. There was no significant difference between the surface loss in GF (1.9 ± 0.9B ?m) and GLF (1.7 ±0.9B ?m) groups. Data from cross-sectional nanohardness showed that samples treated with stannous fluoride solution (GF group) showed a partially demineralized zone with average hardness similar to samples in the group that did not receive any treatment (GC group), both groups had significantly higher average nanohardness than the irradiated samples (GL and GLF group) (p < 0.001). Morphologically, all CO2 laser irradiated samples resulted in similar changes, showing the presence of areas suggestive of melting, resolidification and some microcracks. No fluoride precipitates were observed in GFL groups. An amorphous layer could be observed on the surface of enamel treated with tin-containing solution alone. Within the limits of this in situ study, it can be concluded that the AmF/NaF/SnCl2 solution (500 ppm F, 800 ppm Sn2+, pH = 4.5) showed potential for prevention of dental enamel erosion. The enamel irradiation with the CO2 laser associated with the fluoride solution was effective, but its effect was not synergistic. The CO2 laser (9.6 ?m), with the parameters considered in this study, was not able to prevent the enamel erosion caused by citric acid.
|
Page generated in 0.0491 seconds